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CHAPTER 2 

Background knowledge 

Obesity is a chronic disease that is increasing in prevalence in adults, adolescents, and 

children, and is now considered to be a global epidemic. Obesity is associated with a 

significant increase in mortality and with risk of many disorders, including diabetes 

mellitus, hypertension, dyslipidemia, heart disease, stroke, sleep apnea, cancer, and 

others. This chapter is a review about obesity and biomarkers related to body composition. 

Moreover, statistical methods and the literature of previous studies which are related with 

this study will help to have more understanding about methodology and the results of this 

study. 

2.1 Basic knowledge about obesity 

2.1.1 History of obesity (History and indication of obesity) 

In the mid-1990s, WHO responded to the growing obesity epidemic 

throughout the world by conducting an expert consultation on obesity, or the 

International Obesity Task Force (IOTF) in June 1997 in Geneva and the 

report was published in 1998 (11).   

Obesity develops when energy intake exceeds energy expenditure. Although 

the number of fat cells can increase throughout life, individuals with adult-

onset obesity in general exhibit increased adipocyte size, whereas individuals 

with early-onset obesity have both adipocyte hypertrophy and hyperplasia. 

Fat distribution also plays an important role in metabolic risk since increased 

intra-abdominal/visceral fat promotes a high risk of metabolic disease, 

whereas increased subcutaneous fat in the thighs and hips exerts little or no 

risk.  
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The past two decades have revealed the role of factors controlling food intake 

and energy expenditure in body weight regulation and on the transcriptional 

control and cell biology underlying conversion of pre-adipocytes to 

adipocytes. Little is known, however, about the developmental origins of 

adipose tissue; the control of brown versus white pre-adipocyte commitment; 

the control of the relative amounts and functional heterogeneity among white 

fat cells in different depots; and the exact pathways and intermediates 

between the embryonic stem cell and the mature fat cell (12). 

2.1.2 Causes of obesity 

The balance between calorie intake and energy expenditure determines a 

person's weight. If a person eats more calories than he or she burns 

(metabolizes), the person gains weight (the body will store the excess energy 

as fat). If a person eats fewer calories than he or she metabolizes, he or she 

will lose weight. Therefore, the most common causes of obesity are 

overeating and physical inactivity. Ultimately, body weight is the result of 

genetics, metabolism, environment, behavior, and culture (13). 

1) Genetics. A person is more likely to develop obesity if one or both 

parents are obese. Genetics also affect hormones involved in fat 

regulation. For example, one genetic cause of obesity is leptin 

deficiency. Leptin is a hormone produced in fat cells and also in the 

placenta. Leptin controls weight by signaling the brain to eat less when 

body fat stores are too high. If, for some reason, the body cannot 

produce enough leptin or leptin cannot signal the brain to eat less, this 

control is lost, and obesity occurs. The role of leptin replacement as a 

treatment for obesity is currently being explored. 

2) Overeating. Overeating leads to weight gain, especially if the diet is 

high in fat. Foods high in fat or sugar (for example, fast food, fried food, 

and sweets) have high energy density (foods that have a lot of calories 

in a small amount of food). Epidemiologic studies have shown that diets 

high in fat contribute to weight gain. 
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3) A diet high in simple carbohydrates. The role of carbohydrates in 

weight gain is not clear. Carbohydrates increase blood glucose levels, 

which in turn stimulate insulin release by the pancreas, and insulin 

promotes the growth of fat tissue and can cause weight gain. Some 

scientists believe that simple carbohydrates (sugars, fructose, desserts, 

soft drinks, beer, wine, etc.) contribute to weight gain because they are 

more rapidly absorbed into the bloodstream than complex 

carbohydrates (pasta, brown rice, grains, vegetables, raw fruits, etc.) 

and thus cause a more pronounced insulin release after meals than 

complex carbohydrates. This higher insulin release, some scientists 

believe, contributes to weight gain. 

4) Frequency of eating. The relationship between frequency of eating 

(how often you eat) and weight is somewhat controversial. There are 

many reports of overweight people eating less often than people with 

normal weight. Scientists have observed that people who eat small 

meals four or five times daily, have lower cholesterol levels and lower 

and/or more stable blood sugar levels than people who eat less 

frequently (two or three large meals daily). One possible explanation is 

that small frequent meals produce stable insulin levels, whereas large 

meals cause large spikes of insulin after meals. 

5) Slow metabolism. Women have less muscle than men. Muscle burns 

(metabolizes) more calories than other tissue (which includes fat). As a 

result, women have a slower metabolism than men, and hence, have a 

tendency to put on more weight than men, and weight loss is more 

difficult for women. As we age, we tend to lose muscle and our 

metabolism slows; therefore, we tend to gain weight as we get older 

particularly if we do not reduce our daily caloric intake. 

6) Physical inactivity. Sedentary people burn fewer calories than people 

who are active. The National Health and Nutrition Examination Survey 

(NHANES) showed that physical inactivity was strongly correlated 

with weight gain in both gender. 
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7) Medications. Medications associated with weight gain include certain 

antidepressants (medications used in treating depression), 

anticonvulsants (medications used in controlling seizures such 

ascarbamazepine [Tegretol, Tegretol XR , Equetro, Carbatrol] and 

valproate [Depacon, Depakene], diabetes medications (medications 

used in lowering blood sugar such as insulin, sulfonylureas, and 

thiazolidinediones), certain hormones such as oral contraceptives and 

most corticosteroids such as prednisone. Weight gain may also be seen 

with some high blood pressure medications and antihistamines. The 

reason for the weight gain with the medications differs for each 

medication and should be discussed the physician rather than 

discontinuing the medication, as this could have serious effects. 

8) Psychological factors. For some people, emotions influence eating 

habits. Many people eat excessively in response to emotions such as 

boredom, sadness, stress, or anger. While most overweight people have 

no more psychological disturbances than normal weight people, about 

30% of the people who seek treatment for serious weight problems have 

difficulties with binge eating. 

9) Diseases such as hypothyroidism, insulin resistance, polycystic ovary 

syndrome, and Cushing's syndrome are also contributors to obesity. 

10) Ethnicity. Ethnicity factors may influence the age of onset and the 

rapidity of weight gain. African-American women and Hispanic 

women tend to experience weight gain earlier in life than Caucasians 

and Asians, and age-adjusted obesity rates are higher in these groups. 

Non-Hispanic black men and Hispanic men have a higher obesity rate 

then non-Hispanic white men, but the difference in prevalence is 

significantly less than in women. 

11) Childhood weight. A person's weight during childhood, the teenage 

years, and early adulthood may also influence the development of adult 

obesity. For example, being mildly overweight in the early 20s was 

linked to a substantial incidence of obesity by age 35; being overweight 

during older childhood is highly predictive of adult obesity, especially 
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if a parent is also obese; being overweight during the teenage years is 

even a greater predictor of adult obesity. 

12) Hormones. Women tend to gain weight especially during certain events 

such as pregnancy, menopause, and in some cases, with the use of oral 

contraceptives. However, with the availability of the lower-dose 

estrogen pills, weight gain has not been as great a risk. 

2.1.3 Current obesity situation 

Worldwide  

The epidemic of obesity is now recognized as one of the most important 

public health problems facing the world today. Tragically, adult obesity is 

more common globally than under-nutrition. There are around 475 million 

obese adults with over twice that number overweight that means around 1.5 

billion adults are too fat. Over 200 million school-age children are 

overweight, making this generation the first predicted to have a shorter 

lifespan than their parents (12). 

Worldwide, at least 2.8 million people die each year as a result of being 

overweight or obese, and an estimated 35.8 million (2.3%) of global DALYs 

are caused by overweight or obesity. Overweight and obesity lead to adverse 

metabolic effects on blood pressure, cholesterol, triglycerides and insulin 

resistance. Risks of coronary heart disease, ischemic stroke and type 2 

diabetes mellitus increase steadily with increasing body mass index (BMI), a 

measure of weight relative to height. Raised body mass index also increases 

the risk of cancer of the breast, colon, prostate, endometrium, kidney and gall 

bladder. Mortality rates increase with increasing degrees of overweight, as 

measured by body mass index. To achieve optimum health, the median body 

mass index for an adult population should be in the range of 21 to 23 kg/m2, 

while the goal for individuals should be to maintain body mass index in the 

range 18.5 to 24.9 kg/m2. There is increased risk of co-morbidities for body 

mass index 25.0 to 29.9, and moderate to severe risk of co-morbidities for 

body mass index greater than 30. 
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In 2008, 35% of adults aged 20+ were overweight (BMI ≥ 25 kg/m2) (34% 

men and 35% of women). The worldwide prevalence of obesity has nearly 

doubled between 1980 and 2008. In 2008, 10% of men and 14% of women in 

the world were obese (BMI ≥30 kg/m2), compared with 5% for men and 8% 

for women in 1980. An estimated 205 million men and 297 million women 

over the age of 20 were obese a total of more than half a billion adults 

worldwide. 

The prevalence of overweight and obesity were highest in the WHO Regions 

of the Americas (62% for overweight in both gender, and 26% for obesity) 

and lowest in the WHO Region for South East Asia (14% overweight in both 

gender and 3% for obesity). In the WHO Regions for Europe Eastern 

Mediterranean, the Americas over 50% of women were overweight. For all 

three of these regions, roughly half of overweight women are obese (23% in 

Europe, 24% in the Eastern Mediterranean, 29% in the Americas). In all 

WHO regions women were more likely to be obese than men. In the WHO 

regions for Africa, Eastern Mediterranean and South East Asia, women had 

roughly doubled the obesity prevalence of men. 

 
Figure 2.1 Worldwide prevalence of obesity adults (> 20 years) in 2008 

Source: Public Health Information and Geographic Information Systems (GIS)  
World Health Organization 
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Figure 2.2 The prevalence of obesity classified by gender  

and income level of countries in 2008 
Source: http://www.who.int/gho/ncd/risk_factors/obesity_text/en/ 

The prevalence of raised body mass index increases with income level of 

countries up to upper middle income levels. The prevalence of overweight in 

high income and upper middle income countries was more than double that 

of low and lower middle income countries. For obesity, the difference more 

than triples from 7% obesity in both gender in lower middle income countries 

to 24% in upper middle income countries. Women's obesity was significantly 

higher than men's, with the exception of high income countries where it was 

similar. In low and lower middle income countries, obesity among women 

was approximately double that among men. 

Thailand 

The incidence of obesity in Thailand is already significantly higher than in 

most other countries in the region, and worse is yet to come. The potential 

magnitude of the problem has been recognized by Thai health experts, and 

some small-scale or experimental remedial programs have been initiated. 

Those who wield the power to effect the necessary change may, however, be 

much slower to comprehend the significance of this burgeoning obesity crisis. 

Even when they do, they will invariably struggle to develop and implement 

an appropriate response. Failure to act quickly and decisively in addressing 
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this issue will incur substantial social and economic costs for the Thai 

community. 

Obesity is a huge problem in many countries around the world, and Thailand 

ranks in the top five Asia-Pacific nations in this regard (14). In the period 

2005-2007, obesity rates in Thailand increased from 10 million in 2005 to 17 

million in 2007. Since then, and despite further research and some small-scale 

treatment programs, the incidence of obesity has only accelerated. 

Furthermore, these increases are now occurring across many demographic 

groups, and in both urban and rural areas. 

With respect to childhood obesity, statistics from Thailand's Ministry of 

Public Health paint a troubling picture. In the past five years, the percentage 

of obese preschoolers rose from 5.8 per cent to 7.9 per cent, whilst in school-

age children the obesity rate went from 5.8 per cent up to 6.7 per cent. These 

figures represent obesity growth rates of 36 per cent in pre-school age and 15 

per cent in school age. Among Thailand's young adults (those in the 20 to 29 

age range), the obesity rate is over the same period increased by 36 per cent 

among men and 47 per cent for women (15).  

 
Figure 2.3 Overweight prevalence (%) in Southeast Asia  

for adults of both gender (BMI of >25kg/m2) 
Source: WHO Non-Communicable Diseases Country Profiles, 2011 

The prevalence of obesity in Thailand, as in other countries with fast growing 

economy, has been increasing in an alarming rate. In Thailand, a series of 

National Health Examination Surveys were conducted consecutively in 1991, 

1997 and 2004 where each survey was a national representative cross-
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sectional survey. The present study reports on evidence of secular trend of 

obesity in Thailand using data from National Health Examination Survey I–

III (16,17). These surveys were mainly targeted on adult population; however, 

the second survey also included a sample of children population. The data on 

measurements of weight and height provide an opportunity to examine the 

trends of obesity in Thai population. 

All the surveys used standardized measurement of anthropometry at time of 

the survey period. Overall, age-adjusted mean body mass index (BMI) in Thai 

adults aged 18 years increased from 22.0 kg/m2 in 1991 to 22.7 kg/m2 in 1997 

and 23.2 kg/m2 in 2004. This suggests that the distribution of weight and BMI 

of the entire population is shifting to the right.  

The prevalence rates of obesity were determined using BMI cut-off points at 

≥25 kg/m2 (18) and ≥30 kg kg/m2 (19). The prevalence of obesity with BMI 

≥25 kg/m2 in adults increased dramatically from 18.2% in 1991 to 24.1% in 

1997 and 28.1% in 2004. For those with BMI ≥30 kg/m2, the prevalence 

increased from 3.5% to 5.8% and 6.9% in the corresponding years (17). 

Overall, the prevalence was higher in women than in men especially in the 

middle-age group. The prevalence of obesity with BMI ≥25 kg/m2 increased 

in both gender, from 13.0% in men and 23.2% in women in 1991 to 18.6% 

and 29.5% in 1997 and 22.4% and 34.3% in 2004 respectively.  
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Figure 2.4 Trends of age-standardized prevalence of obesity with body 

mass index (BMI) ≥25 kg/m2 and ≥30 kg/m2 among Thai population 
Source: Thai National Health Examination Survey in 1991, 1997 and 2004 

Figure 2.4 shows trends in obesity over the last two decades, the prevalence 

has been increasing in all age groups. The highest prevalence rates of obesity 

with BMI ≥25 and ≥30 kg/m2 were in the 45–54 years age group in both men 

and women. More importantly, the largest increase for BMI ≥25 kg/m2 was 

in the 18–34 age group with almost double increases in men and women.  

2.1.4 Assessment of obesity 

Obesity represents a state of excess storage of body fat. Although similar, the 

term overweight is puristically defined as an excess of body weight for height. 

Normal, healthy men have a body fat percentage of 15-20%, while normal, 

healthy women have a percentage of approximately 25-30% (20). Body fat 
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can be measured in several ways, with each body fat assessment method 

having pros and cons. 

1) Body-fat percentage (BF%) 

The BF% of a human or other living being is the total mass of fat 

divided by total body mass; body fat includes essential body fat and 

storage body fat. Essential body fat is necessary to maintain life and 

reproductive functions. The percentage of essential body fat for women 

is greater than that for men, due to the demands of childbearing and 

other hormonal functions. The percentage of essential fat is 3–5% in 

men, and 8–12% in women (21). Storage body fat consists of fat 

accumulation in adipose tissue, part of which protects internal organs 

in the chest and abdomen. The minimum recommended total BF% 

exceeds the essential fat percentage value reported above. There are 

many methods to determine BF%, such as measurement with 

bioelectrical impedance analysis or through the use of dual energy X-

ray absorptiometry or skin fold caliper. 

Measure of body-fat percentage 

• Bioelectrical impedance analysis (BIA)  

The measurement of the BIA depends on the differences in 

electrical conductivity of fat free mass and fat. The technique 

measures the impedance of an electrical current passed between 

two electrodes (typically 800 μA; 50 kHz). For single frequency 

BIA, two electrodes are generally located on the right ankle and 

the right wrist of an individual. The impedance is related to 

volume of a conductor (the human body) and the square of the 

length of the conductor a distance which is a function of the height 

of the subject. BIA analysis most closely estimates body water, 

from which fat free mass is then estimated, on the assumption that 

the latter contains about 73% water. Fat mass can then be derived 

as the difference between body weight and fat free mass (22). 

Because SF-BIA is not valid under conditions of significantly 
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altered hydration (23), therefore, before BIA, all volunteers were 

prepared with the following pre-test guidelines. (1) no alcohol 

consumption within 24 hours. (2) no exercise, caffeine or food 

within four hours prior to taking the test, and (3) Drinking two to 

four glasses of water two hours before examination. During the 

examination, two pairs of sensor electro-cardiograph (ECG) pads 

were placed on the patient, one on the right wrist and hand and 

the other on the right foot and ankle. At least 75% of the electrode 

should be in contact with the patient's skin.  

In the new BIA method, multi-frequency measurements have 

been developed. This method allows the estimation of both total 

and extracellular body fluid compartments. These estimations 

have advantages in certain disease conditions involving 

disturbances in water distribution such as congestive heart 

disease, renal disease and malnutrition (24,25).  

The errors of BIA including the measurement of height, weight, 

resistance, the criterion reference method used, and errors from 

the prediction equation which the performance depended on the 

selection and number of independent variables (26). However, the 

great advantages of BIA are safety and convenience, and the 

equipment is portable and relatively inexpensive. In the future, 

impedance spectrum analysis derived from multi-frequency BIA 

may be increasingly used to distinguish differences in body water, 

body composition among individuals as well as specific parts of 

the body such as muscle and adipose tissue mass in limbs (27). 
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Figure 2.5 Bioelectrical impedance analysis (BIA) 

Source: http://www.builtlean.com/2010/07/13/5-ways-to-measure-body-fat-
percentage/ 

• Dual energy X-ray absorptiometry (DEXA) 

DEXA is now the primary technique for the assessment of the 

bone mineral content of the axial skeleton but it is also used for 

determining the relative proportions of the fat free mass, body fat 

and bone in subjects by whole body scanning. DEXA scanners 

use a dual energy X ray source that generates X rays at 40 KeV 

and 70-100 KeV; these pass through the subject. The relative 

absorption at these two energies is measured to give two estimates 

of body composition along the beam path using a two 

compartment model. In bone free regions of the body, the 

attenuation provides an estimate of the relative proportions of fat 

and lean tissues. In the other regions, the attenuation provides a 

measure of the proportions of bone and soft tissues. To provide 

estimates of the overall relative proportions of the three 

components – the fat free mass, body fat and bone – the 

assumption is made that the soft tissue overlaying bone has the 

same fat to muscle ratio as that in immediately adjacent non-bone 

regions4. However, the computing algorithms used to partition the 

soft tissue between the body fat and the fat free mass are critically 

important in assessing body composition and have been shown to 
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vary significantly with the manufacturer of the equipment. Such 

algorithms should take into account the different fat distributions 

in men and women and also the differences generated by overall 

increases in adiposity. At present, Fan beam technologies, 

replacing earlier pencil beam techniques, are resulting in a much 

shorter scan time, lower X ray doses and improved geometrical 

resolution as well as have a high precision with accurate results 

(28). 

 
Figure 2.6 Dual energy X-ray absorptiometry (DEXA) 

Source: http://www.builtlean.com/2010/07/13/5-ways-to-measure-
body-fat-percentage/ 

• Skin fold caliper 

The skinfold estimation methods are based on a skinfold test, also 

known as a pinch test, whereby a pinch of skin is precisely 

measured by calipers at several standardized points on the body 

to determine the subcutaneous fat layer thickness (29,30). These 

measurements are converted to an estimated body fat percentage 

by an equation. Some formulas require as few as three 

measurements, others as many as seven. The accuracy of these 

estimates is more dependent on a person's unique body fat 

distribution than on the number of sites measured. As well, it is 

of utmost importance to test in a precise location with a fixed 

pressure. Although it may not give an accurate reading of real 

body fat percentage, it is a reliable measure of body composition 
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change over a period of time, provided the test is carried out by 

the same person with the same technique. 

The skinfold thickness measurements provide an estimate of the 

size of the subcutaneous fat deposit which provides an estimate 

of the total body fat mass. Such estimations are based on two 

assumptions. First, the thickness of the subcutaneous adipose 

tissue reflects a constant proportion of the total body fat. Second, 

the skin fold sites selected for measurement, either single site or 

combination might represent the average thickness of the entire 

subcutaneous adipose tissue. However, neither of these is true. In 

fact, the relationship between subcutaneous and internal fat is 

nonlinear and varies with body weight and age. In addition, 

variations in the distribution of subcutaneous fat occur with 

gender, race or ethnicity and age (31). The following sites of 

skinfold thickness measurements are commonly used (32,33).  

 
Figure 2.7 Skin fold caliper 

Source: http://www.builtlean.com/2010/07/13/5-ways-to-measure-
body-fat-percentage/ 

2) Body mass index (BMI) 

BMI is a person's weight in kilograms divided by the square of height 

in meters. BMI does not measure body fat directly, but research has 

shown that BMI is moderately correlated with more direct measures of 

body fat obtained from skinfold thickness measurements, bioelectrical 

impedance, densitometry (underwater weighing), dual energy x-ray 
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absorptiometry (DXA) and other methods. Furthermore, BMI appears 

to be as strongly correlated with various metabolic and disease outcome 

as are these more direct measures of body fatness. In general, BMI is 

an inexpensive and easy-to-perform method of screening for weight 

category, for example underweight, normal or healthy weight, 

overweight, and obesity. 

The BMI cut points recommended from the 1998 WHO consultation on 

obesity were the first such cut-off points at the international level. 

Although they have been generally accepted, a number of countries and 

regions have questioned the relevance of the public health cut-off points 

to their respective situations. This has been particularly so in the Asia 

and Pacific regions. It has been amply demonstrated that Asians in 

general, although not consisting of a homogeneous population, have a 

higher body-fat percentage at a given BMI than Caucasians. They also 

have a higher waist-to-hip ratio than Caucasians and a more centralized 

distribution of body fat. Perhaps of most concern, morbidity and 

mortality among Asians are occurring in people with lower BMIs and 

smaller waist circumference. On the other hand, Pacific Islanders tend 

to be larger and more muscular, with less body fat at higher BMI 

levels11. 

Although BMI is a useful measurement across populations, it is 

increasingly apparent that BMI has significant limitations in the 

assessment of the individual as it does not take into account the 

distribution of body fat. BMI measurement does not provide any 

information regarding where body fat is stored (34). 

3) Height weight difference index (HWDI) 

Body mass index (BMI) is the most common index for assessing weight 

status of adults, at both individual and population levels. However, 

calculating BMI without an instrument is quite difficult and time 

consuming. Thus, the new index Height Weight Difference Index 

(HWDI) by Sakda Pruenglampoo, et al (3,6) was developed HWDI was 

calculated using the formula: height (cm) - weight (kg). The researchers 
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found that the figures of HWDI can be used for predicting underweight, 

normal weight, overweight and obesity. Nutritional status of the 

subjects assessed by HWDI were compared with those assessed by 

BMI. Then the percentages of sensitivity and specificity were 

calculated. The kappa statistic was used to measure agreement between 

the assessment of nutritional status by HWDI and by BMI. It may be 

inferred that HWDI might not be suitable index for screening thin adults 

from those who have normal nutritional status. However, the study 

findings suggested that HWDI could be used as a simple and effective 

index for screening overweight and obesity in adults. 

2.1.5 Consequences of obesity 

Obesity is an important cause of morbidity, disability and premature death1. 

The health consequences of obesity are many and varied, ranging from an 

increased risk of premature death to several non-fatal but debilitating 

complaints that can have a marked effect on the quality of life. It is a major 

risk factor for: 

1) Cardiovascular disease 

Obesity predisposes an individual to a number of cardiovascular risk 

factors including hypertension, raised cholesterol and impaired glucose 

tolerance. However, long term prospective data now suggest that 

obesity is also important as an independent risk factor for CHD related 

morbidity and mortality (35). The Framingham Heart Study ranked 

body weight as the third most important predictor of CHD among men, 

after age and dyslipidaemia. Similarly, in women, a large scale 

prospective study in USA found a positive correlation between BMI 

and the risk of developing CHD. Weight gain substantially increased 

this risk (36). 

2) Hypertension and stroke 

The association between hypertension and obesity is well documented. 

Both systolic and diastolic blood pressure increase with BMI, and the 

obese are at higher risk of developing hypertension than lean 
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individuals. Community-wide surveys in USA (NHANES II) show that 

the prevalence of hypotension in overweight adults in those aged 20-44 

years is 5.6 times greater than that in those aged 45-74 years old, which 

in turn is twice as high as that for non-overweight adults. The risk of 

developing hypertension with the duration of obesity, especially in 

women, and weight reduction leads to fall in blood pressure (19). 

3) Cancer  

A number of studies have found a positive association between 

overweight and the incidence of cancer, particularly of hormone 

dependent and gastrointestinal cancers. Greater risks of endometrial, 

ovarian, cervical and postmenopausal breast cancer have been 

documented for obese women, while there is some evidence for an 

increased risk of prostate cancer among obese men. The increased 

incidence of these cancers in the obese is greater in those with excess 

abdominal fat and is thought to be a direct consequence of hormonal 

change (37). The incidence of gastrointestinal cancers, such as 

colorectal and gallbladder cancer, has also been reported to be 

positively associated with body weight or obesity in some but not all 

studies. And renal cell cancer has consistently been associated with 

overweight and obesity, especially in women (38). 

4) Diabetes mellitus 

A positive association between obesity and the risk of developing Non-

insulin dependent diabetes mellitus (NIDDM) has been repeatedly 

observed in both cross-sectional (39), and prospective studies (40). The 

consistency of the association across population despite difference 

measures of fatness and criteria for diagnosing NIDDM reflects the 

strength of the relationship. The risk of NIDDM increases continuously 

with BMI and decreases with weight loss. Analysis of data from two 

prospective studies illustrates the impact of overweight and obesity on 

NIDDM; about 64% of men and 74% of women cases of NIDDM could 

theoretically have been prevented if no one had a BMI over 25. Detailed 

analyses of the relationship between obesity and NIDDM have 
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identified certain characteristics of obese persons that further increase 

the risk of developing this condition, even after controlling for age, 

smoking and family history of NIDDM. These include obesity during 

childhood and adolescence, progressive weight gain from 18 years and 

intra-abdominal fat accumulation (41). Lack of physical activity and an 

unhealthy diet, both of which are associated with lifestyle in 

industrialized countries, also import modifiable risk factors for 

overweight and obesity. The prevalence of NIDDM is 2-4 fold higher 

in the less physical activity individuals compared with the most 

physical active (42). 

5) Gallbladder disease 

Obesity is a risk factor for gallstones in all age group and, in both men 

and women, gallstones occur three to four times in obese compared with 

non-obese individuals and the risk is even greater when excess fat is 

located around the abdomen. The relative risk of gallstones increases 

with BMI, and data from the Nurse’s Health Study suggest that even 

moderate overweight may increase the risk (19). 

6) Pulmonary diseases 

Obesity impairs respiratory function and structure, leading to 

physiological and pathophysiological impairments. The work of 

breathing is increased in obesity, mainly as a result of extreme stiffness 

of the thoracic cage consequent on the accumulation of adipose tissue 

in and around the ribs, abdomen, diaphragm. Hypoxemia is common, 

partly because the low relaxation volume causes ventilation to occur at 

volumes below the closing volume, and is exacerbated when lying 

down because of the reduced functional residual capacity (19). 

7) Disability 

In 1990, Rissanen et al showed that obese Finnish adults suffered more 

often than normal – work disability due to cardiovascular and 

musculoskeletal disease. A study of obese Swedes showed that obesity 

accounted for 10% of productivity loss due to sick leave or work 

disability and that, in particular, disability associated with waist 
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circumference. In addition, symptoms of osteoarthritis are more severe 

in heavier patients (19). 

8) Mortality 

Most studies report relationships between BMI and mortality. BMI 

comprised both fat mass and fat free mass, both affecting the risk or 

mortality independently (43) and in opposite directions. Waist 

circumference is a better alternative than BMI for identifying elderly 

men with an increased risk of mortality (44). There is an almost linear 

relationship between BMI and death. The longer the duration of obesity, 

the higher the risk. Severe obesity is associated with a 12-fold increase 

in mortality in 25-35 years old compared with lean individuals (19). 

