CONTENTS

	Page
A.1	
Acknowledgement	c
Abstract in Thai	d
Abstract in English	e
List of Tables	h
List of Figures	i
List of Abbreviation and Symbols	1
Chapter 1 Introduction	1
1.1Overview of Tyrosinase	1
1.1.1 Structure of Active Center and Reaction Mechanism	3
1.1.2 Tyrosinase Inhibtors	5
1.1.3 Melanogenesis	7
1.2 Homology Model, Molecular Docking, Molecular Dynamics Simulation	on 9
1.3 Review of Tyrosinase Crystal Structures and Inhibitory Activities	11
1.4 Research Plan, Methoodology and Scope	16
1.5 Research Objective	17
References	18
Chapter 2 Methodology	J 23
2.1 Homology Modeling	23
2.1.1 Data Searching and Sequences Alignment	23
2.1.2 Homology Model and Structure Refinement	26
2.1.3 Evaluation of Model	29
2.2 Molecular Docking	32
2.3 Molecular Dynamics Simulation	38
References	51
Chapter 3 Results and Discussion	54
3.1 Homology Modeling	54

3.1.1 Sequences Alignment and Homology Modeling	54
3.1.2 The Homology Modeling Construction and Evaluation	55
3.2 Binding Scaffolds: Docking and MD Simulation	57
3.2.1 Molecular Docking	57
3.2.2 Molecular Dynamics Simulation	71
References	84
	86
Curriculum Vitae	89
ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright [©] by Chiang Mai University All rights reserved	

LIST OF TABLES

		Page
Table 3.1	Docking Score and Experimental Data in Term of Binding Structure/Activity of Tyrosinase from Mushroom, Bacterial,	70
Table 3.2	and Human. The Comparison of Interaction Site Found in Docked and	83
	MD Structures	
	ลิ ปสิทธิ์มหาวิทยาลัยเชียงให Copyright [©] by Chiang Mai Universit	

LIST OF FIGURES

	P	age
Figure 1.1	Reaction Pathways in Melanin Formation: Monophenolase and Diphenolase Activity by Tyrosinase.	1
Figure 1.2	The Both of Monophenolase and Diphenolase Activity	5
Figure 1.3	Melanin Formation Pathways	9
Figure 1.4	The Two Zones of Sequence Alignments	10
	(S (S) (S) (S) (S)	
Figure 2.1	The Block of Amino Acid Substitution Matrix of BLOSUM 62	24
Figure 2.2	The Block of Amino Acid Substitution Matrix of PAM-250	25
Figure 2.3	The Crystal Structure of Template	26
Figure 2.4	Alignment Sequences of Model and Template	27
Figure 2.5	Input File in Build Homology Model Step	27
Figure 2.6	Homology Model after Loop Refinement and Minimization	28
Figure 2.7	Energy Minimization Seeks the Energy Minimum Nearest	29
	the Starting Conformation	
Figure 2.8	Ramachandran Plot	30
Figure 2.9	PROCHECK Webpage	32
Figure 2.10	Verify3D Webpage	32
Figure 2.11	The PDB File of Protein	34
Figure 2.12	The PDB File of Ligand	35
Figure 2.13	Preparation GPF File	36
Figure 2.14	Command Lines for Run Autogrid4	36
Figure 2.15	Preparation DPF File	37
Figure 2.16	Command Lines for Run Autodock4	37
Figure 2.17	PDB File for Prepare Topology File	39
Figure 2.18	PREPIN File and FRCMOD File	40
Figure 2.19	Tleap Command Line	41

Figure 2.20	The 3D Structure of Protein–Ligand Complexes after add	42
	Water and Ions	
Figure 2.21	Periodic Boundary Conditions	43
Figure 2.22	Input File for Run Relaxing Step	45
Figure 2.23	Input File for Run Minimizing Step	46
Figure 2.24	Input File for Run Heating Step	46
Figure 2.25	Input File for Run Equilibrium Step	47
Figure 2.26	Input File for Run Production Step	47
Figure 2.27	The Command Line on each Step of MD Simulation	48
Figure 2.28	Input File For Calculated Energy	49
Figure 2.29	Input File For Calculated RMSD	50
Figure 2.30	Input File For Calculated Bond Distance	50
Figure 3.1	Sequence Alignment between Human Amino Acid Sequence	55
	and Crystal Structure of Bacterial Tyrosinase	
Figure 3.2	Superimpose of Homology Model and Template	56
Figure 3.3	Quality of Validation of the Homology Model	57
Figure 3.4	The Lowest Docked Energy of each Cluster of Mushroom	58
	Tyrosinase-Arbutin Complex	
Figure 3.5	The Lowest Docked Energy of each Cluster of Mushroom	59
	Tyrosinase-Ascorbic Acid Complex	n.
Figure 3.6	The Lowest Docked Energy of each Cluster of Mushroom	60
(Tyrosinase-Kojic Acid Complex	
Figure 3.7	The Lowest Docked Energy of each Cluster of Mushroom	61
/	Tyrosinase-Tropolone Complex	
Figure 3.8	Binding Structure of Mushroom Tyrosinase and Inhibitors	61
Figure 3.9	The Lowest Docked Energy of each Cluster of Bacterial	62
	Tyrosinase-Arbutin Complex	
Figure 3.10	The Lowest Docked Energy of each Cluster of Bacterial	63
	Tyrosinase-Ascorbic Acid Complex	

Figure 3.11	The Lowest Docked Energy of each Cluster of Bacterial	63
	Tyrosinase-Kojic Acid Complex	
Figure 3.12	Binding Structure of Bacterial Tyrosinase and Inhibitors	64
Figure 3.13	The Lowest Docked Energy of each cluster of Human	65
	Tyrosinase-Arbutin Complex	
Figure 3.14	The Lowest Docked Energy of each cluster of Human	66
	Tyrosinase-Ascobic Acid Complex	
Figure 3.15	The Lowest Docked Energy of each cluster of Human	67
	Tyrosinase-Kojic Acid Complex	
Figure 3.16	Binding Structure of Human Tyrosinase and Inhibitors	68
Figure 3.17	RMSD of Carbon Backbone in Complexes	71
Figure 3.18	Distance between Mushroom Tyrosinase and Arbutin	72
Figure 3.19	Distance between Mushroom Tyrosinase and Ascorbic Acid	73
Figure 3.20	Distance between Mushroom Tyrosinase and Kojic Acid	73
Figure 3.21	Distance between Mushroom Tyrosinase and Tropolone	74
Figure 3.22	Binding Structure of Mushroom Tyrosinase and Inhibitors	76
Figure 3.23	Distance between Bacterial Tyrosinase and Arbutin	76
Figure 3.24	Distance between Bacterial Tyrosinase and Ascorbic Acid	77
Figure 3.25	Distance between Bacterial Tyrosinase and Kojic acid	78
Figure 3.26	Binding Structure of Bacterial Tyrosinase and Inhibitors	79
Figure 3.27	Distance between Human Tyrosinase and Arbutin	80
Figure 3.28	Distance between Human Tyrosinase and Ascorbic Acid	80
Figure 3.29	Distance between Human Tyrosinase and Kojic Acid	81
Figure 3.30	Distance between Human Tyrosinase and Tropolone	82
Figure 3.31	Binding Structure of Human Tyrosinase and Inhibitors	82

ABBREVIATIONS AND SYMBOLS

BLAST Basic Local Alignment Search Tool

NCBI The National Center for Biotechnology Information

PDB Protein Data Bank

3D Three-dimension

L-DOPA 3,4-dihydroxy-L-phenylalanine

MD Molecular dynamics

RMSD Root-mean square diviation

kDa Kilodalton
mM Millimolar

K_m The Michaelis constant

IC₅₀ The half maximal inhibitory concentration

V_{max} The maximal velocity

ψ Psi inter-molecular torsion angleφ Phi inter-molecular torsion angle

Å Angstrom unit

His Histidine

Val Valine

Gln Glutamine

Glu Glutamic acid

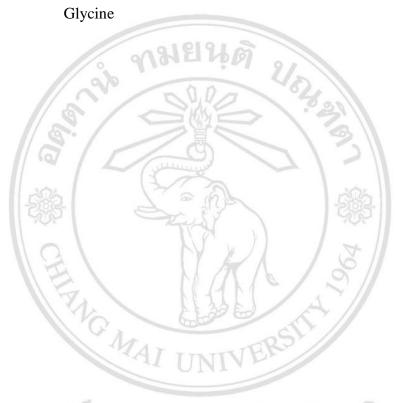
Asn Asparagine

Asp Aspartic acid

Ser Serine

Tyr Tyrosine

Arg Arginine


Lys Lysine

Cys Cysteine

Pro Proline

Ala Alanine

LeuLeucineIleIsoleucineMetMethioninePhePhenylalanineTrpTryptophanThrThreonineGlyGlycine

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved