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ABSTRACT: Here, interlinked ZnO tetrapod networks (ITN-ZnO) have been
realized by using microwave-assisted thermal oxidation. With this simple and fast
process, a nanostructured ZnO morphology having tetrapodlike features with leg-to-
leg linking is obtained. The electrical and ethanol-sensing properties related to the
morphology of ITN-ZnO compared with those of other ZnO morphologies have also
been investigated. Tt has been found that ITN-ZnO unexpectedly exhibits superior
electrical and gas-sensing properties in terms of providing pathways for electron
transport to the electrode. A UV sensor and a room-temperature gas sensor with
improved performance are achieved. Therefore, ITTN-ZnO is an attractive
morphology of ZnO that is applicable for many new applications because of its
novel properties. The novel properties of ITN-ZnO are beneficial for electronic,
photonic, optoelectronic, and sensing applications. ITN-ZnO may provide a means to
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improve the devices based on ITN-ZnO.

KEYWORDS: ZnO, ietmpod, nanostructure, thermal oxidation, gas sensor

1. INTRODUCTION

Nanotechnology has been considered a breakthrough technol-
ogy that is expected to have a great impact on the scientific
community and industrial revolution.'™ This is mainly due to
the novel properties of nanomaterials resulting from reduction
in size that could open for new generations of nanodevices' a
wide range of applications.”® In addition, nanostructures or
shapes of nanomaterials also play an important role for this
emerging development.”

ZnO has caught attention because of its wide variety of
structures or morphologies such as nanowires,”” nanobelts,'’
nanorings,""'” nanoparticles,”* and tetrapods'*'® and may be
the richest family among all materials in both structures and
properties. For the past decade, nzu'meng'ineering]6 of ZnO by
controlling its size and morphology using various synthesis
methods has been performed, and a great variety of
nanostructured ZnO morphologies have been accom-
plished."*"""* The morphological diversity of nanostructured
ZnO leads to some interesting properties including surface-
related”” and optoelectrical properties.” > Thus, controlling
the growth kinetics of the synthesis process via nano-
engineering is an important issue for utilizing ZnO nanostruc-
fures 182323

Here we have controlled the growth kinetics of ZnQO
nanostructures by using microwave-assisted thermal oxidation
(MWTO). With only Zn powder and a household microwave
oven, we have realized a nanostructured ZnO morphology
having tetrapodlike features with leg-to-leg linking, a so-called
“interlinked tetrapod network of ZnO” or ITN-ZnO. Moreover,
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this ITN-ZnO has unexpectedly exhibited superior electrical
and gas-sensing properties in comparison with those of other
morphologies of ZnO. Characteristics of UV sensors and room-
temperature gas sensors, as examples for potential applications,
have also been reported.

2. EXPERIMENTAL SECTION

2.1. Preparation of ITN-ZnO. Zinc (Zn) powder (2 g; 99.99%,
less than S0 pm particle size) as a precursor loaded on a quartz
substrate was placed in a quartz tube with diameter of 2.8 cm and
length of 10 em in a household microwave oven (SHARP model), as
shown in Figure 1. The Zn powder was then heated with microwave
power of 700 W at a frequency of 245 GHz for 60 s under
atmospheric conditions. Finally, after the system cooled down, the
wool-like ZnO structures were observed in the quartz tube and
collected for further investigation.

2.2. Fabrication of Sensors. ITN-Zn0O, ZnO tetrapods (T-Zn0O),
and zinc oxide powder (P-ZnO; 99.9%, Sigma-Aldrich, less than 1 ym
in particle size) were mixed in ethanol and screened on alumina
substrates with gold interdigital electrodes as shown in Figure 2. Pt
wires were then used to connect them with the Au electrodes, and the
samples were put in the gas chamber under UV radiation.

2.3. Characterization. Crystallinity and morphology of woollike
Zn0 products were characterized via an X-ray powder diffractometer
(Siemens D-500) with Cu Ka radiation, field emission electron
microscope (FE-SEM; Hitachi S-450 SEM), and transmission electron
microscope (TEM; JEOL 2010 FEG STEM/TEM). To investigate the
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Figure 1. Schematic illustration of the preparation system of ITN-
ZnO. This system uses a household microwave oven (SHARP model)
with power of 700 W and frequency of 2.45 GHz (4= 12 cm). Zinc
powder (2 g) on a quartz substrate was placed in a quartz tube and
heated for 60 s. The wool-like products obtained in the quartz tube
were collected for further investigation.
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Figure 2. Schematic illustration of the sensor and the measurement
system. ITN-ZnO, T-ZnQ, and P-ZnO coated on alumina substrates
with gold interdigital electrodes were put in the quartz tube chamber
with UV lamps (4 = 365 nm; UVA), and =V characteristics were
measured with computer-controlled dc voltage and current sources.
Ethanol vapor with a concentration of 1000 ppm was injected into the
chamber at operating temperatures varying from room temperature to
500 °C.

UV-sensing properties, a UV light source (365 nm; UVA) with
intensity of 2.80 mW/em® was used. Current—voltage (I—V)
characteristics of the sensors irradiated with UVA were measured in
air or under nitrogen conditions using a dc voltage and current sources
that were interfaced and controlled by a computer. To characterize the
ethanol-sensing properties, the sensors were exposed to ethanol vapor
at a concentration of 1000 ppm at an operating temperature varying
from room temperature to S00 °C under UV illumination.

3. RESULTS AND DISCUSSION

3.1. Morphologies of Interlinked Tetrapod Network of
Zn0. The morphologies of ZnO products obtained from the
MWTO are shown in Figure 3. The ZnO products can be
distinguished into two regions with two different morphologies
as shown in Figure 3a. In the bottom region, tetrapodlike ZnO
structures (T-ZnQ) about 1 ym in diameter at the middle of
their legs and 10—30 pm in length is observed as seen in Figure
3b.

In contrast, in the upper region, the tetrapodlike structure
with leg-to-leg linking (ITN-ZnQ) is observed as seen in Figure
3cd It can be seen that the legs of ZnO tetrapods are
interlinked with the legs of neighbor tetrapods about at the end
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of the legs and look similar to the shape of a neural network.
The diameter at the middle of each leg is in the order of 50 nm,
which is much smaller than that of T-ZnO in the bottom
region. This ITN-ZnO is morphologically different from T-
ZnO in the bottom region.

The XRD patterns of ITN-ZnO, T-ZnO, and P-ZnO have
been obtained and are shown in Figure 4. It can be seen that
the XRD peaks of all samples are consistent with that of
Powder Diffraction File No.79-2205 (Intemational Centre for
Diffraction Data, 1979). This indicates that the as-prepared
ITN-ZnO and T-ZnO are wurtzite crystal structures. Moreover,
there is no characteristic peak of Zn metal observed in the XRD
spectra. This can be interpreted as meaning that the metallic Zn
precursors completely transform into ZnO nanostructures
during MWTO.

To understand the ITN-ZnO formation mechanisms, TEM
observation has been used for further investigation. Figure 5a
shows a bright-field TEM (BF-TEM) image of the two
interlinked ZnO tetrapods, and Figure 5b shows a high-
magnification BE-TEM image of the leg marked I of tetrapod A
connecting with the leg marked II of tetrapod B, together with
a corresponding selected-area electron diffraction pattern
(SADP) monitored at the connected region of these legs.
From trace analysis, it is possible that these legs grow along
<0001> ¢c-axis direction, which is usual for the growth direction
of ZnO tetrapods.” Hence, it can be suggested that at the
connected region these legs grow in the opposite but equivalent
<0001> c-axis directions.

Figure 5c presents a high-resolution transmission electron
microscopy (HRTEM) image of the linking between legs I and
IL. The spacing of the lattice fringes is about 0.26 nm, which is
equal to ¢/2, where ¢ is the c-axis lattice parameter in the ZnO
hexagonal structure (0.52 nm). It can be seen that at the
boundary between the legs the lattice fringes are continuous
suggesting epitaxial linking. However, the lattice fringes of both
legs are not fully matched, and a small mismatch displacement
of about ¢/8 can be clearly observed.

To explain the structural observation as mentioned above,
the schematic plan view of the hexagonal ZnQ structure along
zone axes is sketched in Figure 5d. It is composed of alternating
Zn and O ion planes stacking along the ¢ axis. In the wurtzite
structure of ZnQ, an oxygen ion plane locates at ¢/8, which is
far from the nearest-neighbor oxygen ion plane of ¢/2 along the
c axis. Similarly, the distance between the basal zinc plane and
the nearest-neighbor one is ¢/2. As seen in TEM images, legs I
and IT are connected with opposite growth directions and can
be bound together via some electrostatic force or ionic bond.
Thus, it is likely that the connection between two legs is
performed by chemically bonding between positively charged
zinc ions with negatively charged oxygen ions because of
columbic charge interaction. Hence, the small mismatch of
about ¢/8 at connection boundary is required for this chemical
bonding as observed in Figure Sc.

Moreover, the residual charges on the surface of ZnO are
prominent for the case of single-crystalline materials, as seen in
previous reports.'”'* For our ITN-ZnO, it can be seen from
TEM results (Figure Sc) that it exhibits single-crystalline
properties. Thus, the residual charges on the surface of ZnO
can be taken as resulting in columbic interaction.

On the basis of the collected results and above discussion, it
can be noted that the growth kinetics of ITN-ZnO is composed
of two main steps: tetrapod growth and connecting and linking
growth. The detailed study is our ongoing research. The growth

DOI: 10.1021/acsami.5b07491
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Figure 3. Morphologies of ZnO products obtained from microwave-assisted thermal oxidation: (a) optical image showing two distinguishable
regions of ZnO products, (b) FE-SEM image of tetrapodlike ZnO (T-ZnO) obtained at the bottom region, (c) FE-SEM image of ITN-ZnO
obtained at upper region, and (d) high-magnification FE-SEM image of ITN-ZnO showing the interlink between tetrapods.
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Figure 4. XRD patterns of ITN-ZnO, T-ZnO, and P-ZnO
characterized by X-ray powder diffractometer (Siemens D-500) with
Cu Ka radiation. It can be seen that all samples have a similar XRD
pattern and that the diffraction peaks can be indexed as the wurtzite
structure ZnO with a = b = 0.3253 nm and ¢ = 0.5213 nm, which is in
good agreement with PDF No.79-2205, ICDD, 1979.

kinetics of ZnO tetrapods can be explained in terms of a high
supersatuation ratio, which results in an increase in the
nucleation probability as given by

-

2

—Ro
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where B is a parameter constant, ¢ is the surface energy of the
solid tetrapod, kg is the Boltzmann’s constant, T is the absolute
temperature, and « is the supersaturation ratio between the
actual vapor pressure and the equilibrium vapor pressure
corresponding to the temperature T (usually a > 1).

Unlike to other synthesis methods, MWTO is able to
generate a high vapor pressure in very short time, resulting in
an ultrahigh supersaturation condition inside the quartz tube
(within 60 s in this case). Then, the ITN-ZnO can be formed
by condensation of ZnO vapor at supersaturation conditions
with fast growth along the ¢ axis w1th leg-to-leg linking and slow
growth in the other directions.”*™>” This can be achieved at the
upper region because the highest vapor pressure can be likely
obtained at the top of quartz tube because of the vapor
accumulation, leading to the condensation of ZnO super-
saturation vapor forming on the upper crust.

3.2. Electrical Properties of ITN-ZnO under UV-Light
lllumination. Sensors based on the nanostructured ZnO
(ITN-ZnO and T-ZnO) and commercially available zinc oxide
powder (P-ZnO) were fabricated using alumina substrates with
gold interdigital electrodes as shown in Figure 2. The electrical
properties of ITN-ZnO under dark and UV illumination in
either air or nitrogen ambient are investigated and are shown as
I-V characteristics with a linear scale in Figure 6a and a
semilogarithmic scale in Figure 6b. It can be seen that the
current of ITN-ZnO sensor exhibits the highest value (lowest
resistance) under the condition of UV illumination in nitrogen
ambient. Comparing with the value collected under the dark
condition, the lower resistance under UV illumination can be
explained by the increment of photogenerated electrons caused

DOI: 10.1021/acsami.5b07491
ACS Appl. Mater. interfaces 2015, 7, 2417724184
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Figure 5. TEM images of two interlinked ZnO tetrapods: (a) BE-TEM image of two interlinked ZnO tetrapod network (A and B). (b) High-
magnification BF-TEM image of the leg I of the tetrapod A connecting with the leg marked II of the tetrapod B, together with a corresponding
selected-area electron diffraction pattern (SADP) from the connected region of these legs. (c¢) HRTEM image of the boundary between legs I and II.
(d) Schematic plan view of the hexagonal ZnO structure along <1010> zone axes shown in order to explain the small mismatch displacement of

about ¢/8 at the boundary.

by the light absorption of ZnO nanostructures. In addition, the
further decrease in resistance measured under UV illumination
in nitrogen ambient can be explained by the increase of
conduction-band photoelectrons resulting from the decrease of
oxygen adsorption at the surface. Thus, UV light and oxygen
atmosphere play an important role for electrical properties of
ITN-ZnO.

Figure 6¢ shows the reversible switching curves of electrical
current through the devices for different ZnQ morphologies
tested under UV illumination in air. When the UV light is
switched on/off every 200 s at a constant bias voltage of 5V,
the on/off current ratio of ITN ZnO exhibits the highest value
of about 7400 compared to about 2.6 and 0.3 for T-ZnQ and P-
ZnO sensors. This suggests that the ITN-ZnO sensor exhibits
superior UV-detecting properties and clearly differs from the T-
Zn0O and P-ZnO sensors. This may be attributed to a better
transport pathway of ITN-ZnO for electrons that required
reaching the Au electrodes. Comparing with T-ZnO and P-
ZnO sensors, the ITN-ZnO sensor provides negligible effects of
grain boundaries that limit electron transport because the legs
are connected with the columbic interaction as described above.
Interestingly, by comparing this characteristic with the best
results of previously reported literature as summarized in Table
1, the photo—dark current ratio (Iy/I,,,) of our ITN-ZnO
device is a higher value (7400) in comparison with that of the
device based on nanotetrapod network of ZnO (4500).”* These
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results suggest that the ITN-ZnO has great potential for UV
sensor application.

3.3. Ethanol-Sensing Properties of Different ZnO
Morphologies. The ethanol-sensing properties of devices
based on different ZnO morphologies are investigated. Figure
7a shows two cycles of resistance change under ethanol
ambient for sensors based on different ZnO morphologies at
concentration of 1000 ppm and operating temperature of 450
°C. It can be seen that the sensor resistance rapidly decreases
when ethanol vapor is injected into the chamber, and the value
returns back to the original resistance when ethanol vapor is
removed. This indicates that the nanostructured ZnO
morphologies are applicable for ethanol sensors.

The sensor response (ratio of the resistance measured in air
to that in ethanol) is plotted in Figure 7b as a function of
operating temperatures. The sensor response depends on ZnO
morphology, and the highest sensor response is observed in the
T-ZnO device. This suggests that, at high operating temper-
ature, the ITN-ZnO sensor exhibits different ethanol-sensing
properties to the other ZnO morphologies.

From the above discussion, in order to get further insights
into the electrical and gas sensing properties related to the
morphology of nanostructured ZnQ, the combined effect of
UV illumination and ethanol ambient on the device character-
istics have been investigated. Thus, ethanol-sensing properties
under UV illumination are investigated at room temperature

DOl 10.1021/acsami5b07491
ACS Appl. Mater. Interfaces 2015, 7, 24177 -24184
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Figure 6. [=V characteristics of I'TN-ZnO sensor monitored under dark and UV illumination in either air or nitrogen ambient plotted (a) in a linear
scale and (b) in a semilogarithmic scale. (c) Reversible switching curves of electrical current for devices based on different ZnO morphologies.

Table 1. Summary of the Previous Reports on UV Sensors/DetectorsBased on ZnO Nanostructures

type of structure duration of growth and method UV intensity at 365 nm (mW/cm®)  bias voltage (V)  Iyy/ly,, rise time decay time ref
nanorodnetwork 3—5h HT 03 4 1.8 2s 30
nanoneedle network 4 h, C-FIS 15-20 03 312 22s 7-12s 28
nanotetrapod network <55, B-FTS 15-20 24 4500 67 ms 30 ms 28
powder Sigma-Aldrich 28 5 0.3 438 s 4.76 s this work
T-Zn0O 60 s, MWTO® 28 5 26 473 s 2.00 s this work
ITN-ZNO 60 s, MWTO® 28 5 7400 3.52s 0.67 s this work

“MWTO: microwave-assisted thermal oxidation.
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Figure 7. (a) Two cycles of resistance change under ethanol ambient for a sensor based on different ZnO morphologies at an ethanol concentration
of 1000 ppm and an operating temperature of 450 °C. (b) Plot of sensor response (ratio of resistance measured in air relative to that in ethanol) at
various operating temperatures.
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Figure 8. (a) Resistance change of ITN-ZnO sensor tested under UV illumination in air and ethanol ambient as a function of time at room
temperature and ethanol concentration of 1000 ppm. (b) Sensor response at room temperature and ethanol concentration of 10—1000 ppm. (c)
Resistance change of ITN-ZnO sensor in comparison with P-ZnO and T-ZnO sensors tested under UV illumination at room temperature and
ethanol concentration of 1000 ppm. (d) Resistance change of ITN-ZnO sensor under UV illumination at room temperature and ethanol
concentration of 1000 ppm, tested in air, along with an inset showing the resistance tested in nitrogen ambient.

and different operating temperatures. It is worth noting that
thermal energy is not required because UV radiation is used
instead for conduction band electron excitation. The resistance
of ITN-ZnO sensor under UV illumination in air and ethanol
ambient at room temperature is plotted as a function of time as
shown in Figure 8a. The resistance (conductance) of the ITN-
ZnO device rapidly decreases (increase) because of the increase
of photoelectrons by photon absorption and electron excitation
from valence band to conduction band. After the UVA
irradiation is cut down, the sensor resistance returns to the
original value. However, when the ethanol vapor is injected in
the chamber, the resistance of the ITN-ZnQO sensor surprisingly
increases, which is opposite to the case at high operating
temperature. (Typically, the resistance increase under ethanol
vapor indicates p-type behavior of semiconductor.) Also, the
increase in resistance and sensor response depends on the
ethanol concentration, as shown in Figure 8b from 10 to 1000
ppm. This suggests the possibility for new application as a gas
sensor operating at room temperature.

Compared with the sensors constructed from T-ZnO and P-
ZnO, the ITN-ZnQ sensor exhibits superior ethanol-sensing
properties under UV illumination at room temperature as seen
in Figure 8c. To understand the effects of oxygen molecules in
air on the ethanol-sensing characteristics, the sensor resistance
of a ITN-ZnO device monitored in air is compared with that
measured in nitrogen ambient as shown in Figure 8d. It can be
seen that the increased resistance in nitrogen is much smaller
than that of in air. This suggests that oxygen molecules play an
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important role in the ethanol-sensing mechanism at room
temperature.

Thus, the resistance increase can be explained by using the
ethanol-sensing mechanism at room temperature as sketched in
Figure 9. The proposed sensing mechanism is composed of
four stages. First, under UV illumination, photoelectrons are
generated from photoexcited electrons in the valence band
moving to the conduction band via UV absorption, resulting in
the decrease in sensor resistance. Second, oxygen molecules in
the air trap the electrons, forming superoxide radicals (O, ). At

Photon !
(UVAY !
{l

Resistance

Figure 9. Schematic diagram for ethanol-sensing mechanisms that can
be used to explain the resistance increase under ethanol ambient at
room temperature. There are four stages for sensing mechanism:
photoelectron generation, oxygen adsorption, oxygen-ethanol reaction,
and free electrons injection back to valence band.

DOk 10.1021/acsami.5b07491
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this stage, sensor resistance increases because of loss of
photoelectrons in the conduction band and results in moderate
resistance compared with that in the first stage. This moderate
resistance can be confirmed by the lower resistance of the
sensor measured in air (130 kQ) in comparison with that in
nitrogen atmosphere (2.8 kQ). The third process is related to
the ethanol oxidation by superoxide radicals, producing free
electrons. Typically, at high temperature, the free electrons
inject back to the conduction band because there are still a lot
of the available conduction band states, resulting in the
decrease in resistance (as seen in Figure 7a). However, at room
temperature, there are much fewer available conduction band
states compared with the number at high temperature (low
probability according to a simple Boltzmann distribution).
Therefore, we propose that in the fourth stage the free
electrons inject back to the valence band with high probability
by recombining with holes in the valence band resulting in the
increase in resistance. The resistance increase can be mainly
explained by the lack of photoelectrons that return back to the
conduction band.

It is worth noting that at high operating temperature the
ethanol response is similar to that of the case of with and
without UV illumination because the thermally excited
electrons dominate in this case. Therefore, ITN-ZnQO is an
exciting morphology of ZnO that can lead to many new
applications because of its novel properties. Because ITN-ZnO
can be obtained by the simple and fast synthesis process of
MWTO, scaling up to mass production of ITN-ZnO would be
easily performed and also increase feasibility for device
fabrication at low cost.

The novel properties of ITN-ZnO are beneficial for
electronic, photonic, optoelectronic, and sensing applications.
ITN-ZnO may provide a means to improve the devices based
on ZnO. Here, a UV sensor and a room-temperature gas sensor
with improved performance are demonstrated. The UV sensor
could be applied in space-based applications because of the
superior properties of radiation-damage resistance of Zn0.”
The gas sensor can raise feasibility for room-temperature gas
sensor applications, which is one major limitation in using gas
sensors based on metal-oxide semiconductors. In addition, this
room-temperature gas sensor could be applied for sensing
various gases including hydrogen, which would require a low
operating temperature for safety reasons.

4. CONCLUSIONS

ITN-ZnO has been successfully synthesized by using a
microwave-assisted thermal oxidation method. With this simple
and fast process, ITN-ZnO has been obtained. Moreover, this
ITN-ZnO also unexpectedly exhibits superior electrical and gas
sensing properties when compared with T-ZnO and P-ZnO.
With the advantage of its better transport partway for electron
transport to the electrode, a UV sensor and a room-
temperature gas sensor with enhanced performance are
obtained. Therefore, ITN-ZnO is an attractive morphology of
ZnO that can lead to many new applications because of its
novel properties.
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UV sensors based on inter-linked ZnO tetrapod networks (ITN-Zn0) were fabricated, characterized and com-
pared with ones based on ZnO tetrapods (T-Zn0) and ZnO powders (P-Zn0) in terms of morphology-related
charge dynamics. Photoluminescence measurement showed that the [ITN-ZnO had the highest order of crystallin-
ity among these nanostructures. Moreover, impedance spectroscopy analysis revealed that potential barrier at

the grain boundary of [TN-ZnO was relatively lower that of T-ZnO and P-ZnO. This was because the coulombic

Keywords:
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Zinc oxide (Zn0)

Interlinked ZnO tetrapod networks ([TN-Zn0)
Charge transport

Microwave-assisted thermal oxidation

electronic devices.

leg-to-leg linking of ITN-ZnO as confirmed by electron microscope observation. The lower potential barriers sig-
nificantly promoted transport of UV-generated charge carriers that were required to reach Au electrodes, leading
to lower sensor resistance. Based on the achieved results, charge transport mechanisms were also proposed.
These sensor characteristics suggested that the [TN-ZnO was greatly applicable for UV sensors and other opto-

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Novel properties of nanomaterials have allowed enormously advan-
tageous utilizations of nanodevices [ 1-3]. Nanostructured zinc oxide
(Zn0) inorganic semiconductors, one of the most promising materials
for optoelectronic devices, have provided various beneficial properties
such as wide band gap (3.37), large exciton binding energy (60 meV)
at room temperature, high electron mobility, ease of synthesis, and
morphological diversity [4]. Among various morphologies of ZnO nano-
structures, tetrapod-like ZnO (T-ZnO) is one of the interesting struc-
tures since it exhibits 3D geometry with four rod-shaped legs
connected together at the core center with tetrahedral angles [5,6].
This morphology is applicable for various semiconducting devices. Ul-
traviolet (UV) sensors, one of the potential applications for environ-
mental and military sensing, based on T-ZnO are able to provide high
UV sensitivity with short response time and recovery time. This is be-
cause T-ZnO has high surface-to-volume ratio and high light scattering
on the surface [7-9].

In the operation processes, the UV-generated charge carries are re-
quired to reach the electrodes through the physically-touching legs of

= Corresponding author at: Applied Physics Research Laboratory, Department of Physics
and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200,
Thailand.
E-mail address: supab99@gmail com (S. Choopun).

http://dx.doi.org/10.1016/j.surfcoat.2016.04.005
0257-8972/© 2015 Elsevier BV. All rights reserved.

T-ZnO network. The charge transfer across the grain boundaries of T-
Zn0 is usually limited by the potential barrier formed at the interface
of nanojunction between legs of T-ZnO [ 10]. In order to achieve a higher
UV responsibility, this potential barrier should be reduced.

In our previous report [11], we have introduced an interlinked tetra-
pod network of ZnO or ITN-ZnO, which is synthesized by a simple and
fast microwave-assisted thermal oxidation (MWTO). The ITN-ZnO has
tetrapod-like geometry with leg-to-leg linked together using coulombic
interaction. The UV sensors constructed from ITN-ZnO have shown su-
perior electrical property in comparison with that constructed from T-
Zn0 and ZnO powder (P-Zn0).

In this work, we constructed a UV sensor based on ITN-ZnO and
characterized it using impedance spectroscopy to get further insight
into the charge transfer mechanisms of ITN-ZnO sensor. The obtained
results showed impressive charge transfer activities with lower poten-
tial barrier at the grain boundary in comparison with the devices
based on T-ZnO and P-ZnO. The sensing properties of these devices
were also reported.

2. Experiment
2.1. Preparation and characterization of ITN-ZnO

ITN-ZnO and T-ZnO were prepared by microwave-assisted thermal
oxidation (MWTO) as previously reported in the literature [11]. A
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Au electrode

Fig. 1. Schematic illustration of measurement system used for UV-sensing
characterization.

house hold microwave oven (700 W, 2.45 GHz) was used as a micro-
wave generator. Zinc (Zn) powder (Asia Pacific Specialty Chemicals
Limited, 99.9%) with diameter of <50 pum as a precursor for ITN-ZnO
and T-ZnO was loaded in a quartz tube and irradiated with microwave
for 30, 60, and 90 s. Aftercooling down to room temperature, the
wool-like ZnO products were obtained.

A scanning electron microscope (SEM, Hitachi S-450, 200 keV) and a
transmission electron microscope (TEM, JEOL 2010 FEG STEM/TEM)
were used to observe morphology of the products. X-ray diffraction
(Siemens D-500 with Cu Ko radiation) and Photoluminescence (PL)
measurements (RF-5301 PC fluorescence spectrophotometer equipped
with a 150 W xenon lamp) were carried out to investigate crystal struc-
ture of the products.

Quartz tube

2.2. Device fabrication and gas sensing properties

Sensors devices constructed from different morphologies of ZnO
(ITN-ZnO, T-ZnO and ZnO powder (P-ZnO; Sigma-Aldrich, average
size <1 pm, purity 99.9%)) were fabricated and compared. Gold inter-
digital electrodes coated alumina plates were used as substrates for
the sensors. Mixtures of various ZnO structure materials (ITN-ZnO, T-
ZnO and ZnO powder) with ethanol were screen-printed on the alu-
mina substrates. Measurement of UV sensing properties was performed
by biasing the sensors with DC voltage at 1 V and detecting output DC
current and resistance. The measurement was operated under UVA
(N = 365 nm) irradiation from light source with different intensity of
1,2, 3,4and 5 mW/cm? at room temperature. A schematic illustration
of the measurement is shown in Fig.1. Impedance spectroscopy was
performed to investigate charge dynamics of the devices by using sinu-
soidal potential amplitude of 20 mV in a frequency range from 1 Hz to
10,000 Hz under UV irradiation.

3. Results and discussion
3.1. Morphology and crystallinity

Fig. 2a and b show optical images of plasma generated during the
microwave arcing and the wool-like ZnO products collected after the
arcing. It can be seen clearly that the as-synthesized ZnO products are
nanomaterials with two different nano-scale morphologies as reported
inour previous work [ 11]. Coarse white wool-like product in the bottom
region is T-ZnO and the upper translucent wool-like is the ITN-ZnO
where their legs are connected using coulombic interaction, as seen in
Fig. 2d and e. The selected area diffraction pattern (SADP) of the ITN-
ZnO in Fig. 2(f) confirmed that these legs grow along <0001 > c-axis
direction.

b)."
e

(f)
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* 0000
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Fig. 2. Optical image of (a) the samples during irradiating by a household microwave oven and (b) the products obtained after MWTO, (c) translucent upper region of ITN-ZnO, (d) SEM
image of ITN-ZnO, and (e) bright field TEM image showing the connection between two neighbor legs (A and B) of ITN-ZnO and (f) SADP observed at the connected region of ITN-ZnO.
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Fig. 3. Morphologies of ZnO products obtained from microwave-assisted thermal oxidation: FE-SEM image of [TN-ZnO was synthesized under microwave oven at 30-90s.
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Fig. 4. PL spectra of ITN-Zn0O compared with T-ZnO and P-Zn0Q.

In order to obtain the optimal condition for ITN-ZnO preparation, ir-
radiation with microwave for 30, 60, and 90 s was performed. The FE-
SEM images of the ITN-ZnO products are shown in Fig. 3. It is seen
that 60 s of microwave irradiation is the optimal condition for obtaining
large volume of the ITN-ZnO with homogenous morphology. Irradiating
microwave for only 30 s provides smaller amount of ITN-ZnO. Longer ir-
radiation up to 90 s gives inhomogeneous morphology. Therefore, the
sample irradiated with microwave for 60 s was further investigated
and selected for UV sensor fabrication.

In addition, the normalized PL spectra of all samples (Fig. 4) show
two luminescence bands: (1) a narrow band centered at 386 nm

18

corresponding to near band edge emission of ZnO (energy gap of
3.22 eV),and (2) a broad band in the visible region (440-640 nm) refer-
ring to the defects in the ZnO crystal including interstitial and vacancy
[12-13]. The intensity of the PL peaks in inter visible region is relatively
lower than that of the near band edge peaks. Especially, the ITN-ZnO ex-
hibits the lowest luminescence intensity in the visible region, indicating
that it has highest order of crystallinity among these samples.

32. Electrical properties and UV sensing responses

Impedance measurement was used to characterize the kinetics of
electron transfer of sensors constructed from ITN-ZnO, T-ZnO, and P-
Zn0. The Nyquist plots of recorded impedance spectra were shown in
Figs. 5. The experimental data was fitted using an equivalent circuit
model as shown in the inset of Fig. 5 and the extracted parameters
were summarized in Table. 1.

Normally, impedance spectra of sensors exhibit three semicircles at
high, medium and low frequency regions. However, in this work, only
one semicircle at medium frequency was observed. As seen in Fig. 5,
the diameters of the arcs are definitely different. The largest one was ob-
tained from the P-ZnO sensor. For the extracted parameter, the R; resis-
tance in the equivalent circuit is related to charge transport resistance of
the materials. The charge transfer resistance (Rcr) and space-charge
layer capadtance (C) refer to the charge transfer at the Zn0/Zn0O bound-
ary and the ZnO/Au interface. It is seen from Table 1 that the R; of all
samples are comparable but the Rer of ITN-ZnO is significantly lower
than that of the T-ZnO and P-ZnO devices. Especially, under UV irradia-
tion, the Rer decreases since more charge carriers are generated, in-
creasing conductivity of the materials. The lowest Rey and C of ITN-
Zn0 sensor is probably attributed to the coulombic connection between
legs of ITN-ZnO, which is able to reduce potential barrier at the bound-
ary. In comparison with the case of P-ZnO and T-ZnO devices, charge
transfer of the ITN-ZnO device is more efficient.
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Fig. 5. Nyquist plots of the UV sensors fabricated from P-Zn0O, T~

-Zn0 and ITN-ZnO under (a) UV irradiation and (b) dark condition.
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Table 1
Electrical properties of UV sensors with different types of structure.
Type R, (k) UV off (on) Rer(k€)) UV off (on) C(ph) UV off (on)
of structure
P-Zn0 29(21) 56,000(18,000) 84(60)
T-Zn0O 34(16) 30,000(600) 72(58)
ITN-Zn0 54(2.8) 4900(3) 61(21)

The reversible switching resistance of electrical current through the
devices for different ZnO morphologies is shown in Fig. 6(a). When the
UV radiation is switched on/off every 200 s at a constant bias voltage of
5V, ITN ZnO exhibits the on/off resistance ratio with the highest value of
about 7400 compared with ZnO tetrapod and ZnO powder for about 2.6
and 0.3, respectively. In order to investigate the sensing properties of
the UV sensors, typical responses were collected under various UV in-
tensities (1-5 W/cm?) and the results are shown in Fig. 6(b). It is seen
that all sensors showed higher resistance ratio at higher UV intensity.
The UV sensitivity of samples increased as a function of UV intensity,
as seen in Fig. 6(b). The ITN-ZnO sensor has different sensor properties
with high and rapid response of UV. This represents that [TN-ZnO show
superior UV detecting properties clearly different from ZnO tetrapod
and powder. The photo-dark resistance ratio of ITN-ZnO also exhibits
higher value of 7400 than that of the previous report (4500) [10].
These results suggest that the ITN-ZnO has a potential for UV sensor
application.

To understand the distinguishable optical and electrical properties of
ITN-ZnO from P-ZnO or even a free standing ZnO tetrapod, schematic
drawings presented in Fig. 7(a) are used to explain the current increase
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under UV irradiation for UV sensing mechanisms. The response varia-
tion for sensors based on ZnO to UV radiation at room temperature
can be explained by the energy-band theory of semiconductor, photo-
electric effect, and superoxide. Since ZnO has energy gap of about
3.3 eV, an electron (e~ ) in the valence band (VB) can be excited by
UVA light (3.10-3.94 €V) to the conduction band (CB), leaving a hole
(h™) in the VB. Then, the UVA generated electrons transport across
the grain boundaries of nanostructures in order to reach the Au elec-
trode for charge collection. The increase in conduction band electrons
causes the reduction of resistance for ZnO-irradiated with UVA light in
the air as confirmed by the results showing in Fig. 6a.

Regarding to the transduction/conduction mechanisms in these de-
vices, it is seen that the photo-dark resistance ratio of the ITTN-ZnO sen-
sor is significantly higher than that of the T-ZnO and P-ZnO devices. This
is caused by the reduction of potential barrier at the grain boundary of
ITN-ZnO as confirmed by impedance analysis. The UV-generated charge
carriers are able to transfer across the grain boundaries with fewer po-
tential barriers and are able to reach the Au electrode, showing the dra-
matic drop in sensor resistivity under UV irradiation in comparison with
the other devices, Therefore, the leg-to-leg linking with coulombic in-
teraction of ITN-ZnO significantly reduces the potential barrier at the
grain boundary and provides the efficient charge transport of the device.

4. Conclusion

UV-sensors based on nanostructures were constructed and charac-
terized. The ITN-ZnO sensor demonstrated the lowest sensor resistance
in comparison with the T-ZnO and P-ZnO ones. The main reason behind
the dramatic decrease in sensor resistance was the efficient charge
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Fig. 6. Resistance characteristics of the sensor; (a) reversible switching of electrical resistance at 5 V biasing voltage with 200 s periodic illumination of UV light of 3 mW/cm? for ITN-ZnO,
T-Zn0O and P-ZnO devices; and (b) the photo-dark resistance ratio (Sensitivity: (Ruyy — Ryark)/Raak) * 100) of [TN-Zn0, T-Zn0 and P-Zn0O sensors under illumination by a 365 nm of UV

intensity at a powerof 1,2,3,4,and 5 W/em?

(a)

CcB

\ T _ /7
=\ + ITN-ZnO
i

(b} | Under UV light

Resistance

-

T-ZnO

p o
E;=3.3eV “ . *

L S .‘:
% P

P-ZnO

- 1

Fig. 7. Mechanism interpretation for the UV sensor; (a) schematic diagram explaining the current increase under UV irradiation; and (b) transduction/conduction mechanism in three ZnO

nanostructures ([TN-Zn0, T-Zn0O and P-Zn0).
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transfer with low potential barriers at the grain boundary. These results
suggested that the ITN-ZnO with coulombic leg-to-leg linking is applica-
ble for efficient UV sensor and other optoelectronic devices.
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