9) Reduced life expectancy 

Some studies have calculated the number of reduced years of life 

expectancy caused by obesity. The Framingham study calculated that 

obesity (BMI≥ 30 kg/m2) at the age of 40 years was related to a loss of 

6-7 years of life. Fontaine et al. calculated that a BMI≥ 33 kg/m2 from 

age 40 years was related to a loss of 2-3 years. The studies used different 

calculation methods and were based on different cohorts (44). 

2.2 Statistical methods 

2.2.1 Correlation and agreement 

Many statistical analyses are conducted to study the relationship between two 

continuous or ordinal scale variables within a group of patients. Often several 

quantitative variables are measured on each member of a sample. In 

considering a pair of such variables, it is frequently of interest to establish if 

there is a relationship between the two; i.e. to see if they are correlated.  

The type of correlation can be categorized by considering what happens to 

the other variable as one variable increases:  

• Positive correlation – the other variable has a tendency to also 

increase. 
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• Negative correlation – the other variable has a tendency to 

decrease. 

• No correlation – the other variable does not tend to either increase 

or decrease.  

The starting point of any such analysis should thus be the construction and 

subsequent examination of a scatterplot. Examples of negative and positive 

correlation are as follows. 

1) Scatter plot 

A scatter plot is a simple tool for identifying relationship between two 

variables X and Y. It is one of the seven basic tools for quality control 

which is useful when examining dependency and non-linear 

relationships for a set of data (45). Different scatter plots are illustrated 

in Figure 2.8 and the linear relationship can be quantified by using 

Pearson’s correlation under certain assumptions. 

 
Figure 2.8 Scatter plots of different dependencies 

2) Pearson’s correlation coefficient 

The covariance of two random variables X and Y is defined as 

Cov(X,Y ) = E[(X − E(X))(Y − E(Y))] = E(XY) − E(X)E(Y) 

To standardize it, is by dividing it by the standard deviation of each 

variable involved. This results in a coefficient called Pearson’s 

correlation coefficient, which is the most widely known measure of 
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dependency since it can be easily calculated by definition ρX, Y for data 

population and equation r for sample data, where X�  and Y�  are the 

averages of X  and Y variable,  respectively. 

ρX, Y =  
Cov(X, Y)
σXσY

=
E[(X − μX)(Y− μY)]

σXσY
 

r =
∑ (Xi − X�)(Yi − Y�)n
i=1

�∑ (Xi − X�)2n
i=1 �∑ (Yi − Y�)2n

i=1

 

Pearson’s correlation coefficient is a measure of linear dependence 

between two variables X and Y. The coefficient ρ has a range between 

−1 ≤ ρ ≤ +1 for the true population. Perfect positive or negative linear 

coefficient equals to ±1 which corresponds to data sample point lying 

exactly on a line. Pearson’s correlation has the following properties and 

makes these assumptions about the variables X and Y (45,46). 

Assumptions  

The calculation of Pearson’s correlation coefficient and subsequent 

significance testing of it requires the following data assumptions: 

• Interval or ratio level 

• Linearly related  

• Bivariate normally distributed.  

In practice the last assumption is checked by requiring both variables to 

be individually normally distributed (which is a by-product 

consequence of bivariate normality). Pragmatically Pearson’s 

correlation coefficient is sensitive to skewed distributions and outliers, 

thus it is satisfactory without having these conditions.  

2.2.2 Cohen's kappa statistic 

Cohen's kappa statistic, is a measure of agreement between categorical 

variables X and Y. Kappa also can be used to assess the agreement between 
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alternative methods of categorical assessment when new techniques are under 

study. 

Kappa is calculated from the observed and expected frequencies on the 

diagonal of a square contingency table. Suppose that there are n subjects on 

whom X and Y are measured, and suppose that there are g distinct categorical 

outcomes for both X and Y. Let fij denote the frequency of the number of 

subjects with the ith categorical response for variable X and the jth categorical 

response for variable Y (47,48). 

Then the frequencies can be arranged in the following g × g table: 

 Y=1 Y=2 … Y=g 

X=1 f11 f12 … f1g 

X=2 f21 f22 … f2g 

| | | … | 

| | | … | 

X=g fg1 fg2 … fgg 

The observed proportional agreement between X and Y is defined as: 

P0 =
1
n
� fii

g

i=1

 

and the expected agreement by chance is: 

Pe =
1
𝑛𝑛2
� fi+f+i

g

i=1

 

where fi+ is the total for the ith row and f+i is the total for the ith column.  

The kappa statistic is: 

K� =
P0 − Pe
1 − Pe
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Cohen's kappa statistic is an estimate of the population coefficient: 

K =
Pr[X = Y] − Pr [X = Y|X and Y independent]

1 − Pr [X = Y|X and Y independent]
 

Kappa is a measure of this difference, standardized to lie on a -1 to 1 scale, 

where 1 is perfect agreement, 0 is exactly what would be expected by chance, 

and negative values indicate agreement less than chance, ie, potential 

systematic disagreement between the observers. 

A more complete list of how Kappa might be interpreted (48) is given in the 

following table: 

Agreement Level K 

Almost perfect >0.80 

Substantial 0.61-0.80 

Moderate 0.41-0.60 

Fair 0.21-0.40 

Slight 0.00-0.20 

Poor <0.00 

2.2.3 Diagnostic test 

From a technological and procedural perspective, the diagnostic test for the 

classification can be relatively simple or complex. From a procedural 

standpoint, the test may only involve one step which results in one of only 

two outcomes, positive or negative, or it may involve a vast sequence of 

procedures that may result in one of an entire spectrum of possible 

classifications. 

The implementation of a diagnostic test should be preconditioned on the 

practicality and benefit of such a test toward the classification or prediction 

of the diseased condition. The key criteria that should be considered before 

implementing a diagnostic test can be adapted from Wilson and Jungner 

(1968), Cole and Morrison (1980) and Obuchowski et al. (2001), who discuss 

criteria for useful screening programs which share similar considerations to 
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the application of diagnostic tests in general. The criteria pertain to the disease 

(first, second and third criterion), the treatment for the disease (fourth 

criterion) and to the test itself (fifth and sixth criterion). Firstly, the disease 

should be serious or potentially so as to merit its use for diagnosis to 

potentially improve the longevity or quality of life of the subjects. Secondly, 

the disease should be relatively prevalent in the target population so as to have 

a potential benefit from testing subjects. Thirdly, the purpose of diagnosing 

the disease is so that it can be treated, so the disease should be treatable. 

Fourthly, there must exist an effective treatment to be beneficial for those 

who test positive. The fifth and sixth criteria pertain to the medical test itself. 

The fifth criterion is that the test procedure should ideally cause no harm to 

the individual. However, all tests have more or less negative impact, whether 

it is financial, physical or emotional discomfort or damage. In practicality, 

these costs should be reasonably in context and the information from an 

accurate diagnosis should create potential benefits to be gained by the 

population or individual being tested. The sixth and final criterion is the 

accuracy of the test which is discussed in more detail in the next section. 

1) Diagnostic accuracy 

An accurate test is one that correctly classifies its test population 

according to the disease or non-disease condition. Inaccurate tests cause 

those with actual disease to be misclassified as non-diseased, also 

known as a “false negative”. Conversely, they cause those with no 

actual disease to be misclassified as diseased, also known as a “false 

positive”. False negative errors leave diseased subjects untreated. False 

positive errors open subjects to being subjected to unnecessary 

procedures and emotional stress. Both false negatives and false 

positives may also create disillusionment and distrust within the general 

subjects towards the medical and diagnostic testing community as a 

whole, potentially making data collection more difficult, biased and 

costly. Obviously, such errors must be kept to a minimum. As such, the 

diagnostic accuracy of a test is of utmost importance and must be 
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thoroughly assessed and understood before such a test can be used in 

practice. 

In order to effectively implement and assess a diagnostic test, the test 

population the test itself and the resulting observations for many factors 

which may influence the analysis of the accuracy by applying statistical 

methodologies must be thoroughly evaluated. The population taking the 

tests are not influenced by knowledge of their true disease 

classifications or that the test itself is not influenced by knowledge of 

the same which could alter the accuracy of the diagnostic test. The 

persons administering and assessing the results of the test should also 

be blind to the population’s true disease classifications so as not to 

influence the test results. These situations are more common when 

assessing more subjective factors of a study. 

Many other factors can affect the performance of a diagnostic test for 

the purpose of detecting disease. These include biased test populations 

that are not representative of diseased subjects in the general 

population, inadequate clinical samples that may affect the results of 

the test, a condition of a repeat testing that results in a positive diseased 

status which may be counted as tested once rather than twice, the time 

it takes between when the test is administered and when the results are 

assessed, patient related factors (demographics, health habits, 

truthfulness), tester related factors (training, experience), 

environmental factors (available resources, treatment options, integrity 

of reporting), etc. 

In some cases, statistical methodologies may be enhanced and 

improved to generate significantly more accurate classification 

predictions. In other cases, a procedurally simpler statistical 

methodology may prove to be relatively more efficient than other 

methodologies, without sacrificing accuracy, especially for 

computation-heavy studies or for cases in which time is of the essence.  
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2) Sensitivity and specificity 

Sensitivity and specificity are two basic measures of diagnostic 

accuracy. The two definitions using the following contingency table, 

Table 1.1 can be illustrated. Firstly, the true condition status by the 

indicator variable T is denoted, where 

T = �1 with condition      
0 without condition 

The result of the diagnostic test is denoted by the indicator variable X. 

Test results indicating the condition’s presence are called positive, 

denoted as X = 1, whereas those indicating the condition’s absence are 

called negative, denoted as X = 0, where 

X = �1 postive test results    
0 negative test results   

Table 2.1 illustrates a basic count table specifying the different numbers 

under different categories. The total numbers with and without the 

condition are n1 and n0, respectively. The total numbers with the 

condition whose test result is positive and negative are p1 and p0, 

respectively. The total numbers without the condition whose test result 

is positive and negative are a1 and a0, respectively. The total number in 

the study is N, where N = p1 + p0 + a1 + a0. 

Table 2.1 A basic count table 

True condition 

status 

Test results 
Total 

Positive (X=1) Negative (X=0) 

Present (T=1) p1 p0 n1 

Absent (T=0) a1 a0 n0 

Total m1 m0 N 

The sensitivity (Se) is the test’s ability to detect the condition when the 

condition is present. The sensitivity is the probability that the test result 
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is positive(X = 1), given the presence of the condition (T = 1), written 

as 

Se = P(X = 1|T = 1) 

In Table 2.1, among n1 numbers with the condition, p1 test positive. So, 

S e = p1/n1. 

The specificity (Sp) is the test’s ability to exclude the condition without 

the condition. It is the probability that the test result is negative(X = 0), 

given the absence of the condition (T = 0), written as 

Sp = P(X = 0|T = 0) 

In Table 2.1, among n0 numbers with the condition, a0 test positive. 

Thus, Sp = a0/n0. 

The data by probabilities, as shown in Table 2.2 are summarized. The 

consequences associated with the test results are also considered. The 

test can have two types of errors. One is false positive errors and another 

one is false negative errors. The true positive fractions (TPF) and false 

positive fractions (FPF) are defined as follows: 

false positive fraction = FPF = P(X = 1|T = 0) 

true positive fraction = TPF = P(X = 1|T = 1) 

False negative fraction (FNF) is 1-TPF. True negative fraction (TNF) 

is 1-FPF. The following table illustrates the relationship between them 

by probabilities. 

Table 2.2 Probability table 

True condition 

status 

Test results 
Total 

Positive (X=1) Negative (X=0) 

Present (T=1) Se = p1/n1 FNF = p0/n1 1.0 

Absent (T=0) FPF = a1/n0 Sp = a0/n0 1.0 
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In this usage, sensitivity is known as the TPF and specificity is known 

as TNF. Under various applications, the terminology for TPF and FPF 

is often different. In biomedical research, the “sensitivity” (TPF) and 

“specificity” (1-FPF) are often descriptors of test performance. In 

engineering and audiology, the terminologies “hit rate” (TPF) and 

“false alarm rate” (FPF) are often used. In statistical hypothesis testing, 

the terms ‘significance level’ (FPF) and “statistical power” (TPF) are 

often used. 

3) The Receiver Operating Characteristic curve (ROC curve) (49) 

An ROC curve is a plot of the sensitivity of a test which is plotted on 

the y axis versus the test’s FPF which is plotted on the x axis. Different 

decision thresholds can generate different points on the graph. Line 

segments are often used to connect the points from different possible 

decision thresholds, forming an empirical ROC curve. The diagonal 

line is called a chance diagonal. 

 
Figure 2.9 An example of an ROC curve 

Figure 2.9 illustrates an example of an ROC curve. In this figure, each 

circle on the empirical ROC curve represents a (FPF, Se) point 

corresponding to a particular decision threshold. There are seven 

decision thresholds which provide (FPF, Se) points in addition to the 
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two points, (0,0) and (1,1). Line segments connect all the points 

generated from the seven possible decision thresholds and then form 

empirical ROC curve. It is also convenient to connect all the possible 

points using a smooth curve which is called a fitted ROC curve, 

illustrated in Figure 2.9. 

Tests are usually ordinal in nature. For example, the clinical symptoms 

in medical research are often classified as severe, moderate, mild and 

not present. But it is often convenient to use a statistical model to fit the 

test results. Now the continuous ROC curves are discussed. A threshold 

r to define a binary test from the continuous test result X is used as  

positive if X ≥ r 

negative if X < r 

The corresponding true positive fraction at the threshold r TPF(r) and 

false positive fraction at the threshold r FPF(r) are defined as 

TPF(r) = P(X ≥ r|T = 1) 

FPF(r) = P(X ≥ r|T = 0) 

The ROC plot has many advantages compared to other measures of 

accuracy. An ROC curve can visually represent the data’s accuracy. 

The scales of the ROC curve plot are two basic measures of accuracy 

which can be easily read from the plot. The ROC curve includes all the 

possible decision thresholds so that there is no requirement to select a 

particular decision threshold. Because sensitivity and specificity are 

independent of prevalence, the ROC curve is independent of prevalence 

as well. The ROC curve is also independent of the scale of the test 

results. That is, the ROC curve does not vary to any monotonic (e.g., 

linear, logarithmic) transformations of the test results, which is a useful 

property. Another advantage of the ROC curve is that it can provide a 

direct and visual comparison of two or more tests on a single set of 
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scales. It is possible to compare different tests at all decision thresholds 

by constructing the ROC curves (49-55). 

The Area Under the Receiver Operating Characteristic curve (AUROC) 

summarizes the entire location of the ROC curve rather than depending 

on a specific operating point. The AUROC is an effective and combined 

measure of sensitivity and specificity that describes the inherent 

validity of diagnostic tests (49).  

4) The Youden's index 

The Youden's index (J), is the difference between the true positive rate 

and the false positive rate. Maximizing this index allows to find, from 

the ROC curve, an optimal cut-off point independently from the 

prevalence. According to its definition and as illustrated on Figure 2.10, 

J is the vertical distance between the ROC curve and the first bisector 

(or chance line). If F(x) is the function describing the ROC curve, with 

x = 1-specificity, it can be written as 

J(x) = F(x)-x  

When J is maximal, J'(x) = 0, where J' is the derivative of J.   

J'(x) = F'(x) -1, 

where F' is the derivative of F.  

Hence, when J is maximal, F'(x) = 1, meaning that the tangent to the 

ROC curve is parallel to the first bisector (slope = 1). It implies that, 

around this point, a gain (or a loss) in specificity results in a loss (or a 

gain) of the same amplitude in sensitivity (56). 
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Figure 2.10 Receiver Operating Characteristic curve. Solid red: ROC 
curve; Dashed line: Chance level; Vertical line (J) maximum value of 

Youden's index for the ROC curve 
Source: Michils A, et al. Exhaled nitric oxide as a marker of asthma control in smoking 

patients. The European respiratory journal. 2009;33(6):1295-301. 

2.2.4 Regression analysis 

Regression is a statistical technique to determine the linear relationship 

between two or more variables.  

1) Linear regression (57) 

Linear regression is primarily used for prediction and causal inference. 

In its simplest (bivariate) form, regression shows the relationship 

between one independent variable (X) and a dependent variable (Y), as 

in the formula below: 

Y = β0 + β1X + ε 

The magnitude and direction of that relation are given by the slope 

parameter (β1 ), and the status of the dependent variable when the 

independent variable is absent is given by the intercept parameter (β0). 

An error term (ε) captures the amount of variation not predicted by the 
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slope and intercept terms. The regression coefficient (R2) shows how 

well the values fit the data. 

Regression thus shows us how variation in one variable co-occurs with 

variation in another. What regression cannot show is causation; 

causation is only demonstrated analytically, through substantive theory. 

For example, a regression with shoe size as an independent variable and 

foot size as a dependent variable would show a very high regression 

coefficient and highly significant parameter estimates, but it cannot be 

concluded that higher shoe size causes higher foot size. All that the 

mathematics can tell us is whether or not they are correlated, and if so, 

by how much. 

It is important to recognize that regression analysis is fundamentally 

different from ascertaining the correlations among different variables. 

Correlation determines the strength of the relationship between 

variables, while regression attempts to describe that relationship 

between these variables in more detail (57). 

Simple linear regression model is a special case of multiple linear 

regression model which involves in more than one predictor variable. 

i.e., multiple linear regression model describes the relation of response 

variable y with a number of predictor variables, say X1, X2, ..., Xp. The 

model can be formulated as the following: 

Y = β0 + β1X1 + β2X2 + ⋯+ βpXp + ε 

Selection process for multiple regression 

The basis of a multiple linear regression is to assess whether one 

continuous dependent variable can be predicted from a set of 

independent (or predictor) variables. Or in other words, how much 

variance in a continuous dependent variable is explained by a set of 

predictors. Certain regression selection approaches are helpful in 

testing predictors, thereby increasing the efficiency of analysis. 
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• Entry method is simultaneous (the enter method); all 

independent variables are entered into the equation at the same 

time.  This is an appropriate analysis when dealing with a small 

set of predictors and when the researcher does not know which 

independent variables will create the best prediction equation. 

Each predictor is assessed as though it were entered after all the 

other independent variables were entered, and assessed by what 

it offers to the prediction of the dependent variable that is 

different from the predictions offered by the other variables 

entered into the model. 

• Forward selection begins with an empty equation.  Predictors 

are added one at a time beginning with the predictor with the 

highest correlation with the dependent variable. Variables of 

greater theoretical importance are entered first. Once in the 

equation, the variable remains there. 

• Backward elimination (or backward deletion) is the reverse 

process. All the independent variables are entered into the 

equation first and each one is deleted one at a time if they do not 

contribute to the regression equation. 

• Stepwise selection is considered a variation of the previous two 

methods.  Stepwise selection involves analysis at each step to 

determine the contribution of the predictor variable entered 

previously in the equation. In this way it is possible to 

understand the contribution of the previous variables now that 

another variable has been added. Variables can be retained or 

deleted based on their statistical contribution. 

Least squares estimation of model parameters 

In practice, the parameters β0  and β1  are unknown and must be 

estimated. One widely used criterion is to minimize the error sum of 

squares: 

Y𝑖𝑖 = β0 + β1X𝑖𝑖 + 𝜀𝜀𝑖𝑖 →   𝜀𝜀𝑖𝑖 = Y𝑖𝑖 − (β0 + β1X𝑖𝑖) 
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Q = �εi2
n

i=1

= �(Yi − (β0 + β1Xi))2
n

i=1

 

This is done by calculus, by taking the partial derivatives of Q with 

respect to β0 and β1 and setting each equation to 0. The values of β0 

and β1 that set these equations to 0 are the least squares estimates and 

are labeled b0 and b1.  

First, take the partial derivatives of Q with respect to β0 and β1: 

𝜕𝜕𝜕𝜕
𝜕𝜕β0

= 2�(Yi − (β0 + β1Xi))(−1)
n

i=1

 

𝜕𝜕𝜕𝜕
𝜕𝜕β0

= 2�(Yi − (β0 + β1Xi))(−X𝑖𝑖)
n

i=1

 

Next, set these 2 equations to 0, replacing β0 and β1 with b0 and b1 

since these are the values that minimize the error sum of squares: 

−2�(Yi − b0 + b1Xi)
n

i=1

= 0 →   � Yi = nb0 + b1�Xi

n

i=1

n

i=1

  

−2�(Yi − b0 + b1Xi)
n

i=1

Xi = 0 →   �XiYi = b0�Xi

n

i=1

+ b1�Xi2
n

i=1

n

i=1

  

These two equations are referred to as the normal equations (although, 

note that nothing is said YET, about normally distributed data). 

Solving these two equations yields: 

b1 =
∑ (Xi − X�)(Yi − Y�)n
i=1

∑ (Xi − X�)2n
i=1

= �
(Xi − X�)

(Xi − X�)2

n

i=1

Yi = � kiYi

n

i=1

 

b0 = Y� − b1X� = ��
1
n
− X�ki�Yi = � liYi

n

i=1

n

i=1
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where ki and li constants, and Yi is a random variable with mean and 

variance given above: 

ki =
Xi − X�

∑ (Xi − X�)2n
i=1

 

li =
1
n
− X�ki =

1
n
−

X�(Xi − X�)
∑ (Xi − X�)2n
i=1

 

The fitted regression line, also known as the prediction equation is: 

Y� = bo + b1X 

The fitted values for the individual observations are obtained by 

plugging in the corresponding level of the predictor variable (Xi) into 

the fitted equation. The residuals are the vertical distances between the 

observed values (Yi) and their fitted values (Y�i), and are denoted as ei. 

Y�i = bo + b1Xi                       ei = Yi − Y�i 

Properties of the fitted regression line 

• ∑ ei = 0n
i=1         The residuals sum to 0 

• ∑ Xiei = 0n
i=1            The sum of the weighted (by X) residuals is 

0 

• ∑ Y�iei = 0n
i=1           The sum of the weighted (by Y�)  residuals 

is 0 

• The regression line goes through the point  (X,� Y�) 

These can be derived via their definitions and the normal equations. 

Estimation of the error variance 

Note that for a random variable, its variance is the expected value of the 

squared deviation from the mean. That is, for a random variable W, with 

mean 𝜇𝜇𝑊𝑊 its variance is: 

σ2{W} = E{(W− μW)2} 
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For the simple linear regression model, the errors have mean 0, and 

variance σ2. This means that for the actual observed values Yi, their 

mean and variance are as follows: 

E{Yi} = β0 + β1Xi                   σ2{Yi} = E{(Yi − (β0 + β1Xi ))2} =  σ2 

First, the unknown mean 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋𝑖𝑖  is replaced with its fitted value 

Y�i = bo + b1Xi , then the “average” squared distance from the observed 

values to their fitted values is taken. The sum of squared errors is 

divided by n-2 to obtain an unbiased estimate of  σ2 (recall how you 

computed a sample variance when sampling from a single population). 

s2 =
∑ (Yi − Y�i)2n
i=1

n − 2
=
∑ ei2n
i=1

n − 2
 

Common notation is to label the numerator as the error sum of squares 

(SSE).  

SSE = �(Yi − Y�i)2
n

i=1

= � ei2
n

i=1

 

Also, the estimated variance is referred to as the error (or residual) 

mean square (MSE).  

MSE = s2 =
SSE

n − 2
 

To obtain an estimate of the standard deviation (which is in the units of 

the data), the square root of the error mean square is taken.  s = √MSE. 

A shortcut formula for the error sum of squares, which can cause 

problems due to round-off errors is: 

SSE = �(Yi − Y�i)2
n

i=1

− b1�(Xi − X�)(
n

i=1

Yi − Y�) 
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Some notation makes life easier when writing out elements of the 

regression model: 

SSXX = �(Xi − X�)2 = �Xi2 −
(∑ Xi)n

i=1
2

n

n

i=1

n

i=1

 

SSXY = �(Xi − X�)(
n

i=1

Yi − Y�) = � XiYi −
(∑ Xi)n

i=1 (∑ Yi)n
i=1

n

n

i=1

 

SSYY = �(Yi − Y�)2 = �Yi2 −
(∑ Yi)n

i=1
2

n

n

i=1

n

i=1

 

Note that most all of the simple linear regression analysis from these 

quantities, the sample means, and the sample size are obtained. 

b1
SSXY
XXXX

          SSE = SSYY −
(SSXY)2

SSXX
 

Normal error regression model 

If the random errors follow a normal distribution, then the response 

variable also has a normal distribution, with mean and variance given 

above. The notation, used for the errors, and the data is: 

εi~N(0, σ2)                   Yi = N(β0 + β1Xi,σ2) 

Test statistic 

The error sum of squares for the full model will always be less than or 

equal to the error sum of squares for reduced model, by definition of 

least squares. The test statistic will be: 

F∗ =

SSE(R) − SSE(F)
dfR − dfF

SSE(F)
dfF

 

where dfR, dfF are the error degrees of freedom for the full and reduced 

models. This method is used throughout course. 
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For the simple linear regression model, the following quantities are 

obtained: 

𝑆𝑆𝑆𝑆𝑆𝑆(𝐹𝐹) = 𝑆𝑆𝑆𝑆𝑆𝑆      dfF = 𝑛𝑛 − 2      𝑆𝑆𝑆𝑆𝑆𝑆(𝑅𝑅) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆     dfR = n − 1 

thus the F-Statistic for the General Linear Test can be written: 

F∗ =

SSE(R) − SSE(F)
dfR − dfF

SSE(F)
dfF

=

SSTO − SSE
(n − 1) − (n − 2)

SSE
n − 2

=
SSR

1
SSE

n − 2
=

MSR
MSE

 

Thus, for this particular null hypothesis, the general linear test 

“generalizes” to the F-test. 

Descriptive measures of association 

Along with the slope, Y-intercept, and error variance; several other 

measures are often reported. 

Coefficient of determination (r2) 

The coefficient of determination measures the proportion of the 

variation in Y that is “explained” by the regression on X. It is computed 

as the regression sum of squares divided by the total (corrected) sum of 

squares. Values near 0 imply that the regression model has done little 

to “explain” variation in Y, while values near 1 imply that the model has 

“explained” a large portion of the variation in Y. If all the data fall 

exactly on the fitted line, r2=1. The coefficient of determination will lie 

between 0 and 1. 

r2 =
SSR

SSTO
= 1 −

SSE
SSTO

           0 ≤ r2 ≤ 1 

Adjusted r squared 

The use of an adjusted r2 is an attempt to take account of the 

phenomenon of the r2 automatically and spuriously increasing when 

extra explanatory variables are added to the model. It is a modification 
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due to Theil of r2 that adjusts for the number of explanatory terms in a 

model relative to the number of data points. The adjusted r2 can be 

negative, and its value will always be less than or equal to that of r2. 

Unlike r2, the adjusted r2 increases only when the increase in r2 (due to 

the inclusion of a new explanatory variable) is more than one would 

expect to see by chance. If a set of explanatory variables with a 

predetermined hierarchy of importance are introduced into a regression 

one at a time, with the adjusted r2 computed each time, the level at 

which adjusted r2 reaches a maximum, and decreases afterward, would 

be the regression with the ideal combination of having the best fit 

without excess/unnecessary terms. The adjusted r2 is defined as 

2 2 2 21 11 (1 ) (1 )Adj
n pr r r r
n p n p
− −

= − − = − −
− −

 

where p is the total number of explanatory variables in the model (not 

including the constant term), and n is the sample size. 

Adjusted r2 can also be written as 

2 /1
/

res e
Adj

tot t

SS dfr
SS df

= −  

where dft is the degrees of freedom n– 1 of the estimate of the 

population variance of the dependent variable, and dfe is the degrees of 

freedom n – p – 1 of the estimate of the underlying population error 

variance. 

Adjusted r2 does not have the same interpretation as r2 while r2 is a 

measure of fit, adjusted r2 is instead a comparative measure of 

suitability of alternative nested sets of explanators. As such, care must 

be taken in interpreting and reporting this statistic. Adjusted r2 is 

particularly useful in the feature selection stage of model building (57). 

  

https://en.wikipedia.org/wiki/Explanatory_variable
https://en.wikipedia.org/wiki/Degrees_of_freedom_(statistics)
https://en.wikipedia.org/wiki/Feature_selection
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Coefficient of correlation (r) 

The coefficient of correlation is a measure of the strength of the linear 

association between Y and X. It will always be the same sign as the slope 

estimate (b1), but it has several advantages: 

• In some applications, a clear dependent and independent variable, 

cannot be identified. How two variables vary together in a 

population (peoples heights and weights, closing stock prices of 

two firms, etc). Unlike the slope estimate, the coefficient of 

correlation does not depend on which variable is labeled as Y, and 

which is labeled as X. 

• The slope estimate depends on the units of X and Y, while the 

correlation coefficient does not. 

• The slope estimate has no bound on its range of potential values. 

The correlation coefficient is bounded by –1 and +1, with higher 

values (in absolute value) implying stronger linear association (it 

is not useful in measuring nonlinear association which may exist, 

however). 

𝑟𝑟 = 𝑠𝑠𝑠𝑠𝑠𝑠(𝑏𝑏1)�𝑟𝑟2 =
∑(𝑋𝑋𝑖𝑖 − 𝑋𝑋�)(𝑌𝑌𝑖𝑖 − 𝑌𝑌�)
�∑(𝑋𝑋𝑖𝑖 − 𝑋𝑋�)(𝑌𝑌𝑖𝑖 − 𝑌𝑌�)

=
𝑠𝑠𝑥𝑥
𝑠𝑠𝑦𝑦
𝑏𝑏1         − 1 ≤ r ≤ 1 

where sgn(b1) is the sign (positive or negative) of b1, and 𝑠𝑠𝑥𝑥, 𝑠𝑠𝑦𝑦 are the 

sample standard deviations of X and Y, respectively. 

2) Polynomial regression 

Consider fitting polynomial regression equation between independent 

variable x and dependent variable y. Let this be represented by 

Y� = β�0 + β�1X + β�2X2 + ⋯+ β�pXp 

In principle this is no different from fitting multiple regression model 

except that the powers of X play the role of different independent 

variables. In matrix notation a polynomial regression model written as: 
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E(Y) = Xβ 

where is 1 x n vector of observations, x is n(p+1) matrix given by 

X = �1 x1 x12 … x1k�; where x1t = (x1t  x2t … xnt )′ ; t = 1, … , p 

and is a vector of order (p+1) unknown parameters. 1 is a vector of 

unities. 

Even though the problem of fitting polynomial regression is similar to 

the one of fitting multiple regression, polynomial regression has special 

features. 

To smooth out fluctuations in the data caused by random or 

uncontrolled errors, not because it is thought to represent the 

relationship. If clear cut linear or parabolic relationship is no clear from 

the scatter of the data, one may draw free hand curve. This method has 

however, the disadvantage of biased-ness and impossibility of making 

a valid estimate of the residual variation about the curve. 

While fitting the polynomial regression the form of the null hypothesis 

takes is that polynomial regression being fitted represents certain 

relationship and secondly, whether terms of higher degree contributes 

significantly to the relationship. As for example if a regression of 

degree four is fitted; the first test would be to test the significant of 

overall regression. If it is not significant, there is no need of further 

testing. Suppose, the overall regression comes out to be significant than 

one must test the significance of fourth order regression. If it is 

significant retain the equation. If it is not significant the process will 

have to be revised for fitting lower order polynomial to fit polynomial 

of degree three and so on. 
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There are, however, exceptions to this procedure. For example, when 

the null hypothesis specifies regression through origin; then it is correct 

to test the significance of β�0 before testing other coefficients.  

Orthogonal polynomial regression 

Suppose an observation (XI, YI), I=1,2, …,n. Where X is a predictor 

variable and Y, it is desired to fit the following model. 

Y� = β0 + β1X + β2X2 + ⋯+ βpXp + 𝜀𝜀 

In most of the situations the columns of X will not be orthogonal. If at 

some stage it is intended to include another term. βpXp+1 in the model, 

the changes will occur in all the other co-efficient. In order to simplify 

the computations, regression variable, but polynomial of increasing 

degree of X which are un-correlated. These polynomial are known as 

orthogonal polynomial. The advantages of defining independent 

variable in such a way are (i) each regression coefficient on each 

successive polynomial may be calculated independently of the other (ii) 

the sum of squares for regression attributable to each polynomial is 

independently calculated and represents the amount by which the 

regression sum of squares is increased by passage from an equation of 

lower degree.  

 

Figure 2.11 Quadratic (second order):  Y = b0 + b1X + b2X2 
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Figure 2.12 Cubic (third order): Y = b0 + b1X + b2X2 + b3X3 

Another issue in fitting the polynomials in one variables is ill conditioning. An 

assumption in usual multiple linear regression analysis is that all the independent 

variables are independent. In polynomial regression model, this assumption is not 

satisfied. Even if the ill-conditioning is removed by centering, there may exist still 

high levels of multicollinearity. Such difficulty is overcome by orthogonal 

polynomials. 

The classical cases of orthogonal polynomials of special kinds are due to Legendre, 

Hermite and Tehebycheff polynomials. These are continuous orthogonal 

polynomials (where the orthogonality relation involve integrating) whereas in our 

case, we have discrete orthogonal polynomials (where the orthogonality relation 

involves summation). 

Analysis:  

Consider the polynomial model of order is one variable as  

yi = β0 + β1xi + β2xi2 + ⋯+ βpxi
p + εi , i = 1,2, … . , n 

When writing this model as  

y = Xβ + ε 

the columns of X will not be orthogonal. If we add another terms βp+1xi
p+1 , then 

the matrix (X′X)−1  has to be recomputed and consequently, the lower order 

parameters β�0, β�1, … , β�p will also change. 
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This regression sum of squares does not depend on other parameters in the model. 

The analysis of variance table in this case is given as follows  

Source of 

variation 

Degrees of 

freedom 

Sum of squares Mean squares 

β�0 1 SS(β�0) - 

β�1 1 SS(β�1) SS(β�1) 

β�2 1 SS(β�2) SS(β�2) 

⋮ ⋮ ⋮ ⋮ 

β�p 1 SS(β�p) SS(β�p) 

Residual n-p-1 SSres(p)(by subtraction) SSres 

Total n SST  

Notice that: 

• We need not to bother for other terms in the model.  

• Simply concentrate on the newly added term only.  

• No re-computation of (X′X)−1 or any other α�j(j ≠ p + 1) is necessary due to 

orthogonality of polynomials.  

• Thus higher order polynomials can be fitted with ease.  

• Terminate the process when a suitably fitted model is obtained.  

Test of significance:  

To test the significance of highest order term, we test the null hypothesis  

H0:β�p = 0 

This hypothesis is equivalent to H0:βp = 0 in polynomial regression model.  

We would use 

F0 =
SSreg(β�p)

SSreg(p)/(n − p − 1)
 

If order of the model is changed to (p+r), we need to compute only new coefficients. 

The remaining coefficients β�0, β�1, … , β�p  do not change due to orthogonality 
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property of polynomials. Thus the sequential fitting of the model is computationally 

easy.  

When Xi are equally spaced, the tables of orthogonal polynomials are available and 

the orthogonal polynomials can be easily constructed (58). 

2.3 Literature reviews  

Although body mass index and percentage of body fat are the indicators used in 

many clinical situations, there are some limitations including complicated 

calculation of BMI and difficulties of percent body fat measurement. Therefore 

HWDI, which is easier method to measurement than BMI and percent body fat, was 

recommended. Many researchers tried to study obesity evaluation, literature review 

are shown as the below. 

Chittawatanarat K, et al. (7) identified variations of BMI and body fat across the 

age spectrum as well as comparing results between BMI predicted body fat and 

bioelectrical impedance results on age. Healthy volunteers were recruited. A total 

of 2,324 volunteers were included in this study. Multivariable linear regression 

coefficients were calculated. For results, the overall body composition and weight 

status, average body weight, height, body mass index (BMI), fat mass (FM), fat free 

mass (FFM), and its derivatives were significantly different among age groups. The 

coefficient of age altered the percentage fat mass (PFM) differently between 

younger, middle, and older groups (0.07; P=0.02 vs 0.13; P<0.01 vs 0.26; P<0.01; 

respectively). All coefficients of age alterations in all FM and FFM derived 

variables between each age spectrum were tested, demonstrating a significant 

difference between the younger (<60 years) and older (≥60 years) age groups, 

except the percentage fat free mass (PFFM) to BMI ratio (difference of PFM and 

FMI [95% confidence interval]: 17.8 [12.8-22.8], P<0.01; and 4.58 [3.4-5.8], 

P<0.01; respectively). The comparison between measured PFM and calculated 

PFM demonstrated a significant difference with increments of age.  

Chathuranga R, et al. (59) studied the BMI and percent body fat relationship, in a 

group of South Asian adults who have a different body composition compared to 
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presently study ethnic groups. Pearson’s correlation coefficient was calculated to 

see the relationship between BMI and percent body fat in the different age groups. 

Multiple regression analysis was performed to determine association between age 

and gender, and polynomial regression examined the linearity of the BMI and 

percent body fat relationship. The relationships between age and BMI, age and 

percent body fat were separately assessed. The results were out of 1,114 

participants, A significant positive correlation was observed between BMI and 

percent body fat, in men (r =0.75, p < 0.01; SEE = 4.17) and in women (r= 0.82, p 

< 0.01; SEE = 3.54) of all ages. Effect of age and gender in the BMI and percent 

body fat relationship was significant (p< 0.001); with more effect from gender. 

Regression line found to be curvilinear in nature at higher BMI values where 

women (p<0.000) having a better fit of the curve compared to men (p<0.05). In 

both genders, with increase of age, BMI seemed to increase in curvilinear fashion, 

whereas percent body fat increased in a linear fashion.  

Nirav R, et al. (60) studied the effectiveness of precise biomarkers and duel-energe 

x-ray absorptiometry (DXA) to help diagnose and treat obesity. A cross-sectional 

study of adults with BMI, DXA, fasting leptin and insulin results were measured 

from 1998-2009. This study examined concordance and discordance of biomarkers, 

and Scatter plot of the relationship between BMI, percent body fat and leptin. A 

Receiver Operating Curve (ROC) analysis was used to identify cut points for BMI 

to optimize the area under the ROC curve (AUROC), specifically sensitivity and 

specificity, relative to percent body fat. For results, BMI characterized 26% of the 

subjects as obese, while DXA indicated that 64% of them were obese. 39% of the 

subjects were classified as non-obese by BMI, but were found to be obese by DXA. 

BMI misclassified 25% men and 48% women. Meanwhile, a strong relationship 

was demonstrated between increased leptin and increased body fat. Finally, new 

BMI cut-points for defining obesity would increase sensitivity with small tradeoffs 

in specificity. 

Pruenglampoo S, et al. (3) assessed the use of height weight difference index 

(HWDI), which was named shortly as healthy index (HI), for screening overweight 

and obesity in adults. These were 2,234 Thai subjects (including men and women), 
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aged between 20 to 35 years, and enrolled in a community cohort project, Chiang 

Mai province, Thailand. Pearsons’ correlation coefficient was calculated to see the 

relationship between BMI and HWDI. Linear regression model was used to 

estimate HWDI and the kappa statistic was used to measure agreement between the 

assessment of nutritional status by HWDI and by BMI. There was a negative 

correlation between BMI and HWDI (r = -0.97, P < 0.001, n = 2,234) with linear 

regression equation: HWDI = 158.69–2.54 * BMI (P< 0.001). The study findings 

suggest that HWDI could be used as a simple and effective index for screening 

overweight and obesity in adults. 

Bedogni G, et al. (61) evaluated the agreement of air displacement 

plethysmography (ADP) and bioelectrical impedance analysis (BIA) with dual-

energy X-ray absorptiometry (DXA) for the assessment of percent fat mass (PFM) 

in morbidly obese women. Fifty-seven women aged 19-55 years and with a body 

mass index (BMI) ranging from 37.3 to 55.2 kg/m2 were studied. Values of PFM 

were obtained directly from ADP and DXA, whereas for BIA, we estimated fat free 

mass (FFM) from an equation for morbidly obese subjects and calculated PFM as 

(weight-FFM)/weight. As a result, this study was the mean (s.d.) difference between 

ADP and DXA for the assessment of PFM was -2.4% (3.3%) with limits of 

agreement (LOA) from -8.8% to 4.1%. The mean (s.d.) difference between BIA 

and DXA for the assessment of %FM was 1.7% (3.3%) with LOA from -4.9% to 

8.2%. 

Flegal K, et al. (62) investigated the relations between body mass index (BMI), 

waist circumference (WC), the waist-stature ratio (WSR), and percentage body fat 

(measured by DXA) in adults in a large nationally representative US population 

sample from the National Health and Nutrition Examination Survey (NHANES). 

As a result, WC, WSR, and BMI were significantly more correlated with each other 

than with percentage body fat (P < 0.0001 for all gender-age groups). Percentage 

body fat tended to be significantly more correlated with WC than with BMI in men 

but significantly more correlated with BMI than with WC in women (P < 0.0001 

except in the oldest age group). WSR tended to be slightly more correlated with 

percentage body fat than WC. Percentile values of BMI, WC, and WSR are shown 
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that correspond to percentiles of percentage body fat increments of 5 percentage 

points. More than 90% of the sample could be categorized to within one category 

of percentage body fat by each measure. 

Lazarus R, et al. (63) appraised the screening performance of BMI by using 

appropriate epidemiologic methods sample of 230 (119 men, 111 women) healthy 

Australian volunteers aged 4-20 years inclusive. Receiver operating characteristic 

(ROC) curves were prepared for detecting percentage body fat at or beyond the 85th 

percentile, using BMI as the screening test. Screening performance was slightly 

better for girls than for boys, but the differences were not significant. Reasonable 

true-positive (0.71, 95% CI: 0.53, 0.85) and low false-positive (0.05, 95% CI: 0.02, 

0.09) rates were observed at the 85th percentile cut point for BMI. At the 95th 

percentile cut point for BMI, both true-positive (0.29, 95% CI: 0.15, 0.47) and false-

positive (0.01, 95% CI: 0.00, 0.03) rates were lower.  

Nair C, et al. (64) studied the relationship between BMI and percent body fat and 

health risks outcomes (specifically hypertension and type 2 diabetes) in men 

residents of Luck now city, north India to evaluate the validity of BMI cut-off points 

for overweight. One thousand one hundred and eleven men volunteer subjects (18-

69 years) who participated indifferent programmers organized by the Institute 

during 2005 to 2008 were included in the study. The proposed cut-off for BMI 

based on percent body fat was calculated using receiver operating characteristics 

(ROC) curve analysis. The results, which were forty four percent subjects, showed 

higher percent body fat (>25%) with BMI range (24 - 24.99 kg/m2). Sensitivity and 

specificity at BMI cut-off at 24.5 kg/m3 were 83.2 and 77.5, respectively. 

Sensitivity at BMI cut-off >25 kg/m2 was reduced by 5 percent and specificity was 

increased by 4.6 percent when comparing to 24.5 cut-off. 

Meeuwsen S, et al. (65) studied the effects of age, gender and age-gender 

interactions on BMI-percent body fat relationships over a wide range of BMI and 

age. It also aimed to examine controversies regarding linear or curvilinear BMI-

percent body fat relationships. Body composition was measured using validated 

bioimpedance equipment (Bodystat) in a large self-selected sample of 23,627 UK 

adults aged 18-99 (99% ≤70) years, of which 11,582 were men with a mean BMI 
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of 26.3±4.7 (sd) kg/ m2, and 12,044 women, with a mean BMI of 25.7±5.1 kg/m2. 

Multiple regression analysis was used. The results, BMI progressively increased 

with age in women and plateaued between 40 and 70 years in men. At a fixed BMI, 

body fat mass increased with age (1.9 kg/decade), as did percent fat (1.1-1.4% per 

decade). The relationship between BMI and percent fat was found to be curvilinear 

(quadratic) rather than linear, with a weaker association at lower BMI. There was 

also a small but significant age-gender interaction. The association between BMI 

and percent body fat is not strong, particularly in the desirable BMI range, is 

curvilinear rather than linear, and is affected by age. 

Macias N, et al. (66) compared the classification accuracy of percent body fat, BMI 

and waist circumference for the detection of metabolic risk factors in a sample of 

Mexican adults; optimized cut-offs as well as sensitivity and specificity at 

commonly used percent body fat and BMI international cut-offs were estimated. 

Conditional percent body fat means at BMI international cut-offs. The methods this 

study performed a cross-sectional analysis of data on body composition, 

anthropometry and metabolic risk factors (high glucose, high triglycerides, low 

HDL cholesterol and hypertension) from 5,100 Mexican men and women. The 

association between BMI, waist circumference and percent body fat was evaluated 

with linear regression models. The percent body fat, BMI and waist circumference 

optimal cut-offs for the detection of metabolic risk factors were selected at the point 

where sensitivity was closest to specificity. Areas under the ROC Curve (AUROC) 

were compared among classifiers using a non-parametric method. The results, after 

adjustment for waist circumference, a 1% increase in BMI was associated with a 

percent body fat rise of 0.05 percentage points (p.p.) in men (P < 0.05) and 0.25 

p.p. in women (P < 0.001). At BMI = 25.0 predicted percent body fat was 27.6 ± 

0.16 (mean ± SE) in men and 41.2 ± 0.07 in women. Estimated percent body fat 

cut-offs for detection of metabolic risk factors were close to 30.0 in men and close 

to 44.0 in women. In men waist circumference had higher AUROC than percent 

body fat for the classification of all conditions whereas BMI had higher AUROC 

than percent body fat for the classification of high triglycerides and hypertension. 

In women BMI and waist circumference had higher AUROC than percent body fat 

for the classification of all metabolic risk factors. It concluded that the BMI and 
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waist circumference were more accurate than percent body fat for classifying the 

studied metabolic disorders. International percent body fat cutoffs had very low 

specificity and thus produced a high rate of false positives in both gender. 

Ho-Pham L, et al. (67) studied the relationship between percent body fat and body 

mass index (BMI) in the Vietnamese population. This study included 1,217 

individuals of Vietnamese (862 women) aged 20 years and older (average age 47 

years old) who were randomly selected from the general population in Ho Chi Minh 

City. Lean mass (LM) and fat mass (FM) were measured by DXA. Percent body fat 

was derived as FM over body weight. The results, the prevalence of obesity 

(BMI≥30) was 1.1% and 1.3% for men and women, respectively. The prevalence 

of overweight and obesity combined (BMI≥25) was ~24% and ~19% in men and 

women, respectively. Based on the quadratic relationship between BMI and percent 

body fat, the approximate percent body fat corresponding to the BMI threshold of 

30 (obese) were 30.5 in men and 41 in women. Using the criteria of percent body 

fat >30 in men and percent body fat >40 in women, approximately 15% of men and 

women were considered obese. This study suggest that body mass index 

underestimates the prevalence of obesity. It is recommended that PBF >30 in men 

or PBF >40 in women is used as criteria for the diagnosis of obesity in Vietnamese 

adults. Using these criteria, 15% of Vietnamese adults in Ho Chi Minh City was 

considered obese. 

 




