

## **APPENDIX A**

### Media

#### A1: Yeast malt-extract medium (YM) agar slant (per liter)

| Yeast extract | 4.0  | g |      |    |
|---------------|------|---|------|----|
| Malt extract  | 10.0 | g | ยนด  |    |
| Glucose       | 4.0  | g | 20-4 | 0) |
| Agar          | 15.0 | g |      | 22 |
| 5             |      | > |      | 1  |

# YM agar slant preparation

Dissolved components of yeast-malt extract agar medium, adjusted to a final volume of 1,000 mL with distilled water and adjusted pH to 6.0 with H<sub>3</sub>PO<sub>4</sub> or 1.0 N KOH, boiled at 100°C until the agar completely melt, then autoclaved at 121°C for 15 min.

A2: Yeast malt-extract medium (YM) (per liter)



# **YM** preparation

Dissolved all components of yeast-malt extract medium, adjusted to a final volume of 1,000 mL with distilled water and adjusted pH to 6.0 with H<sub>3</sub>PO<sub>4</sub> or 1.0 N KOH and then, autoclaved at 121°C for 15 min.

A3: Basal medium supplemented with pure glycerol (BMP)

| Yeast extract                                                          | 1.0  | g |
|------------------------------------------------------------------------|------|---|
| Pure glycerol                                                          | 20.0 | g |
| Potassium di-hydrogen phosphate (KH <sub>2</sub> PO <sub>4</sub> )     | 5.5  | g |
| Ammonium sulfate ((NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> )    | 5.3  | g |
| Di-potassium hydrogen phosphate (K <sub>2</sub> HPO <sub>4</sub> )     | 3.7  | g |
| Magnesium sulphate heptahydrate (MgSO <sub>4</sub> .7H <sub>2</sub> O) | 0.5  | g |
| Manganese sulphate monohydrate (MnSO <sub>4</sub> .H <sub>2</sub> O)   | 0.2  | g |
| Sodium chloride (NaCl)                                                 | 0.5  | g |

#### **BMP** preparation

Dissolved all components of basal medium supplemented with pure glycerol, adjusted to a final volume of 1,000 mL with distilled water and adjusted pH to 6.0 with  $H_3PO_4$  or 1.0 N KOH and then, autoclaved at 121°C for 15 min.

A4: Basal medium supplemented with crude glycerol (BMC)

| Yeast extract                                                          | 1.0  | g |
|------------------------------------------------------------------------|------|---|
| Crude glycerol                                                         | 20.0 | g |
| Potassium di-hydrogen phosphate (KH2PO4)                               | 5.5  | g |
| Ammonium sulfate ((NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> )    | 5.3  | g |
| Di-potassium hydrogen phosphate (K <sub>2</sub> HPO <sub>4</sub> )     | 3.7  | g |
| Magnesium sulphate heptahydrate (MgSO <sub>4</sub> .7H <sub>2</sub> O) | 0.5  | g |
| Manganese sulphate monohydrate (MnSO <sub>4</sub> .H <sub>2</sub> O)   | 0.2  | g |
| Sodium chloride (NaCl)                                                 | 0.5  | g |

### **BMC** preparation

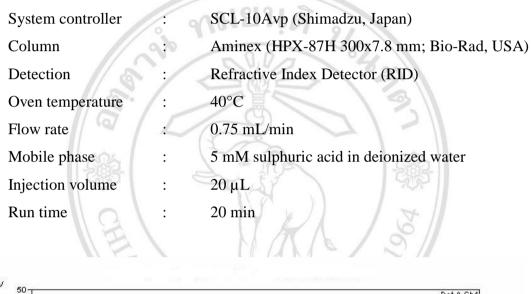
Dissolved all components of basal medium supplemented with crude glycerol, adjusted to a final volume of 1,000 mL with distilled water and adjusted pH to 6.0 with  $H_3PO_4$  or 1.0 N KOH and then, autoclaved at 121°C for 15 min.

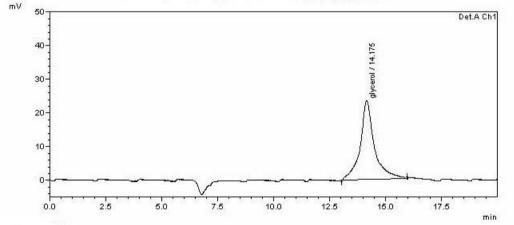
#### A5: The optimized basal medium

| Yeast extract                                                          | 1.0  | g |
|------------------------------------------------------------------------|------|---|
| Demethanolized crude glycerol                                          | 55.0 | g |
| Potassium di-hydrogen phosphate (KH <sub>2</sub> PO <sub>4</sub> )     | 5.5  | g |
| Ammonium sulfate ((NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> )    | 5.3  | g |
| Di-potassium hydrogen phosphate (K <sub>2</sub> HPO <sub>4</sub> )     | 3.7  | g |
| Magnesium sulphate heptahydrate (MgSO <sub>4</sub> .7H <sub>2</sub> O) | 0.5  | g |
| Manganese sulphate monohydrate (MnSO <sub>4</sub> .H <sub>2</sub> O)   | 0.2  | g |
| Sodium chloride (NaCl)                                                 | 0.5  | g |

# The optimized basal medium preparation

Dissolved component of basal medium supplemented with demethanolized crude glycerol, adjusted to a final volume of 1,000 mL with distilled water and adjusted pH to 5.63 with  $H_3PO_4$  or 1.0 N KOH and then, autoclaved at 121°C for 15 min.





Copyright<sup>©</sup> by Chiang Mai University All rights reserved

#### **APPENDIX B**

# Crude glycerol analysis

B1: Glycerol concentration analysis by HPLC (Kusdiyantini et al., 1998)





**Figure B1** Chromatogram of glycerol analyzed by HPLC. The retention time of glycerol was 14.175 min

**B2:** Determination of lipids content in crude glycerol (Official Methods of Analysis of AOAC International, 2002)

Ten grams of crude glycerol were dissolved in *n*-hexane. The *n*-hexane extract was collected to determine of lipids content by slowly evaporated on water bath at  $70-80^{\circ}$ C for 60 min and transferred to desiccators until constant weight.

**B3:** Determination of ash content in crude glycerol (Official Methods of Analysis of AOAC International, 2002)

Ten grams of crude glycerol was used for the analysis of ash content in a crucible. Placed on hot plate with low heat until tested sample was black and dry and there was no danger of loss by foaming. Then, the tested sample was subjected in a furnace at 600°C to constant weight or overnight. The ash content was calculated as the formula as followed;

Ash content (%) =  $\frac{\text{Weight of ash (g) x 100}}{\text{Weight of sample (g)}}$ 

**B4:** Determination of moisture content (Official Methods of Analysis of AOAC International, 2002)

Moisture content usually is determined by the loss in weight that occurs in sample upon drying to a constant weight in an oven. The official methods involve drying a representative sample in a vacuum oven at 95–100°C of for 2 h. Ten grams of crude glycerol was used for the analysis of moisture content in a moisture can and heated at 100°C for 2 h and transferred to desiccators until constant weight. The moisture content was calculated as the formula as followed;

Moisture content (%) = 
$$(A-B) \times 100$$

A = Weight of can and sample before drying in an oven (g)

B = Weight of can and sample after drying in an oven (g)

C = Weight of sample (g)

B5: Determination of methanol content in crude glycerol (Thompson and He, 2006)

กมยนต

Weighed ten grams of crude glycerol in moisture can heated at 85°C for 1 h to remove methanol. The methanol content in the glycerol layer was calculated as the formula as followed;

C

Methanol content (%) =  $(A-B) \times 100$ 

A = Weight of can and sample before heated (g)

B = Weight of can and sample after heated (g)

C = Weight of sample (g)

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright<sup>©</sup> by Chiang Mai University All rights reserved

MAI UNI

# **APPENDIX C**

#### **Carotenoids analysis**

C1: Carotenoids extraction (Manowattana et al., 2012)

- 1. Ten milliliters of culture broth was taken from each flask or bioreactor and then was centrifuged at 6,000 rpm (4,146 g) at 4 °C for 10 min (Hettich MIKRO 22R; Germany).
- 2. The clear supernatant was subjected to high-performance liquid chromatography (HPLC) analysis for glycerol concentration determination.
- 3. The cell pellet was washed twice with *n*-hexane (LabScan, Thailand) and once with distilled water.
- 4. After washing, the cell pellet was stored in -20°C for 24–48 h.
- 5. The carotenoids content of cell pellet was extracted by a method which broke the yeast cell carried out in screw cap tube (25x150 mm), containing 10.0 mL acetone (Merck, Germany) and 4.0 g of glass beads (size 3 mm).
- 6. The mixture was vigorously shaken in a vortex mixer for 15 min in the presence of 100 ppm ascorbic acid.
- The broken cell was centrifuged at 6,000 rpm at 4°C for 10 min and the clear supernatant was collected and dried by flushing it with N<sub>2</sub>, then re-dissolved in 1.0 mL *n*-hexane.
- 8. The *n*-hexane phase was filtered through a nylon membrane filter (0.2  $\mu$ m) and subjected to HPLC analysis.

C2: Quantitative analysis of carotenoids by HPLC (Wang et al., 2007)

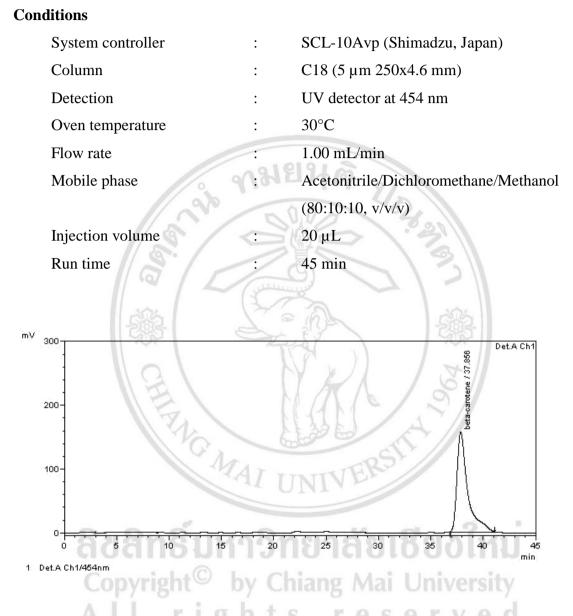



Figure C1 Chromatogram of  $\beta$ -carotene analyzed by HPLC. The retention time was 37.856 min.

A standard curve of  $\beta$ -carotene concentration was determined. Integration of the area below the absorbance peak of  $\beta$ -carotene at the concentrations varied between 0–100 mg/L, resulted in the standard curve shown in Figure C2.




Figure C2 The  $\beta$ -carotene concentration standard curve

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright<sup>©</sup> by Chiang Mai University All rights reserved

#### **APPENDIX D**

#### Fatty acid methyl ester analysis

#### D1: Lipids extraction (Bligh and Dyer, 1959)

- 1. Twenty milliliters of culture broth was taken from each flask or bioreactor and then was centrifuged at 6,000 rpm at 4°C for 10 min.
- 2. The clear supernatant was subjected to HPLC analysis for glycerol concentration determination.
- 3. The cell pellet was washed twice with *n*-hexane and once with distilled water.
- 4. After washing, the cell pellet was stored in -20°C for 24–48 h.
- 5. The extracted lipids from the yeast biomass was extracted by a method which broke the yeast cell carried out in screw cap tube (25x150 mm), using a mixture of chloroform : methanol (2:1, v/v) and 4.0 g glass beads (size 3 mm).
- 6. The mixture was vigorously shaken in a vortex mixer for 30 min and sonicated at 70 Hz for 30 min.
- 7. The ruptured cells and crude extracted lipids were centrifuged at 6,000 rpm (4,146 g) at 4°C for 10 min, after that the clear supernatant was collected, and the organic solvent was removed by evaporation under vacuum of 300 mm bar.
- 8. The volumetric productivity of lipids was expressed as g/L of the culture broth.

# **D2:** Fatty acid methyl esters (FAME) (Chaiyaso et al., 2012).

- 1. After evaporation of excess solvent, 10 mg of acylglycerol was methanolized with 0.5% KOH in methanol (500  $\mu$ L) and then incubated for 15–20 min at 60°C.
- 2. The FAME was extracted with *n*-hexane (400  $\mu$ L) for 1 min.
- 3. The hexane phase was washed with 200  $\mu$ L DI-water and dried over sodium sulfate anhydrous.

**D3:** Gas chromatography with a flame ionization detector (GC-FID)

Conditions EN14103:2011 method (McCurry, 2011)

| System controller    | :     | GC-2010; Shimadzu, Japan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Column               | :     | HP-INNOWAX column                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                      |       | (30 m $\times$ 0.25mm, 0.25 $\mu m$ film thickness)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Detection            | :     | flame ionization detector (FID)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Inlet temperature    | :     | 250°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Detector temperature | ://   | 250°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Oven temperature     | . 9   | 60°C (for 2 min), 10°C/min to 200°C and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                      | Vo    | 5°C/min to 240°C (for 7 min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Flow rate            | / -   | 1.0 mL/min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Carrier gas          | :     | Helium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Injection volume     | 1     | lμL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Split ratio          | IN ST | 100:1<br>100:1<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>So |
| ລີບສີກຣີ່            | มห    | <b>าวิทยาลัยเชียงใหม่</b><br>y Chiang Mai University<br>าts reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

D4: Gas chromatography with a mass spectroscopy (GC-MS)

Conditions (McCurry, 2011)

| System controller    | :      | GC 7890A: MSD 5975C (EI): Agilent; USA                                           |
|----------------------|--------|----------------------------------------------------------------------------------|
| Column               | :      | DB5-MS column                                                                    |
|                      |        | $(30 \text{ m} \times 0.25 \text{ mm}, 0.25 \mu\text{m} \text{ film thickness})$ |
| Detection            | :      | mass spectroscopy (MS)                                                           |
| Inlet temperature    | :      | 250°C                                                                            |
| Detector temperature | 1      | 250°C                                                                            |
| Oven temperature     | 0. 9   | 60°C (for 2 min), 10°C/min to 200°C and                                          |
|                      | 20     | 5°C/min to 240°C (for 7 min)                                                     |
| Flow rate            | 1      | 1.0 mL/min                                                                       |
| Carrier gas          | :      | Helium                                                                           |
| Injection volume     | $\sim$ | 1 µL                                                                             |
| Split ratio          | :      | 100:1                                                                            |
| Scan parameter       | :      | 50–500 amu                                                                       |
| MS quadrupole        | :      | 150°C                                                                            |
| MS source            | :      | 230°C                                                                            |

The GC-MS analysis was done by the Science and Technology Service Center, Chiang Mai University (STSC-CMU), Thailand.

**ลิขสิทธิ์มหาวิทยาลัยเชียงใหม**่ Copyright<sup>©</sup> by Chiang Mai University All rights reserved

# **APPENDIX E**

# Nucleotide sequence of 26S rRNA gene of Sporidiobolus pararoseus **KM281507**

Accession number: KM281507

**Identify:** Sporidiobolus pararoseus กมยนดิ

26S rRNA sequence (501 bp):

CGNCGTCCGAGTTGTAATCTCGAGAAGTGTTTTCCGTGATAGACCGCATACAAGTCT CTTGGAACAGAGCGTCATAGTGGTGAGAACCCAGTACACGATGCGGATGCCTATTA CTTTGTGATACACTTTCGAAGAGTCGAGTTGTTTGGGAATGCAGCTCAAATTGGGTG GTAAATTCCATCTAAAGCTAAATATTGGCGAGAGACCGATAGCGAACAAGTACCGT GAGGGAAAGATGAAAAGCACTTTGGAAAGAGAGTTAACAGTACGTGAAATTGTTG GAAGGGAAACACATGCAGTGATACTTGCTATTCGGGGGCAACTCGATTGGCAGGCCC GCATCAGTTTTTCGGGGCGGAAAATCGTAGAGAGAGGTAGCAGTTTCGGCTGTGT TATAGCTCTTTACTGGATTCGCCCTGGGGGGACTGAGGAACGCAGCGTGCTTTTAGCA TGAGCTTCGGCTTATCCACGCTTAGGATGCGGGTTTATGGCTGTATATGACCCGTCT TGAAAACAC

BLAST result: Sporidiobolus pararoseus 26S ribosomal RNA gene, partial sequence Sequence ID: AF070437.1 **Length:** 601 **Score** = 942 bits (510), Expect = 0.0**Identities** = 514/516 (99%), Gaps = 1/516 (0%), Strand = Plus/Plus

| Query | 1   | CGNCGTCCGAGTTGTAATCTCGAGAAGTGTTTTCCGTGATAGACCGCATACAAGTCTCTT  | 60  |
|-------|-----|---------------------------------------------------------------|-----|
| Sbjct | 86  |                                                               | 145 |
| Query | 61  | GGAACAGAGCGTCATAGTGGTGAGAACCCAGTACACGATGCGGATGCCTATTACTTTGTG  | 120 |
| Sbjct | 146 | GGAACAGAGCGTCATAGTGGTGAGAACCCAGTACACGATGCGGATGCCTATTACTTTGTG  | 205 |
| Query | 121 | ATACACTTTCGAAGAGTCGAGTTGTTTGGGAATGCAGCTCAAATTGGGTGGTAAATTCCA  | 180 |
| Sbjct | 206 | ATACACTTTCGAAGAGTCGAGTTGTTTGGGAATGCAGCTCAAATTGGGTGGTAAATTCCA  | 265 |
| Query | 181 | TCTAAAGCTAAATATTGGCGAGAGACCGATAGCGAACAAGTACCGTGAGGGAAAGATGAA  | 240 |
| Sbjct | 266 | TCTAAAGCTAAATATTGGCGAGAGACCGATAGCGAACAAGTACCGTGAGGGAAAGATGAA  | 325 |
| Query | 241 | AAGCACTTTGGAAAGAGAGTTAACAGTACGTGAAATTGTTGGAAGGGAAACACATGCAGT  | 300 |
| Sbjct | 326 | AAGCACTTTGGAAAGAGAGTTAACAGTACGTGAAATTGTTGGAAGGGAAACACATGCAGT  | 385 |
| Query | 301 | GATACTTGCTATTCGGGGCAACTCGATTGGCAGGCCCGCATCAGTTTTTCGGGGCGGAAA  | 360 |
| Sbjct | 386 | GATACTTGCTATTCGGGGCAACTCGATTGGCAGGCCCGCATCAGTTTTTCGGGGCCGGAAA | 445 |
| Query | 361 | ATCGTAGAGAGAAGGTAGCAGTTTCGGCTGTGTTATAGCTCTTTACTGGATTCGCCCTGG  | 420 |
| Sbjct | 446 | ATCGTAGAGAAAGGTAGCAGTTTCGGCTGTGTTATAGCTCTTTACTGGATTCGCCCTGG   | 505 |
| Query | 421 | GGGACTGAGGAACGCAGCGTGCTTTTAGCATGAGCTTCGGCTTATCCACGCTTAGGATGC  | 480 |
| Sbjct | 506 | GGGACTGAGGAACGCAGCGTGCTTTTAGCATGAGCTTCGGCTTATCCACGCTTAGGATGC  | 565 |
| Query | 481 | GGGTTTATGGCTGTATATGACCCGTCTTGAAAACAC 516                      |     |
| Sbjct | 566 | GGGTTTATGGCTGTATATGACCCGTCTTGAAA-CAC 600                      |     |

# **CIRRICULUM VITAE**

| Author's Name                             | Miss Atchara Manowattana                                                                                                                                                                                                       |  |  |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Date of Birth                             | 19 April 1987                                                                                                                                                                                                                  |  |  |
| Place of Birth                            | Songkla, Thailand                                                                                                                                                                                                              |  |  |
| Education                                 | <b>2004</b> High school from Watraikhing Wittaya School, Nakronpathom, Thailand                                                                                                                                                |  |  |
|                                           | 2008 B.Sc. (Biology), Department of Biology, Faculty of<br>Science and Technology, Rajamangala University of<br>Technology Thanyaburi, Pathumthani, Thailand                                                                   |  |  |
|                                           | 2012 M.S. (Biotechnology), Master of Science Program in<br>Biotechnology, Graduate School, Chiang Mai University,<br>Chiang Mai, Thailand                                                                                      |  |  |
| Scholarship                               | Graduate School, Chiang Mai University, Chiang Mai, Thailand<br>Energy Policy and Planning Office (EPPO), Ministry of Energy,<br>Thailand                                                                                      |  |  |
| Publications<br>A d A l<br>Copyr<br>A l l | [1] Manowattana, A., Techapun, C., Seesuriyachan, P. and<br>Chaiyaso, T. 2011. Carotenoids production from red yeasts using<br>waste glycerol as a sole carbon source. Thai Journal of<br>Agricultural Science. 44(5): 95-100. |  |  |
|                                           | [2] Manowattana, A., Seesuriyachan, P., Techapun, C. and Chaiyaso, T. 2012. Optimization of carotenoids production by red yeast <i>Sporobolomyces pararoseus</i> TISTR5213 using waste                                         |  |  |

607-621.

glycerol as a sole carbon source. KKU Research Journal. 17(4):

[3] Manowattana, A., Techapun, C., Seesuriyachan, P., Hanmoungjai, P. and Chaiyaso, T. 2015.  $\beta$ -Carotene production by *Sporobolomyces pararoseus* TISTR5213 using crude glycerol as the sole carbon source. Chiang Mai Journal of Science. 42(1): 17-33.

[4] Manowattana, A. and Chaiyaso, T. 2015. Improvement of carotenoid and lipid production by a mutant strain of *Sporidiobolus pararoseus*. IFABL2015. Sapporo, Japan. pp. 236-246. (Proceeding)

Presentations [1] Manowattana, A., Techapun, C., Seesuriyachan, P. and Chaiyaso, T. 2010. Carotenoids production from red yeasts using waste glycerol as a sole carbon source. The International Conference on Agriculture and Agro-Industry 2010: Food, Health and Trade (ICAAI2010). November 19<sup>th</sup>-20<sup>th</sup>, 2010. Mea Fah Luang University, Chiang Rai, Thailand. [*Poster Presentation*].

> [2] Manowattana, A., Seesuriyachan, P., Techapun, C. and Chaiyaso, T. 2011. Optimization of carotenoids production by red yeast *Sporobolomyces pararoseus* TISTR5213 using waste glycerol as a sole carbon source. The 4<sup>th</sup> International Conference on Fermentation Technology for Value Added Agriculture Products (FerVAAP2011). August 29<sup>th</sup>-31<sup>st</sup>, 2011. Kosa Hotel, KhonKaen, Thailand. [*Oral Presentation*].

[3] Manowattana, A., Seesuriyachan, P., Techapun, C. and Chaiyaso, T. 2012.  $\beta$ -Carotene production by red yeast *Sporobolomyces pararoseus* TISTR5213 using waste glycerol as a sole carbon source. International Conference on Food and Applied Bioscience. February 6<sup>th</sup>-7<sup>th</sup>, 2012. Kantary Hills Hotel, Chaing Mai, Thailand. [*Poster Presentation*]. [4] Manowattana, A., Seesuriyachan, P., Hanmoungjai, P., Techapun, C., and Chaiyaso, T. 2013. The Production of Biofuels and High Value Chemicals from Agricultural and Agro-Industrial Waste Materials Using Complete Zero Waste Process: Value Adding to Waste Glycerol in the Carotenoids Production by *Sporobolomyces pararoseus* TISTR 5213. The Second Thailand National Research Universities Summit: NRU SUMMIT II. May 7<sup>th</sup>-8<sup>th</sup>, 2013. Queen Sirikit National Convention Center, Bangkok, Thailand. [*Poster Presentation*].

**[5] Manowattana, A.** and Chaiyaso, T. 2014. Microbial Conversion of Biodiesel-Derived Crude Glycerol into Carotenoids by *Sporobolomyces pararoceus* TISTR5213. The 1<sup>st</sup> ASEAN Microbial Biotechnology Conference (AMBC2014). February 19<sup>th</sup>-21<sup>st</sup>, 2014. The Bangkok International Trade & Exhibition Centre (BITEC), Bangkok, Thailand. [*Oral Presentation*].

[6] Manowattana, A. and Chaiyaso, T. 2015. Improvement of carotenoid and lipid production by a mutant strain of *Sporidiobolus pararoseus*. International Forum-Agriculture, Biology and Life Science (IFABL2015). June 23<sup>th</sup>-25<sup>th</sup>, 2015. Renaissance Sapporo Hotel, Sapporo, Japan. [*Oral Presentation*].

[7] Manowattana, A., Techapun, C., Watanabe, M. and Chaiyaso, T. 2015. Application of airlift bioreactor for the enhancement of carotenoids production by *Sporidiobolus pararoseus* using crude glycerol as a carbon source. The 6<sup>th</sup> International Conference on Fermentation Technology for Value Added Agriculture Products (FerVAAP2015). July 29<sup>th</sup>-31<sup>st</sup>, 2015. Centara Hotel & Convention Centre Khon Kaen, KhonKaen, Thailand. [*Poster Presentation*].

[8] Manowattana, A. 2016. Enhancement of Lipids and Carotenoids Production by *Sporidiobolus pararoseus* Using Biodiesel-derived Crude Glycerol Operating in an Airlift Bioreactor. The 3<sup>rd</sup> Student Mobility Programme on Cultural exchange and related educational activities. 29<sup>th</sup> May-2<sup>nd</sup> June 2016. Faculty of Bioresources and Food Industry, Universiti Saultan Zainal Abidin, Terrangganu, Malaysia. [*Oral Presentation*].



Copyright<sup>©</sup> by Chiang Mai University All rights reserved