CONTENTS

	Page
Acknowledgements	c
Abstract in Thai	d
Abstract in English	g
List of Tables	n
List of Figures	O
List of Abbreviations	q
Chapter 1 introduction	1
1.1 Principle, Theory, Rationale, and/or Hypothesis	1
1.2 Literature review	2
1.2.1 Inflammation	3
1.2.2 The process of inflammation	3
1.2.3. Chemotaxis and chemical mediator in inflammation	5
1.2.3.1 Arachidonic acid (AA) metabolites	6
1.2.3.2 Cytokines	8
1.2.3.2.1 Pro-inflammatory cytokines	9
1.2.3.2.2 Chemokines	13
1.2.3.3 Nitric oxide	13
1.2.3.4 Free radicals and inflammation	15
1.2.4 Lipopolysaccharide	18
1.2.4.1 The mechanism of lipopolysaccharide (LPS)	
induced inflammation	19
1.2.5 Inflammation and diseases	21

1.2.5.1 Inflammation and cancer	21
1.2.5.2 Inflammation and insulin resistance	22
1.2.6 Protection of insulin resistance by anti-inflammation	24
1.2.7 Thai medicinal plant with inhibitory effect of inflammation	25
1.2.8 Anoectochilus genus	25
1.2.8.1 Anoectochilus burmannicus	26
1.3 Objectives	28
Chapter 2 Meterials and Methods	29
2.1 Chemicals	29
2.2 Research Design	30
2.3 Plant extraction	30
2.3.1 Plant material	30
2.3.2 Plant aqueous extraction	30
2.3.3 Plant ethanolic extraction	30
2.4 Phytochemical Screening	31
2.4.1 Determination of Total Phenolic Content	31
2.4.2 Determination of Total Flavonoid Content	31
2.4.3 Determination of phenolic and flavonol constituents	32
2.5 Antioxidant Activity Screening	32
2.5.1 2.5.1 2, 2-diphenyl-1-picrylhydrazyl radical (DPPH) assay 2.5.2 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid	32
(ABTS) assay	33
2.6 Cell culture	34
2.7 Cytotoxicity of the extracts in RAW 264.7 macrophage,	
PBMCs and 3T3-L1 adipocyte cells	35
2.8 Anti-inflammation effect of the extracts from Anoectochilus burmannicus	33
2.8.1 Inhibition of NO production from macrophage (RAW 264.7)	

stimulated with lipopolysaccharide	37
2.8.2 Inhibition of TNF- α , IL-1 β , IL-6, iNOS and COX-2 expression in	
macrophage RAW 264.7 stimulated with lipopolysaccharide (LPS	3) 38
2.8.2.1 Gene expression analysis by quantitative RT-PCR	
(qRT-PCR)	38
2.8.2.1.1 RNA Extraction	39
2.8.2.1.2 cDNA synthesis by reverse transcription	40
2.8.2.1.3 Quantitative Real Time Polymerase Chain	
Reaction (qRT-PCR)	41
2.8.2.2 Enzyme-Linked Immuno-Sorbent Assay	
(ELISA) assay	44
2.8.2.3 Western Blot Analysis	45
2.8.2.3.1 Total Protein Extraction	46
2.8.2.3.2 Determination of total protein concentration	46
2.8.2.3.3 Sodium Dodecyl Sulfate-Polyacrylamide	
Gel Electrophoresis [SDS-PAGE]	47
2.8.2.3.4 Protein transfer (Blotting)	47
2.8.2.3.5 Antibody probing	50
2.8.2.3.5 Detection	50
2.9 Anti-inflammation-induced insulin resistance by aqueous	
and ethanolic extracts from Anoectochilus burmannicus	51
2.9.1 Glucose uptake assay	51
2.10 Statistical Analysis	53
Chapter 3 Results	54
3.1 Anoectochilus burmannicus extract yield	54
3.2 Phytochemical analysis	54
3.2.1 Total phenolic and flavonoid contents	54
3.2.2 Phenolic and flavonoid derivatives analysis	
by high-performance liquid chromatography (HPLC)	55

3.3 The free radical scavenging activity of ABE	56
3.4 Cytotoxicity of the ABE on RAW 264.7 macrophage	59
3.5 In vitro anti-inflammatory activity of the ABE on NO production	60
3.6 Effect of ABE extracts on inflammatory cytokines protein expression	
in LPS-treated RAW 264.7 macrophage by ELISA	62
3.7 Effect of ABE on protein expression of proinflammatory enzymes	
in LPS-induced RAW 264.7 macrophage by western blotting	64
3.8 Effect of ABE on LPS-stimulated gene expression of inflammatory-	
associated molecules in RAW 264.7 macrophages by RT-PCR	67
3.9 Cytotoxicity of the ABE on 3T3-L1 adipocytes	72
3.10 Effect of ABE on anti-insulin resistance in 3T3L-1 adipocytes	73
3.11 Cytotoxicity of the ABE on PBMCs	75
Chapter 4 Discussion and Conclusion	76
References	82
Appendix	108
Appendix A	108
Appendix B	112
Appendix A Appendix B Appendix C	102
Appendix D	114
Curriculum Vitae	124
Copyright [©] by Chiang Mai University	
All rights reserved	

LIST OF TABLES

	Page
Table 1.1 Oligonucleotide sequences for real-time RT-PCR	42
Table 3.1 Yield of Anoectochilus burmannicus extract (ABE)	54
Table 3.2 Content of total phenolics and flavonoids in ABE	55
Table 3.3 HPLC analysis of phenolic and flavonoid derivatives in ABE	56
Table 3.4 The SC50 of ABE in DPPH assay	58
Table 3.5 The SC50 of ABE in ABTS assay	59
AI UNIVERSITA	
ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright [©] by Chiang Mai University All rights reserved	

LIST OF FIGURES

		Page
Figure 1.1	The process of inflammation: leukocytes rolling into an injury site	5
Figure 1.2	The biosynthesis pathway of the prostaglandins	7
Figure 1.3	The current COX concept	8
Figure 1.4	The role of interleukin-6 in the development of chronic inflammation	11
Figure 1.5	Biology of trans-membrane TNF- α and soluble TNF- α	12
Figure 1.6	The L-arginine-nitric oxide pathway	15
Figure 1.7	Deleterious effects of oxidative stress on human health	17
Figure 1.8	Chemical structure of LPS from Gram-negative bacteria	19
Figure 1.9	LPS-induce innate immune in macrophage cells	20
Figure 1.10	Mechanisms of TNF-α on glucose metabolic pathway	24
Figure 1.11	Anoectochilus burmannicus	27
Figure 2.1	Scope of Experimental Design	30
Figure 2.2	Principle of DPPH Assay	32
Figure 2.3	Antioxidants inhibit the oxidation of ABTS by electron transfer	
	radical scavenging	34
Figure 2.4	3T3-L1 adipocyte differentiation processes	35
Figure 2.5	Principle of WST-1 assay	36
Figure 2.6	Griess reaction principle	37
	Processes of Reverse Transcriptase Polymerase Chain Reactions	
-	(RT-PCR)	40
Figure 2.8	Real time PCR chemistry by SYBR Green detection	41
Figure 2.9	Typically sandwich ELISA	44
Figure 2.10	Western blot transferred method	49
Figure 2.10	Structure of 2-NBDG	53
Figure 3.1	The percentage of antioxidant activity of ABE to scaveng	
-	DPPH free radical.	57

Figure 3.2	The percentage of ABTS acavenging activity of ABE	58
Figure 3.3	Effect of ABE on cell viability of RAW 264.7 macrophages	60
Figure 3.4	Effect of the ABE on LPS-induced NO production in	
	RAW 264.7 macrophages	61
Figure 3.5	Effect of ABE on IL-6 and TNF-α protein expressions in	
	LPS-treated RAW 264.7 macrophages determined by ELISA	63
Figure 3.6	Effect of ABE on COX-2 protein expression in LPS-treated	
	RAW 264.7 macrophages using western blotting	65
Figure 3.7	Effect of ABE on LPS-stimulated iNOS protein expression in	
	RAW 264.7 macrophages by western blotting	66
Figure 3.8	Effect of ABE on IL-1β mRNA expression in LPS-treated	
	RAW 264.7 macrophages determined by Real-Time PCR	68
Figure 3.9	Effect of ABE on IL-6 mRNA expression in LPS-treated	
	RAW 264.7 macrophages determined by Real-Time PCR	69
Figure 3.10	Effect of ABE on TNF-α mRNA expression in LPS-treated	
	RAW 264.7 macrophages determined by Real-Time PCR	70
Figure 3.11	Effect of ABE on COX-2 and iNOS mRNA expressions in LPS-	
	treated RAW 264.7 macrophages determined by Real-Time PCR	71
Figure 3.12	2 Effect of ABE on cell viability of 3T3-L1 cell lines	72
Figure 3.13	B The effect of ABE on TNF- α -induce insulin resistance by	
	impaired glucose uptake in 3T3-L1 adipocytes	74
Figure 3.14	Effect of ABE on cell viability of PBMCs	75
Figure 4.1	Model of ABE actions	81
	All rights reserved	

ABBREVIATIONS

Abs absorbance base pair bp **BSA** bovine serum albumin $^{\mathrm{o}}\mathrm{C}$ degree Celsius CO_2 carbon dioxide DI deionized water Dulbecco's Modified Eagle's **DMEM** Medium dimethyl sulfoxide **DMSO** deoxyribonucleic acid DNA DW distilled water ethylendiamine-N,N,N',N'-**EDTA** tetraacetic acid ethanol **EtOH FBS** fetal bovine serum gram g gravity force g hour hydrochloric acid HEPES (4-(2-hydroxyethyl)-1piperazineethaneulfonic acid) KCl potassium chloride KH₂PO₄ potassium dihydrogenphosphate L liter M molarity

mg

milligram

MgCl₂ magnesium chloride Min minute ml milliliter mM millimolar microgram μg microliter μl micromolar μΜ NaCl sodium chloride sodium hydroxide NaOH sodium carbonate Na₂CO₃ disodium hydrogen phosphate Na_2HPO_4 nm nanometer No number phosphate buffer saline **PBS** room temperature RT EN C. MAI sodium dodecyl sulfate **SDS** UV ultraviolet voltage V percentage %

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved