CONTENTS

Acknowledgement	d
Abstract in Thai	f
Abstract in English	h
List of Tables	k
List of Tables List of Abbreviations	1
List of Abbreviations	р
List of Symbols	u
Statement of Originality in Thai	v
Statement of Originality in English	W
Chapter 1 Introduction	1
Chapter 2 Literature Review	6
Chapter 3 Materials and Methods	26
Chapter 4 Results	43
Chapter 5 Discussion	77
Chapter 6 Conclusion 6 by Chiang Mai University	90
References lights reserved	91
List of Publications	107
Appendix	108
Curriculum Vitae	131

LIST OF TABLES

Table 2.1Reaction of four antioxidant enzymes in ASA-GSH cycle19

Table 4.1Pearson correlation coefficients of ATP concentration used,48antioxidant capacity and fruit quality of 'Daw' longan
during storage at 25±1°C48

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure 2.1	Overview of cellular redox state in different responses	8
Figure 2.2	The interconversion of ATP and ADP	10
Figure 2.3	Schematic representation of the electron transport chain and	12
	proton pumping sites in the inner membrane of a plant	
	mitochondria	
Figure 2.4	Alternative electron transport pathways in plant mitochondria	12
Figure 2.5	Alternative respiratory pathway	13
Figure 2.6	Organization of the electron transport chain and ATP	14
	synthesis in the inner membrane of plant mitochondria	
Figure 2.7	H ₂ O ₂ scavenging by ASA-GSH cycle	19
Figure 2.8	Regeneration of NADPH by some NADPH-generating	20
	dehydrogenases in the pentose phosphate pathway	
Figure 3.1	BI score of longan pericarp	32
Figure 3.2	DI score of longan fruit	33
Figure 4.1	Effects of exogenous ATP on antioxidant capacity assayed	44
	by ABTS method of 'Daw' longan pericarp during storage	
	at 25±1°C	
Figure 4.2	Effects of exogenous ATP on antioxidant capacity assayed	44
	by DPPH method of 'Daw' longan pericarp during storage	
C	at 25±1°C	
Figure 4.3	Effects of exogenous ATP on antioxidant capacity assayed	45
	by FRAP method of 'Daw' longan pericarp during storage	
	at 25±1°C	
Figure 4.4	Effects of exogenous ATP on browning index of 'Daw'	46
	longan pericarp during storage at 25±1°C	
Figure 4.5	Effects of exogenous ATP on L* value of 'Daw' longan	46
	pericarp during storage at 25±1°C	

LIST OF FIGURES (continued)

Figure 4.6	Effects of exogenous ATP on disease index of 'Daw'	47
	longan during storage at 25±1°C	
Figure 4.7	Effects of exogenous ATP on overall quality acceptance of	48
	'Daw' longan during storage at 25±1°C	
Figure 4.8	Effects of ClO ₂ fumigation on ATP content of 'Daw'	50
	longan pericarp during storage at 25±1°C	
Figure 4.9	Effects of ClO ₂ fumigation on ADP content of 'Daw'	50
	longan pericarp during storage at 25±1°C	
Figure 4.10	Effects of ClO ₂ fumigation on AMP content of 'Daw'	51
	longan pericarp during storage at 25±1°C	
Figure 4.11	Effects of ClO ₂ fumigation on energy charge of 'Daw'	52
	longan pericarp during storage at 25±1°C	
Figure 4.12	Effects of ClO ₂ fumigation on SDH activity of 'Daw'	53
	longan pericarp during storage at 25±1°C	
Figure 4.13	Effects of ClO ₂ fumigation on CCO activity of 'Daw'	54
0	longan pericarp during storage at 25±1°C	
Figure 4.14	Effects of ClO ₂ fumigation on NAD ⁺ content of 'Daw'	55
C	longan pericarp during storage at 25±1°C	
Figure 4.15	Effects of ClO ₂ fumigation on NADH content of 'Daw'	56
	longan pericarp during storage at 25±1°C	
Figure 4.16	Effects of ClO ₂ fumigation on NAD ⁺ /NADH ratio of 'Daw'	56
	longan pericarp during storage at 25±1°C	
Figure 4.17	Effects of ClO ₂ fumigation on Q content of 'Daw' longan	58
	pericarp during storage at 25±1°C	

LIST OF FIGURES (continued)

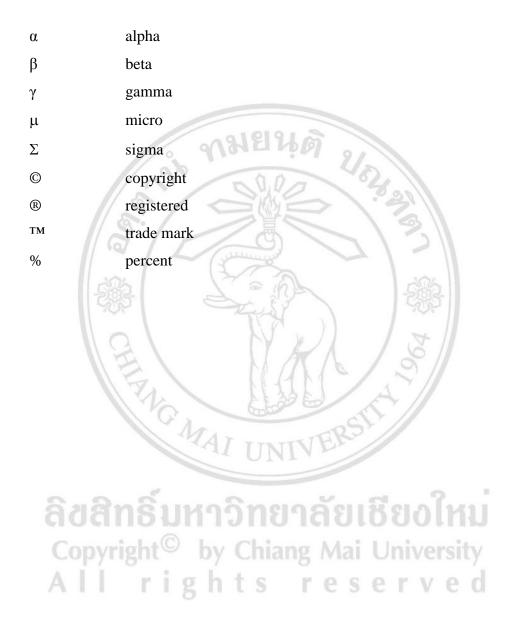
Figure 4.18	Effects of ClO ₂ fumigation on QH ₂ content of 'Daw' longan	58
	pericarp during storage at 25±1°C	
Figure 4.19	Effects of ClO ₂ fumigation on Q/QH ₂ ratio of 'Daw' longan	59
	pericarp during storage at 25±1°C	
Figure 4.20	Effects of ClO ₂ fumigation on browning index of 'Daw'	60
	longan pericarp during storage at 25±1°C	
Figure 4.21	Effects of ClO ₂ fumigation on L* value of 'Daw' longan	61
	pericarp during storage at 25±1°C	
Figure 4.22	Effects of ClO ₂ fumigation on disease index of 'Daw'	61
	longan during storage at 25±1°C	
Figure 4.23	Effects of ClO ₂ fumigation on overall quality acceptance of	62
	'Daw' longan during storage at 25±1°C	
Figure 4.24	Effects of ClO ₂ fumigation on ASA content of 'Daw'	64
	longan pericarp during storage at 25±1°C	
Figure 4.25	Effects of ClO ₂ fumigation on DHA content of 'Daw'	64
	longan pericarp during storage at 25±1°C	
Figure 4.26	Effects of ClO ₂ fumigation on ASA/DHA of 'Daw' longan	65
ล	pericarp during storage at 25±1°C	
Figure 4.27	Effects of ClO ₂ fumigation on GSH content of 'Daw'	66
А	longan pericarp during storage at 25±1°C	
Figure 4.28	Effects of ClO ₂ fumigation on GSSG content of 'Daw'	67
	longan pericarp during storage at 25±1°C	
Figure 4.29	Effects of ClO ₂ fumigation on GSH/GSSG ratio of 'Daw'	67
	longan pericarp during storage at 25±1°C	
Figure 4.30	Effects of ClO ₂ fumigation on NADPH content of 'Daw'	69
	longan pericarp during storage at 25±1°C	

LIST OF FIGURES (continued)

Figure 4.31	Effects of ClO ₂ fumigation on NADP ⁺ content of 'Daw'	69
	longan pericarp during storage at 25±1°C	
Figure 4.32	Effects of ClO ₂ fumigation on NADPH/NADP ⁺ ratio of	70
	'Daw' longan pericarp during storage at 25±1°C	
Figure 4.33	Effects of ClO ₂ fumigation on APX activity of 'Daw'	72
	longan pericarp during storage at 25±1°C	
Figure 4.34	Effects of ClO ₂ fumigation on DHAR activity of 'Daw'	72
	longan pericarp during storage at 25±1°C	
Figure 4.35	Effects of ClO ₂ fumigation on MDHAR activity of 'Daw'	73
	longan pericarp during storage at 25±1°C	
Figure 4.36	Effects of ClO ₂ fumigation on GR activity of 'Daw' longan	73
	pericarp during storage at 25±1°C	
Figure 4.37	Effects of ClO ₂ fumigation on G6PDH activity of 'Daw'	74
	longan pericarp during storage at 25±1°C	
Figure 4.38	Effects of ClO ₂ fumigation on 6PGDH activity of 'Daw'	75
	longan pericarp during storage at 25±1°C	
Figure 4.39	Effects of ClO ₂ fumigation on H ₂ O ₂ content of 'Daw'	76
ล	longan pericarp during storage at 25±1°C	
Figure 5.1	Probable mechanism for fruit senescence through energy	83
А	production and effects of ClO ₂ on fruit senescence	
	alleviation of 'Daw' longan during storage at 25 ± 1 °C	
Figure 5.2	Probable mechanism for fruit senescence through free	89
	radical scavenging and effects of ClO ₂ on fruit senescence	
	alleviation of 'Daw' longan during storage at 25 \pm 1 °C	

LIST OF ABBREVIATIONS

[ATP]	adenosine triphosphate concentration
ABTS	2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid)
ABTS ^{●+}	2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) radical
AD	after dipping
ADP	adenosine diphosphate
AF	after fumigation
AMP	adenosine monophosphate
ANOVA	analysis of variance
AOX	alternative oxidase
APX	ascorbate peroxidase
ASA	ascorbate
ASA-GSH cycle	ascorbate-glutathione cycle
ATP	adenosine triphosphate
BD	before dipping
BF	before fumigation
BI	browning index
°C	degree Celsius
Ca ²⁺	calcium ion
CAT	catalase
CCO opyrig	cytochrome c oxidase
Cd	cadmium ts reserved
Cl ₂ (g)	gaseous chlorine
ClO	hypochlorite
ClO ₂	chlorine dioxide
cm	centimeter
COX	cytochrome c oxidase pathway
CV.	cultivar
DCPIP	dichlorophenolindophenol


DHA	dehydroascorbate
DHAR	dehydroascorbate reductase
DI	disease index
DNA	deoxyribonucleic acid
DPPH	1,1-diphenyl-2-picrylhydrazyl
DPPH•	1,1-diphenyl-2-picrylhydrazyl radical
DTNB	5, 5'-dithiobis (2-nitrobenzoic acid)
DTT	dithiothreitol
E	extinction coefficient
e ⁻	electron
EC	energy charge
EDTA	ethylenediaminetetraacetic acid
ETC	electron transport chain
F ₀ F ₁ -ATPase	F ₀ F ₁ -ATP synthase
FADH ₂	reduced flavin adenine dinucleotide
Fe ²⁺	ferrous ion
Fe ³⁺	ferric ion
Fe ³⁺ FeCl ₃	ferric chloride
FeCl ₃	ferric chloride
FeCl ₃ FeSO ₄	ferric chloride ferrous sulphate
FeCl ₃ FeSO ₄ FRAP	ferric chloride ferrous sulphate ferric reducing antioxidant power
FeCl ₃ FeSO ₄ FRAP FW	ferric chloride ferrous sulphate ferric reducing antioxidant power fresh weight
FeCl ₃ FeSO ₄ FRAP FW FDA	ferric chloride ferrous sulphate ferric reducing antioxidant power fresh weight Food and Drug Administration
FeCl ₃ FeSO ₄ FRAP FW FDA g	ferric chloride ferrous sulphate ferric reducing antioxidant power fresh weight Food and Drug Administration gravity
FeCl ₃ FeSO ₄ FRAP FW FDA g g	ferric chloride ferrous sulphate ferric reducing antioxidant power fresh weight Food and Drug Administration gravity gram
FeCl ₃ FeSO ₄ FRAP FW FDA g g G3P	ferric chloride ferrous sulphate ferric reducing antioxidant power fresh weight Food and Drug Administration gravity gram glyceraldehyde-3-phosphate

GSH	reduced glutathione
GSSG	oxidized glutathione
Н ⁺	hydrogen ion
H ₂ O	water
H_2O_2	hydrogen peroxide
H_2O_2 H_2S	hydrogen sulfide
HCl	hydrochloric acid
HEPES	4-(2-Hydroxyethyl) piperazine-1-ethanesulfonic acid, N-(2-
	Hydroxyethyl) piperazine-N'-(2-ethanesulfonic acid)
HOCI	hypochlorous acid
HPLC	high performance liquid chromatography
KI	potassium iodide
КОН	potassium hydroxide
КОН КРа	
Kra L	kilopascal liter
L L*	St.
	lightness
LSD	least significant differences
M	molar concentration malondialdehyde
MDA	
MDHA	monodehydroascorbate
MDHAR	monodehydroascorbate reductase
mg	milligram
MgCl ₂	magnesium chloride
MJ	methyl jasmonate
mL	milliliter
mM	millimolar
NADH	reduced nicotinamide adenine dinucleotide
NAD^+	oxidized nicotinamide adenine dinucleotide

NADPH	reduced nicotinamide adenine dinucleotide phosphate
$NADP^+$	oxidized nicotinamide adenine dinucleotide phosphate
NaCl	sodium chloride
NaClO ₂	sodium chlorite
NaHCO ₃	sodium hydroxide carbonate
NaOH	sodium hydroxide
nm	nanometer
nmol	nanomole
NO	nitric oxide
NTR	NADPH-dependent thioredoxin reductase
O ₂	oxygen
$^{1}O_{2}$	singlet oxygen
O2•-	superoxide radical
OA	oxalic acid
OH•	hydroxyl radical
PGA	3-phosphoglyceric acid
pН	potential of hydrogen ion
Pi	inorganic phosphate
pM	picomolar
Pmf_opyrig	proton-motive force ang Mai University
PPO	polyphenol oxidase
POD	peroxidase
PVPP	polyvinyl polypyrrolidone
Q	ubiquinone
QA	overall quality acceptance
QH ₂	ubiquinol
Qt	total ubiquinone
Q-cycle	ubiquinone cycle

RNA	ribonucleic acid
ROS	reactive oxygen species
SDH	succinate dehydrogenase
SOD	superoxide dismutase
SPSS	statistical packages for social science
TAC	total antioxidant capacity
TCA	trichloroacetic acid
TCA cycle	tricarboxylic acid cycle
TPTZ	2,4,6-tripyridyl-s-triazine
UV	ultraviolet
VIS	visible
v	volume
w S	weight
μg	microgram
μL	microliter
μm	micrometer
μΜ	micromolar
µmol	micromole
6PGDH	6-phosphogluconate dehydrogenase
Copyrig	ht [©] by Chiang Mai University
AII	rights reserved

LIST OF SYMBOLS

ข้อความแห่งการริเริ่ม

- การเสื่อมสภาพของผลลำไขพันธุ์ดอเกี่ยวข้องกับการเสื่อมถอยของสถานภาพรีดอกซ์ซึ่งมีผลลด การทำงานของเอนไซม์สำคัญในการผลิตพลังงานและการกำจัดอนุมูลอิสระระหว่างการเก็บ รักษาที่อุณหภูมิ 25±1 องศาเซลเซียส ความชื้นสัมพัทธ์ 82±5 เปอร์เซ็นต์ เป็นเวลา 7 วัน
- การรมด้วยก๊าซ ClO₂ ลดการเสื่อมสภาพของผลลำไยพันธุ์ดอได้ โดยอาจเป็นผลจากการที่ก๊าซ ClO₂ ปรับสมดุลของสถานภาพรีดอกซ์ซึ่งมีผลกระตุ้นการทำงานของเอนไซม์สำคัญในการผลิต พลังงานและการกำจัดอนุมูลอิสระในระหว่างการเก็บรักษาที่อุณหภูมิ 25±1 องศาเซลเซียส กวามชื้นสัมพัทธ์ 82±5 เปอร์เซ็นต์ เป็นเวลา 7 วัน

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

STATEMENT OF ORIGINALITY

- Senescence of 'Daw' longan fruit associates with the decline in redox status which relates with downregulation of enzymatic activities in energy production and free radical scavenging during storage at 25±1 °C with 82±5% relative humidity for 7 days.
- 2) Fumigation with gaseous ClO₂ reduces pericarp browning of longan fruit cv. Daw. This might be due to the alteration of redox status which relates with upregulation of enzymatic activities in energy production and free radical scavenging during storage at 25±1 °C with 82±5% relative humidity for 7 days.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved