

CONTENTS

	Page
Acknowledgement	c
Abstract in Thai	d
Abstract in English	h
List of Tables	n
List of Figures	p
List of Abbreviations	s
Statement of Originality in Thai	v
Statement of Originality in English	w
Chapter 1 Introduction	1
1.1 Statement of the problem	1
1.2 Literature reviews	3
1.2.1 Colorectal carcinogenesis	3
1.2.2 Cancer chemoprevention	12
1.2.3 Algae	24
1.2.4 Bioactive compounds in algae	25
1.2.5 Beneficial effects of <i>Spirogyra neglecta</i> .	40
1.3 Objectives	42
Chapter 2 Materials and methods	43
2.1 Chemicals and instruments	43
2.2 Scope of study	43

	Page
2.3 Algae material	43
2.4 Preparation of dried <i>S. neglecta</i> mixed diet and <i>S. neglecta</i> extract	44
2.5 Preparation of crude polysaccharide from <i>S. neglecta</i> extract	44
2.6 Fractionation of sulfated polysaccharide by anion exchange chromatography	44
2.7 Chemical composition analysis	44
2.8 Monosaccharide composition analysis by thin layer chromatography	46
2.9 Mutagenicity and antimutagenicity using <i>Salmonella</i> mutation assay	47
2.10 Study of <i>S. neglecta</i> and its derived extracts on early stages of colorectal carcinogenesis in rats	48
2.11 Assessment of aberrant crypt foci	55
2.12 Preparation of cytosolic and microsomal fractions	55
2.13 Molecular mechanistic studies on initiation stage of colorectal carcinogenesis	55
2.14 Molecular mechanistic studies of on post-initiation stage of colorectal carcinogenesis	57
2.15 The effect of <i>S. neglecta</i> and its derived extracts on dextran sodium sulfate-induced colitis in mice	59
2.16 Histological examination	61
2.17 Molecular mechanistic studies on dextran sodium sulfate-induced colitis in mice	62
2.18 The effect of <i>S. neglecta</i> and polysaccharide extract on inflammation associated colorectal carcinogenesis in rats	64
2.19 Molecular mechanistic studies on inflammation associated colorectal carcinogenesis in rats	66
2.20 Statistical analysis	67
Chapter 3 Results	68
3.1 Study of <i>S. neglecta</i> on early stages of colorectal carcinogenesis in rats	68

	Page
3.2 Chemical composition of <i>S. neglecta</i> extract and its derived extracts	83
3.3 Chemical composition of partial polysaccharide fractions derived from crude polysaccharide extract	87
3.4 Mutagenicity of <i>S. neglecta</i> extracts in <i>Salmonella</i> mutation assay	90
3.5 Antimutagenicity of <i>S. neglecta</i> extracts in <i>Salmonella</i> mutation assay	93
3.6 The effect of <i>S. neglecta</i> extracts on post-initiation stage of colorectal carcinogenesis	96
3.7 Inhibitory mechanisms of <i>S. neglecta</i> extracts against post-initiation stage of colorectal carcinogenesis	99
3.8 Effect of <i>S. neglecta</i> extracts on dextran sodium sulfate induced colitis in mice	102
3.9 Effect of <i>S. neglecta</i> extracts on 1, 2-dimethylhydrazine/dextran sodium sulfate induced inflammation associated colorectal carcinogenesis in rats	119
Chapter 4 Discussion	124
References	132
Appendices	158
Appendix A	159
Appendix B	162
Appendix C	164
Appendix D	173
Curriculum Vitae	179

LIST OF TABLES

	Page
Table 2.1 Histological grading of colitis	61
Table 2.2 List of primers used in real-time polymerase chain reaction	66
Table 3.1 The general observation of rats in initiation stage of colorectal carcinogenesis	69
Table 3.2 Effect of <i>S. neglecta</i> on DMH-induced colonic ACF formation in initiation stage of colorectal carcinogenesis in rats	71
Table 3.3 General observation of rats in post-initiation stage of colorectal carcinogenesis	78
Table 3.4 Effect of <i>S. neglecta</i> on DMH-induced colonic ACF formation in post-initiation stage of colorectal carcinogenesis in rats	79
Table 3.5 Chemical constituents in <i>S. neglecta</i> extract and its derived extracts	84
Table 3.6 Chemical constituents in partial polysaccharide fractions of polysaccharide extract obtained from DEAE-sepharose chromatography	89
Table 3.7 Mutagenicity of <i>S. neglecta</i> extracts in the <i>Salmonella typhimurium</i> strain TA98 with presence and absence of metabolic activation	91
Table 3.8 Mutagenicity of <i>S. neglecta</i> extracts in the <i>Salmonella typhimurium</i> strain TA100 with presence and absence of metabolic activation	92
Table 3.9 Antimutagenicity of <i>S. neglecta</i> extracts against various heterocyclic amines induced mutagenesis in the <i>Salmonella typhimurium</i> strains TA98 and 100	94
Table 3.10 General observation and organ weights of rats in post-initiation stage of colorectal carcinogenesis	97
Table 3.11 The effect of <i>S. neglecta</i> extracts on number of aberrant crypt foci in post-initiation stage of colorectal carcinogenesis	98

	Page
Table 3.12 The body weights and relative internal organ weights of mice in dextran sodium sulfate-induced colitis in mice	103
Table 3.13 Effect of <i>S. neglecta</i> extracts on differentially expressed proteins in the mice colon mucosa of dextran sodium sulfate treatment, identified by QSTAR Elite LC-MS/MS and Ingenuity Pathway Analysis	115
Table 3.14 Effect of <i>S. neglecta</i> extracts on upstream regulator in the mice colon mucosa of dextran sodium sulfate treatment, identified by Ingenuity Pathway Analysis	117
Table 3.15 Altered biological functions in DSS-induced and <i>S. neglecta</i> extracts pretreated mice	118
Table 3.16 The general observation in rats treated by either 1, 2-dimethylhydrazine or dextran sodium sulfate	120
Table 3.17 The formation of aberrant crypt foci in 1, 2-dimethylhydrazine and dextran sodium sulfate-induced colorectal carcinogenesis	121
Table S1 The composition of monosaccharide in polysaccharide extract	175
Table S2 FT-IR analysis of polysaccharide extract from <i>S. neglecta</i>	178

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่
 Copyright© by Chiang Mai University
 All rights reserved

LIST OF FIGURES

	Page
Figure 1.1 Gene alteration during colorectal carcinogenesis	4
Figure 1.2 The Wnt canonical pathway	5
Figure 1.3 Gene alteration during colitis-associated colon cancer	6
Figure 1.4 Metabolism of 1, 2-dimethylhydrazine and azoxymethane	8
Figure 1.5 Aberrant Crypt Foci (ACF) in rat colon	11
Figure 1.6 The process of chemical carcinogenesis stages	12
Figure 1.7 The strategies of cancer prevention	13
Figure 1.8 The categories of chemopreventive agents	14
Figure 1.9 Transcriptional activation of detoxify and antioxidant enzymes by NRF2	17
Figure 1.10 The activation of NF-κB	19
Figure 1.11 Mammalian cell cycle regulation by Cdk-cyclin complex and CKIs	21
Figure 1.12 The intrinsic and extrinsic apoptosis pathways	23
Figure 1.13 Classification of the sulfated polysaccharides in algae	26
Figure 1.14 Two types of homofucose backbone chains in fucoidan isolated from brown macroalgae	28
Figure 1.15 Repeating units of some carrageenan	30
Figure 1.16 Structure of ulvan	31
Figure 1.17 Chemical structures of some polyphenols	33
Figure 1.18 Structures of eckol, dieckol and phloroglucinol	34
Figure 1.19 Structure of kahalalide F	36
Figure 1.20 Structure of chlorophyll derivatives including chlorophyll a (R =CH ₃) and chlorophyll b (R =CHO)	38
Figure 1.21 Structure of fucoxanthin	39
Figure 1.22 <i>Spirogyra sp.</i>	40
Figure 1.23 <i>Spirogyra neglecta</i>	41

	Page
Figure 2.1 Scope of study	43
Figure 2.2 Effect of <i>S. neglecta</i> on initiation stage of colorectal carcinogenesis in rats	50
Figure 2.3 Effect of <i>S. neglecta</i> on post-initiation stage of colorectal carcinogenesis in rats	52
Figure 2.4 Effect of <i>S. neglecta</i> extract and its derived extracts on post-initiation stage of colorectal carcinogenesis in rats	54
Figure 2.5 Effect of <i>S. neglecta</i> extracts on dextran sodium sulfate induced colitis in mice	60
Figure 2.6 Effect of <i>S. neglecta</i> extracts on 1, 2-dimethylhydrazine and dextran sodium sulfate induced colorectal carcinogenesis in rats	65
Figure 3.1 Formation of aberrant crypt foci (ACFs) in the colon of DMH-treated rats	70
Figure 3.2 Effect of <i>S. neglecta</i> on the expression of cytochrome P450 2E1 in initiation stage of colorectal carcinogenesis in rats	73
Figure 3.3 The effect of <i>S. neglecta</i> on activities of xenobiotic metabolizing enzymes in initiation stage of colorectal carcinogenesis in rats	74
Figure 3.4 The effect of <i>S. neglecta</i> on activities of antioxidant enzymes in initiation stage of colorectal carcinogenesis in rats	76
Figure 3.5 Effect of <i>S. neglecta</i> on cell proliferation in post-initiation stage of colorectal carcinogenesis in rats	81
Figure 3.6 Effect of <i>S. neglecta</i> on cell apoptosis in post-initiation stage of colorectal carcinogenesis in rats	82
Figure 3.7 Identification of monosaccharides in <i>S. neglecta</i> extract and polysaccharide extract by thin layer chromatography	85
Figure 3.8 Chromatograms of standard phenolic acids and <i>S. neglecta</i> extracts	86
Figure 3.9 The concentration of total carbohydrates in polysaccharide extract obtained from DEAE-sepharose chromatography	88
Figure 3.10 The inhibition of <i>S. neglecta</i> extracts against heterocyclic amines induced mutagenesis using <i>Salmonella</i> mutation assay	95

Figure 3.11 Effect of <i>S. neglecta</i> extracts on cell proliferation in post-initiation stage of colorectal carcinogenesis in rats	100
Figure 3.12 Effect of <i>S. neglecta</i> extracts on cell apoptosis in post-initiation stage of colorectal carcinogenesis in rats	101
Figure 3.13 Effect of <i>S. neglecta</i> extracts on histopathological changes in the colons of mice treated with DSS	104
Figure 3.14 Cross section of the mouse colon stained with haematoxylin and eosin Histology sections of colon in mice treated with DSS and combined to <i>S. neglecta</i> extracts	105
Figure 3.15 Cross section of the mouse colon stained with haematoxylin and eosin Histology sections of colon in mice treated with DSS and combined to chloroform fraction	106
Figure 3.16 Immunohistochemical staining of Ki67 in mice treated with DSS and combined to <i>S. neglecta</i> extracts	108
Figure 3.17 Immunohistochemical staining of Ki67 in mice treated with DSS and combined to chloroform fraction	109
Figure 3.18 Effect of <i>S. neglecta</i> extracts on cell proliferation in the colons of mice treated with DSS	110
Figure 3.19 TUNEL-positive cell in colonic mucosa	111
Figure 3.20 Effect of <i>S. neglecta</i> extracts on DSS-induced cell apoptosis in mice colitis model	112
Figure 3.21 Effect of polysaccharide extract on inflammatory related gene expression in dextran sodium sulfate-treated rats	123
Figure S1 Chromatogram of monosaccharide composition in polysaccharide extract	176
Figure S2 FT-IR spectrum of polysaccharide extract from <i>S. neglecta</i>	177

LIST OF ABBREVIATIONS

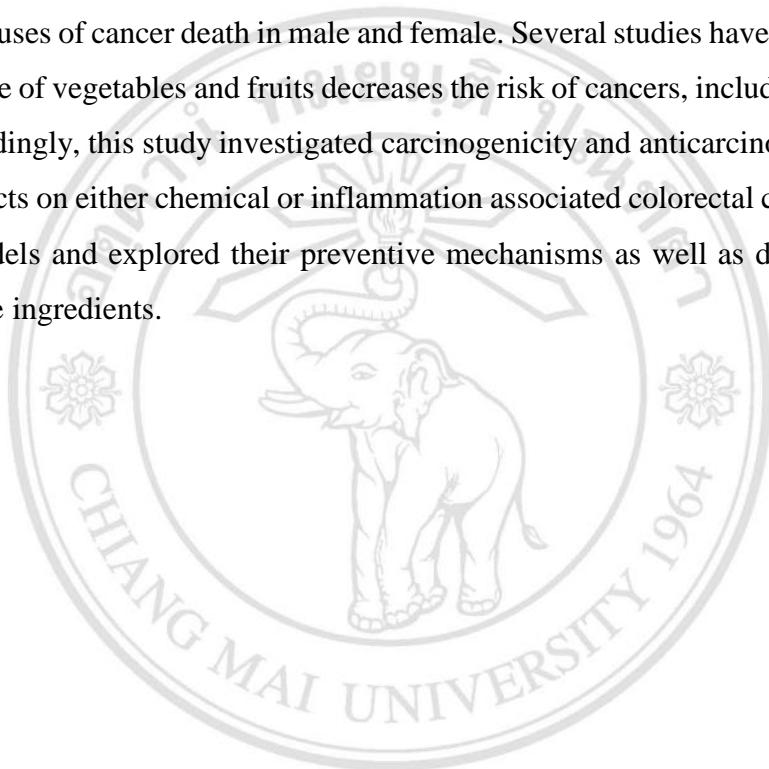
%	Percentage
°C	Degree celcius
β-NADPH	β-nicotinamide adenine dinucleotide phosphate
µg	Microgram
µl	Microliter
ACF	Aberrant crypt foci
AlCl ₃ ·6H ₂ O	Aluminium chloride hexahydrate
BSA	Bovine serum albumin
bw	Body weight
CDNB	1-chloro-2, 4-dinitrobenzene
CuSO ₄ ·5H ₂ O	Copper sulfate pentahydrate
DAB	3, 3-diaminobenzidine
DEAE	Diethylaminoethanol
DMH	1, 2-dimethylhydrazine
DI	Deionized water
DMSO	Dimethyl sulfoxide
DTT	Dithiothreitol
DW	Distilled water
EDTA	Ethylenediamine tetraacetic acid
EGTA	Ethyleneglycol tetraacetic acid

G6P	Glucose-6-phosphate
G6PD	Glucose-6-phosphate dehydrogenase
GAE	Gallic acid equivalent
GSH	Reduced glutathione
GSSH	Oxidized glutathione
GST	Glutathione-S-transferase
HCl	Hydrochloric acid
H ₂ O ₂	Hydrogen peroxide
HPLC	High Performance Liquid Chromatography
IgG	Immunoglobulin G
KCl	Potassium chloride
KH ₂ PO ₄	Potassium dihydrogen phosphate
L	Litre
M	Molar
mg	Milligram
MgCl ₂ ·6H ₂ O	Magnesium chloride hexahydrate
min	Minute
ml	Millilitre
mM	Millimolar
Na ₂ HPO ₄	Disodium hydrogen phosphate
Na ₂ HPO ₄ ·2H ₂ O	Disodium hydrogen phosphate dihydrate
NaCl	Sodium chloride
Na ₂ CO ₃	Sodium carbonate

NaNO ₂	Sodium nitrite
NaOH	Sodium hydroxide
NSS	Normal saline solution
OD	Optical density
PBS	Phosphate buffer saline
PCNA	Proliferation cell nuclear antigen
PMSF	Phenylmethanesulphonylfluoride
s.c.	Subcutaneous
TCA	Trichloroacetic acid
TLC	Thin Layer Chromatography
TPBS	Tween-20 phosphate buffer saline
UDP-GA	UDP-glucuronic acid
UGT	UDP-glucuronyl transferase
v/v	Volume by Volume
w/v	Weight by Volume

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่
 Copyright[©] by Chiang Mai University
 All rights reserved

ข้อความแห่งการริเริ่ม


สาหร่ายเตาเป็นสาหร่ายน้ำจีดสีเขียว นิยมนำมาประกอบเป็นอาหารทางภาคเหนือของประเทศไทย ปัจจุบันมีการศึกษาเกี่ยวกับถั่วป้องกันมะเร็งของสาหร่ายเตาในสัตว์ทดลองน้อย มะเร็งลำไส้ใหญ่เป็นมะเร็งที่พบมากเป็นอันดับต้นๆ ในประเทศไทย และเป็นสาเหตุการตายของประชากรไทยทั้งเพศชาย และหญิง จากการวิจัยจำนวนมากที่รายงานเกี่ยวกับการรับประทานผัก และผลไม้สามารถลดความเสี่ยงของการเกิดมะเร็ง รวมถึงมะเร็งลำไส้ใหญ่ ดังนั้นงานวิจัยนี้จึงทำการศึกษาถั่วป้องกันมะเร็ง และต้านมะเร็งของสารสกัดสาหร่ายเตาต่อกระบวนการการเกิดมะเร็งลำไส้ใหญ่ที่ถูกเหนี่ยวนำด้วยสารเคมีทั้งในสภาวะที่มี และไม่มีการอักเสบร่วมด้วยในสัตว์ทดลอง นอกจากนี้ยังศึกษากลไกการป้องกันมะเร็ง และสารออกฤทธิ์ที่พบในสารสกัดเตา

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่
Copyright[©] by Chiang Mai University
All rights reserved

STATEMENTS OF ORIGINALITY

Spirogyra neglecta, a freshwater green alga, is used as a traditional food in northern Thailand. Nowadays, there are a few studies on the cancer chemopreventive properties of *S. neglecta* in animal model. In Thailand, colorectal cancer becomes the most common and leading causes of cancer death in male and female. Several studies have been reported that high intake of vegetables and fruits decreases the risk of cancers, including colorectal cancer. Accordingly, this study investigated carcinogenicity and anticarcinogenicity of *S. neglecta* extracts on either chemical or inflammation associated colorectal carcinogenesis in animal models and explored their preventive mechanisms as well as determined the possible active ingredients.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่
Copyright[©] by Chiang Mai University
All rights reserved