CONTENTS

ACKNOWLEDGEMENT	d
ABSTRACT (THAI)	e
ABSTRACT (ENGLISH)	g
LIST OF TABLES	1
LIST OF FIGURES	n
LIST OF SYMBOLS AND ABBREVATIONS	s
STATEMENT OF ORIGINALITY (THAI)	u
STATEMENT OF ORIGINALITY (ENGLISH)	v
CHAPTER 1 Introduction to Dye-sensitized Solar Cells and Surface Modification	1
1.1 Dye-sensitized solar cells	2
1.1.1 Reviews of photoelectrodes	4
1.1.2 Reviews of counterelectrodes	7
1.1.3 Reviews of electrolytes	8
1.2 Surface modification	10
1.3 Chemical texturing process	14
1.3.1 Wet texturing process	14
1.3.2 Vapor texturing process	15
1.4 Research objectives and usefulness	16
1.4.1 Research objectives	16
1.4.2 Research usefulness	16

CHAPTER 2 Chemical Wet Texturing Process Electrodes	17
2.1 One-step texturing process	18
2.1.1 Morphology	18
2.1.2 Specific surface area	21
2.1.3 Reflectance	22
2.1.4 Dye adsorption	22
2.1.5 Photovoltaic characteristics	25
2.1.6 Electrochemical impedance spectroscopy analysis	31
2.1.7 Effects of acid solution on photovoltaic performance	35
2.2 Two-step texturing process	38
2.2.1 Morphology	39
2.2.2 Simulated 3D profile analysis	42
2.2.3 Photovoltaic characteristics	45
2.2.4 Pore analysis	48
2.2.5 Raman shift	49
2.3 Surface modification of Pt counterelectrodes	50
2.3.1 Morphology	50
2.3.2 Reflectance	51
2.3.3 Photovoltaic characteristics	52
2.4 Summary of chemical wet texturing process	53
CHAPTER 3 Two-Step Coating-Texturing Process of ZnO Photoelectrodes	55
3.1 Two-step coating-texturing process	55
3.2 Morphology	56
3.3 Pore analysis	58
3.4 Mapping profile analysis	59
3.5 Simulated 3D profile analysis	61
3.6 Photovoltaic characteristics	63
3.7 Electrochemical impedance spectroscopy analysis	64
3.8 Effects of acid solution on photovoltaic performance	67
3.9 Summary of two-step coating-texturing process	69

CHAPTER 4 Chemical Vapor Texturing Process of ZnO Photoelectrodes	71
4.1 Chemical vapor texturing process	72
4.2 Morphology	73
4.3 Simulated 3D profile analysis	76
4.4 Pore analysis	78
4.5 Reflectance	81
4.6 Raman shift	82
4.7 Dye adsorption	83
4.8 Photovoltaic characteristics	85
4.9 Investigation of influential factors on power conversion efficiency	87
4.10 Electrochemical impedance spectroscopy analysis	88
4.11 Essential factors on short-circuit current density	89
4.12 Summary of chemical vapor texturing process	90
CHAPTER 5 Conclusions and Possible Future Works	91
5.1 Conclusions	91
5.2 Possible Future works	92
REFERENCES	93
LIST OF AUTHOR'S PUBLICATIONS AND CONFERENCES	103
APPENDIX	105
APPENDIX A Image Processing Analysis	105
APPENDIX B List of Copyright Permissions	112
curriculum vitae i g h t s r e s e r v e d	115

LIST OF TABLES

		Page
Table 1.1	Photovoltaic parameters of some ZnO DSSCs	5
Table 1.2	Photovoltaic parameters of some DSSCs fabricated with	11
	modified ZnO	
Table 2.1	Thickness of base texturing films	21
Table 2.2	Specific surface area and dye adsorption of base texturing	25
	films	
Table 2.3	Photovoltaic parameters of DSSCs fabricated with base	28
	texturing films	
Table 2.4	EIS parameters of DSSCs fabricated with base texturing films	33
Table 2.5	Photovoltaic parameters of DSSCs fabricated with acid	36
	texturing films	
Table 2.6	Photovoltaic parameters of DSSCs fabricated with two-step	46
	texturing films	
Table 2.7	Photovoltaic parameters of DSSCs fabricated with non-	53
	texturing and texturing Pt films	
Table 3.1	Pore area and pore density of two-step coating-texturing films	59
Table 3.2	Photovoltaic parameters of DSSCs fabricated with two-step	64
	coating-texturing films	
Table 3.3	EIS parameters of DSSCs fabricated with two-step coating-	67
	texturing films	
Table 3.4	Photovoltaic parameters of DSSCs fabricated with two-step	69
	coating-texturing films using acid solution	
Table 4.1	Measured thickness of acid vapor texturing films	75
Table 4.2	Dye adsorption of acid vapor texturing films	84

Table 4.3	Photovoltaic characteristics of DSSCs fabricated with acid	86
	vapor texturing films	
Table 4.4	EIS parameters of DSSCs fabricated with acid vapor texturing	89

films

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่

Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

		Page
Figure 1.1	Schematics structure of a conventional dye-sensitized solar	2
	cells	
Figure 1.2	An essential schematics diagram of DSSCs mechanism	3
Figure 1.3	General J-V curve of DSSCs	4
Figure 1.4	Schematic diagram of scattering layer strategy	6
Figure 1.5	Surface modification of high surface area Pt counterelectrodes	7
Figure 1.6	Illustration of porous counterelectrodes preparation	8
Figure 1.7	Cyclic voltammograms of porous counterelectrodes based DSSCs	8
Figure 1.8	Energy diagram of some electrolytes	10
Figure 1.9	Nanoporous photoelectrode modified by KrF laser beam	12
Figure 1.10	A simple diagram of plasma jet system	12
Figure 1.11	SEM images of (a) ZnO nanorods and (b) optimized	13
	texturing ZnO nanorods	
Figure 1.12	An energy barrier formation after Na ₂ SO ₄ treatment	13
Figure 1.13	Illustrated scheme of a chemical wet texturing process	15
Figure 1.14	A hybrid silicon-DSSCs structure with textured macro- porous silicon photoelectrodes	15
Figure 1.15	A schematics of a chemical vapor texturing process	16
Figure 2.1	Morphology of base texturing ZnO films for texturing time	19
	of (a) 0 min, (b) 1 min, (c) 2 min and (d) 3 min	
Figure 2.2	Cross-sectional FE-SEM images of base texturing films	21
Figure 2.3	Reflectance of base texturing films	22

Figure 2.4	Dye adsorption of base texturing films for (a) EY sensitizer	24
	and (b) N719 sensitizer	
Figure 2.5	Flowing diagram of dye adsorption process	26
Figure 2.6	Photovoltaic characteristics of DSSCs fabricated with base	29
	texturing films for (a) EY sensitizer and (b) N719 sensitize	
Figure 2.7	Plots of J_{sc} and dye adsorption for (a) EY sensitizer and	30
	(b) N719 sensitizer	
Figure 2.8	An equivalent circuits of DSSCs for recombination analysis	31
Figure 2.9	Nyquist plots of DSSCs fabricated with base texturing films	32
	for (a) EY sensitizer and (b) N719 sensitizer	
Figure 2.10	Bode phase plots of DSSCs fabricated with base texturing	34
	films for (a) EY sensitizer and (b) N719 sensitizer	
Figure 2.11	Photovoltaic characteristics of DSSCs fabricated with acid	35
	texturing films	
Figure 2.12	Morphology of acid texturing films for texturing time of 10 s	37
Figure 2.13	Simulated 3D profiles of (a) conventional screened ZnO	37
	films and (b) acid texturing ZnO films for texturing time of	
	10 s	
Figure 2.14	Schematic flow of a two-step texturing process	38
Figure 2.15	FE-SEM images of two-step texturing films for type I	40
Figure 2.16	FE-SEM images of two-step texturing films for type II	41
Figure 2.17	Simulated 3D profiles of two-step texturing films for type I	43
Figure 2.18	Simulated 3D profiles of two-step texturing films for type II	44
Figure 2.19	J-V characteristics of DSSCs fabricated with two-step	45
	texturing films	
Figure 2.20	J-V characteristics of DSSCs fabricated with optimal two-	48
	step texturing films, one-step texturing films and non-	
	texturing films	
Figure 2.21	Pore size distribution of non-texturing films, one-step	49
	texturing films and two-step texturing films	

Figure 2.22	Raman shift of (a) non-texturing films, (b) one-step texturing	50
	films and (c) two-step texturing films	
Figure 2.23	SEM images of (a) non-texturing Pt films and (b) texturing	51
	Pt films	
Figure 2.24	Reflectance of non-texturing and texturing Pt films	52
Figure 2.25	J-V characteristics of DSSCs fabricated with non-texturing	53
	and texturing Pt films	
Figure 3.1	An illustration of two-step coating-texturing process of ZnO	56
	photoelectrodes	
Figure 3.2	Morphology of two-step coating-texturing films	57
Figure 3.3	Cross-sectional FE-SEM images of the two-step coating films	57
Figure 3.4	Pore area and pore density of two-step coating-texturing	58
	films with different texturing time for the second texturing	
	step	
Figure 3.5	Mapping profiles in gray scale level of two-step coating- texturing films	60
Figure 3.6	Relative pore deep histograms in gray scale level of two-step	61
	coating-texturing films	
Figure 3.7	Simulated 3D profiles of the two-step coating-texturing	62
	_{, films} ิทธิ์แหงจิทยงอัยเสียงใหม่	
Figure 3.8	Simulated roughness of the two-step coating-texturing films;	62
0	A, B and C are ZnO(acid 10 s)/ZnO(base 1 min), ZnO(acid	
A	10 s)/ZnO(base 2 min) and ZnO(acid 10 s)/ZnO(base 3 min)	
	films, respectively	
Figure 3.9	Photovoltaic characteristics of DSSCs fabricated with the	63
	two-step coating-texturing films	
Figure 3.10	Nyquist plots of DSSCs fabricated on the two-step coating-	65
	texturing films	

Figure 3.11	Simulating EIS using z-view software; (a) an equivalent	65
	circuits, (b) simulated result with low capacitor and	
	(c) simulated result with high capacitor	
Figure 3.12	Bode phase plots of DSSCs fabricated with the two-step	66
	coating-texturing films	
Figure 3.13	Photovoltaic characteristics of DSSCs fabricated with the	68
	two-step coating-texturing films using acid solutions	
Figure 4.1	Schematic diagram of an experimental set up for vapor	72
	texturing process	
Figure 4.2	Low (left) and high (right) morphological magnification of	74
	acid vapor texturing films	
Figure 4.3	Cross-sectional images of acid vapor texturing films	75
Figure 4.4	A linear fitting curve of films thickness	76
Figure 4.5	Simulated 3D profiles of acid vapor texturing films	77
Figure 4.6	Relative roughness of acid vapor texturing films	78
Figure 4.7	Pore density of acid vapor texturing films	79
Figure 4.8	Pore size distribution of acid vapor texturing films	80
Figure 4.9	Pore shape factor of acid vapor texturing films	80
Figure 4.10	Graphics of dye adsorption in different pore shape	81
Figure 4.11	Reflectance of acid vapor texturing films	82
Figure 4.12	Raman shifts of the non-texturing and acid vapor texturing films	83
Figure 4.13	Absorbance of dye desorbed from acid vapor texturing films	84
Figure 4.14	J-V characteristics of DSSCs fabricated with acid vapor	85
	texturing films	
Figure 4.15	Plots of thickness and FF	86
Figure 4.16	Graphics of dye adsorption in different pore shape	87
Figure 4.17	Nyquist plots of DSSCs fabricated with acid vapor texturing films	88
Figure 4.18	Plot of J _{sc} , dye adsorption and R _{rec}	89

Figure A.1	A convert of ordinary FE-SEM image using inage-J software	105
Figure A.2	A threshold process	105
Figure A.3	Threshold adjustment with auto scale	106
Figure A.4	The analyze particle of pore	106
Figure A.5	The analyze particle of pore with counting parameters	107
Figure A.6	Counted pore include Summary and Results	107
Figure A.7	The analyze 3D profile	108
Figure A.8	The simulated 3D profile	109
Figure A.9	The roughness calculation	110
Figure A.10	The roughness data	110
Figure A.11	The mapping profile analysis	111
Figure A.12	The mapping profile result	111
	CHEROTINAL UNIVERSITY	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF SYMBOLS AND ABBREVATIONS

PCE	Power conversion efficiency
DSCs	Dye-sensitized solar cells
PE	Photoelectrode
CE	Counterelectrode
EL	Electrolyte
ТСО	Transparent conducting oxide
НОМО	The highest occupied molecular orbital
LUMO	The lowest unoccupied molecular orbital
СВ	conduction band
J _{sc}	Short-circuit current density
FF	Fill factor
V _{oc}	Open-circuit voltage
J	Current density
V	Voltage
P _{in}	Power of incident solar spectrum
P _{max}	Maximum power
J _{max}	Maximum current density
V _{max}	Maximum voltage
P _{theory} Cop	Theoretical power
LHE, Φ_{LH}	Light harvesting efficiency
SSA	Specific surface area
FTO	Fluorine-doped tin oxide
PEG	Polyethylene glycol
FE-SEM	Field-emission scanning electron microscopy
EY	Eosin-Y
Φ_{G}	Electron generation efficiency
Φ_{C}	Charge collection efficiency

EIS	Electrochemical impedance spectroscopy
R _s	Series resistance
R _{ct}	Charge transfer resistance
СРЕ	Constant phase element
R _{rec}	Recombination resistance
R	Gas constant
Т	Absolute temperature
F	Faraday's constant
J_0	Exchange current density
τ	Electron life time
\mathbf{f}_{peak}	The frequency at the maximum peak from the Bode phase plots
IPCE	Incident photon to current efficiency
C	Capacitor
EQE	External quantum efficiency
	AL UNIVERSIT

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University AII rights reserved

ข้อความแห่งการริเริ่ม

- กระบวนการปรับปรุงพื้นผิวทางเกมีซึ่งประกอบด้วยกระบวนการแบบสารละลายและแบบไอ เชิงเกมีมีสักยภาพที่จะดัดแปลงฟิล์มพรุนซิงก์ออกไซด์สำหรับการประยุกต์ใช้ในเซลล์ แสงอาทิตย์ชนิดสีย้อมไวแสง
- การคัคแปลงพื้นผิวฟิล์มซิงก์ออกไซค์ด้วยกระบวนการไอเชิงเคมีได้ถูกสาธิตเป็นครั้งแรกใน งานวิจัยนี้สำหรับการเพิ่มประสิทธิภาพเซลล์แสงอาทิตย์ชนิดสีย้อมไวแสง
- การเพิ่มประสิทธิภาพเซลล์แสงอาทิตย์ชนิดสีย้อมไวแสงสามารถอธิบายได้โดยการเพิ่มการดูด ซับสีย้อมซึ่งเป็นผลมาจากการปรับปรุงฟิล์มพรุนซิงก์ออกไซด์

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

STATEMENT OF ORIGINALITY

- 1. Chemical texturing processes including wet and vapor texturing process have ability to modify porous ZnO films for dye-sensitized solar cells.
- 2. Surface modification of porous ZnO films via chemical vapor texturing process is demonstrated for the first time in this work for power conversion efficiency enhancement of dye-sensitized solar cell.
- 3. The power conversion efficiency enhancement of dye-sensitized solar cells can be explained by increasing of dye adsorption due to modified porous ZnO films.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved