CONTENTS

	Page
Acknowledgement	d
Abstract (English)	e
Abstract (Thai)	g
List of Tables	k
List of Figures	1
List of Abbreviations	n
List of Symbols	q
Statements of Originality in English	r
Statements of Originality in Thai	S
Chapter 1 Introduction	1
1.1 Historical Background	1
1.2 Objectives	6
1.3 Literature Review	6
Chapter 2 Material and Methods	32
Copyright [©] by Chiang Mai University	30
	32
2.3 Total RNA extraction cDNA synthesis and PCR amplification	32
2.4 Ranid amplification of cDNA ends (5' and 3' RACE)	33
2.4 Rapid amplification of CDIVA club (5 and 5 RACE)	25
2.5 Clothing and sequencing 2.6 Effects of IHA and 20E on OfMat OfDU DRAN OfE a A	25
2.0 ENCUS OF THA and 20E OF OJNICI, OJDIT-T DAIN, OJDUR-A, $OfE_c R R I OfRr C OfE75A OfE75R OfE75C and OfUD?$	55
$O_{j}E(R-D), O_{j}D(-C, O_{j}E/3R, O_{j}E/3D, O_{j}E/3C)$ and $O_{j}I(R)$	
Senes expression <i>in vino</i>	

2.7 Quantitative real-time PCR (Q-RT-PCR)	36
2.8 Effect of photoperiod on the gene expression of OfDH-PBAN	37
Chapter 3 Results	38
3.1 Molecular characterization of OfDH-PBAN cDNA	38
3.2 OfDH-PBAN mRNA expression	43
3.3 Molecular characterization of OfMet, OfE75C and OfHR3 cDNA	46
3.4 In vivo effects of JHA on OfMet, OfDH-PBAN, OfEcR-A, OfEcR-B1, OfBr-C, OfE75A, OfE75B, OfE75C and OfHR3 mRNA expression	51
in both SG and PG	
3.5 In vivo effects of 20E on OfMet. OfDH-PBAN. OfEcR-A. OfEcR-B1.	53
OfBr-C OfE75A OfE75B OfE75C and OfHR3 mRNA expression	00
in both SG and PG	
3.6 In vitro effects of JHA and 20E on OfMet, OfDH-PBAN, OfEcR-A,	55
OfEcR-B1, OfBr-C, OfE75A, OfE75B, OfE75C and OfHR3 mRNA	
expression in the SG	
3.7 In vitro effects of JHA and 20E on OfDH-PBAN, OfMet, OfEcR-A,	60
OfEcR-B1, OfBr-C, OfE75A, OfE75B, OfE75C and OfHR3 mRNA	
expression in the PG	
Chapter 4 Discussion and Conclusions	66
	00
4.1 Discussion	66
4.2 Conclusions	73
References rights reserved	75
List of Publications	103
Appendix	104
Appendix A	104
Curriculum Vitae	114

LIST OF TABLES

Table 2.1	Gene-degenerate primer used in PCR amplification	34
Table 2.2	Forward and reverse primers used in Q-RT-PCR	37
Table 3.1	Homology of the deduced amino acid sequence of the	41
	OfDH-PBAN from the bamboo borer, O. fuscidentalis	
	with diapause hormone and pheromone biosynthesis	
	activating neuropeptide (DH-PBAN) of other	
	lepidopteran species	
Table 3.2	Homology of the deduced amino acid sequences of the OfMet	46
	from the bamboo borer, O. fuscidentalis with Methoprene	
	tolerant (Met) of other lepidopteran species	
Table 3.3	Homology of the deduced amino acid sequence of the OfE75C	48
	from the bamboo borer, O. fuscidentalis with E75C of other	
	lepidopteran species	
Table 3.4	Homology of the deduced amino acid sequence of the OfHR3	49
	from the bamboo borer, O. fuscidentalis with HR3 of other	
	lepidopteran species	
8	โขสิทธิ์มหาวิทยาลัยเชียงใหม่	

ลื่อสิทธิบหาวิทยาลัยเชียงไหม Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure 1.1	Life's cycle of the bamboo borer	14
Figure 1.2	Pupal metamorphosis induced by S-methoprene (JHA) treatment	18
C	of diapausing larvae of O. fuscidentalis	
Figure 1.3	Model for Met as a JH receptor in insects	24
Figure 1.4	Ecdysone hierarchy	30
Figure 3.1	Nucleotide sequence and deduced amino acid sequence of the	39
	OfDH-PBAN cDNA	
Figure 3.2	Schematic drawing of the DH-PBAN precursor polyprotein in	40
	O. fuscidentalis	
Figure 3.3	Phylogenetic tree inferred from the known lepidopteran DH-PBAN	42
	amino acid sequences by the neighbour joining method	
Figure 3.4	Tissue expression of OfDH-PBAN mRNA from young 5 th instar	43
	larvae of O. fuscidentalis	
Figure 3.5	Developmental changes in the expression levels of OfDH-PBAN	44
	mRNA in the subesophageal ganglion of O. fuscidentalis during	
	diapause (October to March) and post-diapause (pupation) as	
6	measured by Q-RT-PCR	
Figure 3.6	Effect of diapause-inducing photoperiod on the expression of	45
C	Of DH-PBAN gene in the suboesophageal ganglion of diapausing	
A	larvae of O. fuscidentalis	
Figure 3.7	Clustal W2 alignment of deduced amino acid sequence of OfMet	47
	with sequences from two other insect species	
Figure 3.8	Clustal W2 alignment of deduced amino acid sequence of OfE75C	48
	with sequences from two other insect species	
Figure 3.9	Clustal W2 alignment of deduced amino acid sequence of OfHR3	50
	with sequences from three other insect species	

Figure 3.10	Induction of JHA on OfMet, OfDH-PBAN, OfEcR-A, OfEcR-B1,	52
	OfBr-C, OfE75A, OfE75B, OfE75C and OfHR3 mRNA	
	expression in SG and PG of diapausing larvae	
Figure 3.11	Induction of 20E on OfMet, OfDH-PBAN, OfEcR-A, OfEcR-B1,	54
	OfBr-C, OfE75A, OfE75B, OfE75C and OfHR3 mRNA	
	expression in SG and PG of diapausing larvae	
Figure 3.12	Induction of JHA and 20E on OfMet, OfDH-PBAN, OfEcR-A,	57
	OfEcR-B1, OfBr-C, OfE75A, OfE75B, OfE75C and OfHR3	
	mRNA expression in the SG of diapausing larvae in vitro	
Figure 3.13	Concentration responses of OfMet, OfDH-PBAN, OfEcR-A,	59
	OfEcR-B1, OfBr-C, OfE75A, OfE75B, OfE75C and OfHR3	
	mRNA to JHA and 20E (from 0.005 to 1 μ g/50 μ l) in the	
	SG of diapausing larvae in vitro	
Figure 3.14	Induction of JHA and 20E on OfMet, OfDH-PBAN, OfEcR-A,	62
	OfEcR-B1, OfBr-C, OfE75A, OfE75B, OfE75C and OfHR3	
	mRNA expression in the PG of diapausing larvae in vitro	
Figure 3.15	Concentration responses of OfMet, OfDH-PBAN, OfEcR-A,	64
	OfEcR-B1, OfBr-C, OfE75A, OfE75B, OfE75C and OfHR3	
	mRNA to JHA and 20E (from 0.005 to 1 μ g/50 μ l) in the	
	PG of diapausing larvae in vitro	
Figure 4 1	Schematic diagrams of IH signaling pathway underlying	72
	termination of larval diapause by IHA in <i>O</i> fuscidentalis	12
C	opyright by Chiang Mai University	
A	Il rights reserved	

LIST OF ABBREVIATIONS

AG	Abdominal ganglia
AGPC	Acid guanidinium thiocyanate phenol chloroform
ANOVA	One-way analysis of variance
bHLH-PAS	Basic-helix-loop-helix/Per-Arnt-Sim
Br	Brain
Br-C	Broad-complex
CA	Corpora allatum
CaCl ₂	Calcium chloride
CDL	Critical day length
CNL	Critical night length
CT	Cycle threshold
ΔC_T	Delta cycle threshold
cDNA	Complementary deoxyribonucleic acid
COI	Cytochrome C oxidase subunit 1
DBD	Deoxyribonucleic acid-binding domain
DD	Continuous darkness
DH	Diapause hormone
DH-PBAN	Diapause hormone and pheromone biosynthesis activating
	neuropeptide
DHPC	Diapause hormone and pheromone biosynthesis activating
	neuropeptide producing neurosecretory cell
DNA	Deoxyribonucleic acid
DW	Distilled water
20E	20-hydroxyecdysone
EcR	Ecdysone receptor
EcRE	Ecdysone response element
FISC	Ftz-F1-interacting steroid receptor coactivator
Ft	Fat body

GCE	Germ-cell express
GCNF	Germ-cell nuclear factor
Inm	Integument
JH	Juvenile hormone
JHA	Juvenile hormone analogue
JHBP	Juvenile hormone binding protein
JHRE	Juvenile hormone response element
KCl	Potassium chloride
Kr-h1	Krüppel homolog 1
LBD	Ligand-binding domain
L	Continuous light
MET	Methoprene-tolerant
Mt	Malpighian tubules
mRNA	Messenger ribonucleic acid
NaCl	Sodium chloride
OfBr-C	O. fuscidentalis broad-complex
OfDH-PBAN	O. fuscidentalis diapause hormone and pheromone biosynthesis
	activating neuropeptide
OfEcR-A	O. fuscidentalis ecdysone receptor A
OfEcR-B1	O. fuscidentalis ecdysone receptor B1
OfE75A	O. fuscidentalis orphan nuclear receptor A
OfE75B	O. fuscidentalis orphan nuclear receptor B
OfE75C	O. fuscidentalis orphan nuclear receptor C
OfHR3	O. fuscidentalis hormone receptor 3
OfMet	O. fuscidentalis methoprene-tolerant
OfRpL3	O. fuscidentalis ribosomal protein L3
PCR	Polymerase chain reaction
PG	Prothoracic gland
РТТН	Prothoracicotropic hormone
Q-RT-PCR	Quantitative real-time polymerase chain reaction
5' RACE	5' rapid amplification of cDNA ends

3' RACE	3' rapid amplification of cDNA ends
ROR	Vertebrate retinoid-related orphan receptor
RT-PCR	Reverse transcriptase polymerase chain reaction
SEM	Standard error of mean
SG	Subesophageal ganglion
SGNP	Subesophageal ganglion neuropeptide
SL	Subesophageal ganglion lateral cell
SLb	Subesophageal ganglion labial cell
SMd	Subesophageal ganglion mandibular cell
SMx	Subesophageal ganglion maxillary cell
SRC-1	Steroid receptor coactivator-1
Tai	Taiman
TG	Thoracic ganglia
USP	Ultraspiracle
	E TALS

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University AII rights reserved

MAI UNIVER

LIST OF SYMBOLS

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

STATEMENTS OF ORIGINALITY

- 1. A new knowledge in the field of insect physiology is helpful in understanding biological function, evolution, and insect development regulation.
- 2. The bamboo borer can be promoted as economically important insect.

Copyright[©] by Chiang Mai University All rights reserved

ข้อความแห่งการริเริ่ม

 วิทยานิพนธ์นี้ถือว่าเป็นองค์ความรู้ใหม่ทางค้านสรีรวิทยาของแมลงและช่วยให้เข้าใจการ ทำงานของร่างกาย วิวัฒนาการ และการควบคุมการเจริญเติบโตของแมลง

หนอนเยื่อไผ่สามารถนำไปพัฒนาให้เป็นแมลงที่มีความสำคัญทางเศรษฐกิจได้

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved