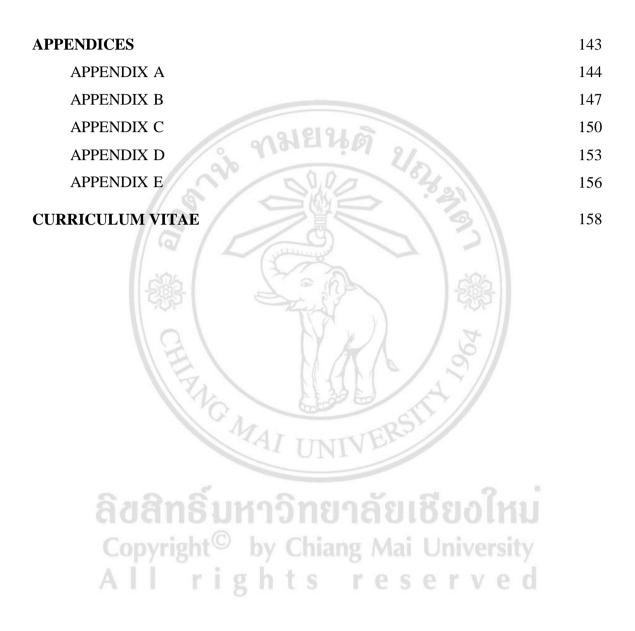
### CONTENTS

Page


| ACI  | KNOWLEDGEMENT                                                              | iii   |
|------|----------------------------------------------------------------------------|-------|
| ABS  | STRACT IN THAI                                                             | iv    |
| ABS  | STRACT IN ENGLISH                                                          | vii   |
| COI  | NTENTS                                                                     | х     |
| LIS  | NTENTS<br>T OF TABLES                                                      | XV    |
| LIS  | T OF FIGURES                                                               | xviii |
| ABI  | BREVIATIONS AND SYMBOLS                                                    | xxi   |
| STA  | TEMENTS OF ORIGINALITY IN THAI                                             | xxiv  |
| STA  | TEMENTS OF ORIGINALITY IN ENGLISH                                          | XXV   |
| CH   | APTER 1                                                                    | 1     |
| Intr | oduction                                                                   |       |
| 1.1  | Statement and significant of the study                                     | 1     |
| 1.2  | Objectives                                                                 | 3     |
| CH   | <sup>APTER2</sup> ขสิทธิ์มหาวิทยาลัยเชียงใหม่                              | 4     |
| Lite | rature review                                                              |       |
| 2.1  | Biodiesel production                                                       | 4     |
| 2.2  | Crude glycerol from biodiesel production                                   | 6     |
| 2.3  | Bioconversion of crude glycerol into high value products by oleaginous red | 9     |
|      | yeast                                                                      |       |
| 2.4  | Lipids production                                                          | 10    |
|      | 2.4.1 Lipids accumulation and fatty acid synthesis in oleaginous red yeast | 10    |
|      | 2.4.2 Lipids compositions in oleaginous red yeast                          | 12    |
|      |                                                                            |       |

| 2.5 Carotenoids production |          | enoids production                                                      | 16 |
|----------------------------|----------|------------------------------------------------------------------------|----|
|                            | 2.5.1    | Carotenoids biosynthesis in oleaginous red yeast                       | 19 |
|                            | 2.5.2    | Carotenoids compositions in oleaginous red yeast                       | 21 |
| 2.6                        | Optin    | nization of carotenoids and lipids productions by oleaginous red yeast | 22 |
|                            | 2.6.1    | Optimization of medium composition and cultural conditions in          | 23 |
|                            |          | shaking flask level                                                    |    |
|                            | 2.6.2    | Scale up of carotenoids production in bioreactor                       | 27 |
| CHA                        | APTEF    |                                                                        | 30 |
| Scre                       | ening    | of oleaginous red yeast producing lipids and carotenoids               |    |
| and                        | its opti | imization production by using crude glycerol as carbon source          |    |
| 3.1 I                      | ntrodu   | ction                                                                  | 30 |
| 3.2 Materials and methods  |          | 33                                                                     |    |
|                            | 3.2.1    | Microorganisms                                                         | 33 |
|                            | 3.2.2    | Inoculum preparation                                                   | 33 |
|                            | 3.2.3    | Raw materials                                                          | 33 |
|                            | 3.2.4    | Screening of carotenoids and lipids producing oleaginous red yeasts    | 34 |
|                            | 3.2.5    | Effect of impurity in crude glycerol                                   | 34 |
|                            | 3.2.6    | Screening of factors affecting on carotenoids and lipids productions   | 35 |
|                            | 3.2.7    | Optimization of significant variables using response surface           | 36 |
|                            | /        | methodology (RSM)                                                      |    |
|                            | 3.2.8    | Analytical methods                                                     | 38 |
| 3.3 F                      | Results  | and discussion                                                         | 40 |
|                            | 3.3.1    | Screening of carotenoids and lipids producing oleaginous red yeasts    | 40 |
|                            | 3.3.2    | Effect of methanol in crude glycerol on lipids and carotenoids         | 42 |
|                            |          | productions from Spolobomyces pararoseus TISTR5213                     |    |
|                            | 3.3.3    | Screening of significant variables using the Plackett-Burman design    | 44 |

| 3.3.4 Optimization of significant variables using response surface                | 52 |
|-----------------------------------------------------------------------------------|----|
| methodology (RSM)                                                                 |    |
| 3.3.5 Validation of CCD optimization model                                        | 73 |
| 3.4 Conclusions                                                                   | 76 |
| CHAPTER 4                                                                         | 77 |
| Effect of additive agent on carotenoids and lipids productions by                 |    |
| Sporidiobolus pararoseus KM281507                                                 |    |
| 4.1 Introduction                                                                  | 77 |
| 4.2 Material and methods                                                          | 79 |
| 4.2.1 Identification of oleaginous red yeast strain                               | 79 |
| 4.2.2 Microorganisms and medium                                                   | 80 |
| 4.2.3 Raw materials                                                               | 80 |
| 4.2.4 Effect of additive agents                                                   | 81 |
| 4.2.5 Analytical methods                                                          | 81 |
| 4.3 Results and discussion                                                        | 83 |
| 4.3.1 Identification of oleaginous red yeast strain                               | 83 |
| 4.3.2 Effect of additive agents                                                   | 85 |
| 4.3.3 Fatty acid composition                                                      | 89 |
| 4.4 Conclusions by Chiang Mai University                                          | 91 |
| CHAPTER 5                                                                         | 92 |
| Bioconversion of crude glycerol into lipids and carotenoids by                    |    |
| Sporidiobolus pararoseus KM281507 in an airlift bioreactor                        |    |
| 5.1 Introduction                                                                  | 92 |
| 5.2 Material and methods                                                          | 93 |
| 5.2.1 Microorganism and culture conditions                                        | 93 |
| 5.2.2 Bioconversion of crude glycerol in stirred tank and airlift bioreactors     | 94 |
| 5.2.3 Factors affecting on bioconversion of crude glycerol in airlift bioreactors | 94 |

| 5.2.4 Analytical methods                                                        | 95  |
|---------------------------------------------------------------------------------|-----|
| 5.3 Results and discussion                                                      | 96  |
| 5.3.1 Bioconversion of crude glycerol in stirred tank and airlift bioreactors   | 96  |
| 5.3.2 Effect of aeration rate on DCW, lipids, $\beta$ -carotene and carotenoids | 101 |
| productions of strain KM281507                                                  |     |
| 5.3.3 Effect of light irradiation and dissolved oxygen on DCW, lipids,          | 103 |
| $\beta$ -carotene and carotenoids productions of strain KM281507                |     |
| 5.3.4 Fatty acid profile of lipids from strain KM281507                         | 108 |
| 5.4 Conclusions                                                                 | 110 |
| CHAPTER 6                                                                       | 111 |
| Mutation of oleaginous red yeast Sporidiobolus pararoseus KM281507              |     |
| for carotenoids and lipids productions                                          |     |
| 6.1 Introduction                                                                | 111 |
| 6.2 Materials and Methods                                                       | 114 |
| 6.2.1 Microorganism and culture conditions                                      | 114 |
| 6.2.2 Mutagenesis                                                               | 114 |
| 6.2.3 Analytical methods                                                        | 115 |
| 6.2.3 Analytical methods<br>6.3 Results and discussion                          | 116 |
| 6.3.1 UV mutagenesis                                                            | 116 |
| 6.3.2 EMS mutagenesis                                                           | 119 |
| 6.3.3 5-Bromouracil mutagenesis                                                 | 121 |
| 6.3.4 Carotenoids and lipids productions by mutant strains                      | 124 |
| 6.4. Conclusions                                                                | 125 |
| CHAPTER 7                                                                       | 126 |
| Conclusions                                                                     |     |
| REFERENCES                                                                      | 129 |

#### Page



### LIST OF TABLES

| Table |                                                                                                                                                                                                                 | Page |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 2.1   | Bioconversion of crude glycerol to high value added products                                                                                                                                                    | 7    |
| 2.2   | Number of carbons, double bonds and structural formula of fatty acids                                                                                                                                           | 14   |
| 2.3   | Fatty acid composition of various types of microbial lipids                                                                                                                                                     | 15   |
| 2.4   | Structure and major commercial utility of carotenoids                                                                                                                                                           | 21   |
| 3.1   | Experiment variables at various levels used in the lipids and carotenoids productions by <i>Sporobolomyces pararoseus</i> TISTR5213 using the Plackett-Burman design                                            | 36   |
| 3.2   | Experimental codes, ranges and levels of independent variables in the response surface methodology experiment                                                                                                   | 38   |
| 3.3   | DCW, $\beta$ -carotene, total carotenoids and lipids productions yield of nine red yeasts cultivated in pure glycerol (BMP) and crude glycerol (BMC)                                                            | 41   |
| 3.4   | Twelve-trial Plackett-Burman design matrixes for eight variables and the predicted DCW                                                                                                                          | 44   |
| 3.5   | Estimated effects, linear regression coefficients and corresponding <i>F</i> -<br>ratio and <i>p</i> -values for the DCW for eight variables using the Plackett-<br>Burman experiment design                    | 45   |
| 3.6   | Twelve-trial Plackett-Burman design matrixes for eight variables and the predicted lipids production yields                                                                                                     | 46   |
| 3.7   | Estimated effects, linear regression coefficients and corresponding <i>F</i> -<br>ratio and <i>p</i> -values for the lipids production yield for eight variables<br>using the Plackett-Burman experiment design | 47   |
| 3.8   | Twelve-trial Plackett-Burman design matrixes for eight variables and<br>the predicted $\beta$ -carotene production yields                                                                                       | 48   |

# LIST OF TABLES (CONTINUED)

|                                                                                 | Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Estimated effects, linear regression coefficients and corresponding F-          | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ratio and <i>p</i> -values for the $\beta$ -carotene production yield for eight |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| variables using the Plackett-Burman experiment design                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Twelve-trial Plackett-Burman design matrixes for eight variables and            | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| the predicted total carotenoids production yields                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Estimated effects, linear regression coefficients and corresponding F-          | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ratio and <i>p</i> -values for the total carotenoids production yield for eight |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| variables using the Plackett-Burman experiment design                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| The CCD matrixes for the experiment design and predicted responses              | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| of DCW                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Analysis of variance (ANOVA) of the quadratic model for response                | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| variables. The probability values (p-values) of parameter and                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| egression of estimated coefficients of the second order polynomial              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| for response variables are shown for DCW                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| The CCD matrixes for the experiment design and predicted responses              | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| of lipids production yield                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Analysis of variance (ANOVA) of the quadratic model for response                | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| variables. The probability values (p-values) of parameter and                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| egression of estimated coefficients of the second order polynomial              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| for response variables are shown for lipids production                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| The CCD matrixes for the experiment design and predicted responses              | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| of $\beta$ -carotene production yield                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Analysis of variance (ANOVA) of the quadratic model for response                | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| variables. The probability values (p-values) of parameter and                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| egression of estimated coefficients of the second order polynomial              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| for response variables are shown for $\beta$ -carotene production               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                 | ratio and <i>p</i> -values for the β-carotene production yield for eight variables using the Plackett-Burman experiment design<br>Twelve-trial Plackett-Burman design matrixes for eight variables and the predicted total carotenoids production yields<br>Estimated effects, linear regression coefficients and corresponding <i>F</i> -ratio and <i>p</i> -values for the total carotenoids production yield for eight variables using the Plackett-Burman experiment design<br>The CCD matrixes for the experiment design and predicted responses of DCW<br>Analysis of variance (ANOVA) of the quadratic model for response variables. The probability values ( <i>p</i> -values) of parameter and egression of estimated coefficients of the second order polynomial for response variables are shown for DCW<br>The CCD matrixes for the experiment design and predicted responses of lipids production yield<br>Analysis of variance (ANOVA) of the quadratic model for response variables. The probability values ( <i>p</i> -values) of parameter and egression of estimated coefficients of the second order polynomial for response variables are shown for DCW<br>The CCD matrixes for the experiment design and predicted responses of lipids production yield<br>Analysis of variance (ANOVA) of the quadratic model for response variables. The probability values ( <i>p</i> -values) of parameter and egression of estimated coefficients of the second order polynomial for response variables are shown for lipids production<br>The CCD matrixes for the experiment design and predicted responses of β-carotene production yield<br>Analysis of variance (ANOVA) of the quadratic model for response of β-carotene production yield |

### LIST OF TABLES (CONTINUED)

Page

Table

#### 3.18 The CCD matrixes for the experiment design and predicted responses 67 of total carotenoids production yield 3.19 Analysis of variance (ANOVA) of the quadratic model for response 69 variables. The probability values (p-values) of parameter and egression of estimated coefficients of the second order polynomial for response variables are shown for total carotenoids production 4.1 Effect of various types of additive agents on DCW and lipids 90 lipids content and fatty acid composition of productions. Sporidiobolus pararoseus KM281507 5.1 parameters of batch fermentation of Sporidiobolus 100 Kinetic pararoseus KM281507 in a stirred tank and airlift bioreactors under uncontrolled and controlled pH regimes 5.2 parameters of batch fermentation of Sporidiobolus 105 Kinetic pararoseus KM281507 operated in airlift bioreactor with different light irradiation and dissolved oxygen levels 5.3 The fatty acid profiles of crude lipids from Sporidiobolus pararoseus 109 KM281507 under different batch fermentation conditions operating in airlift bioreactor by Chiang Mai University 6.1 Comparison of DCW, total carotenoids and total lipids produced by 124 the wild-type and mutant strains of Sporidiobolus pararoseus KM281507 using crude glycerol as the carbon source

### LIST OF FIGURES

| Figure |                                                                                                                          | Page |
|--------|--------------------------------------------------------------------------------------------------------------------------|------|
| 2.1    | Transesterification reaction for production of biodiesel                                                                 | 5    |
| 2.2    | Schematic flow chart for the productions and utilization of lipids and                                                   | 9    |
|        | carotenoids from crude glycerol by the effective oleaginous red yeast                                                    |      |
| 2.3    | Pathway of triacylglycerol synthesis in the oleaginous yeasts.                                                           | 11   |
|        | Enzyme: GK, glycerol kinase; PD, pyruvate dehydrogenase; Ac,                                                             |      |
|        | acotinase; ICDH, iso-citrate dehydrogenase; MD, malate                                                                   |      |
|        | dehydrogenase; ME, malic enzyme; ACL, ATP-citrate lyase; FAS,                                                            |      |
|        | fatty acid synthetase                                                                                                    |      |
| 2.4    | The orientation of astaxanthin and $\beta$ -carotene in phospholipid bilayer                                             | 17   |
| 2.5    | Biosynthesis of carotenoids from glycolysis pathway to carotenogenic                                                     | 20   |
|        | pathway by oleaginous red yeast                                                                                          |      |
| 3.1    | The effect of methanol on dry cell weight, $\beta$ -carotene, total                                                      | 42   |
| 5.1    |                                                                                                                          | 42   |
|        | carotenoids and lipids productions of <i>Sporobolomyces pararoseus</i><br>TISTR5213                                      |      |
| 3.2    | Dry cell weight in three-dimension for quadratic response surface                                                        | 56   |
| 5.2    | optimization. The comparison was made between demethanolized                                                             | 50   |
|        |                                                                                                                          |      |
|        | crude glycerol and pH, temperature and demethanolized crude                                                              |      |
| 3.3    | glycerol, temperature and pH<br>Lipids in three-dimension for quadratic response surface                                 | 60   |
| 5.5    | Lipids in three-dimension for quadratic response surface<br>optimization. The comparison was made between demethanolized | 00   |
|        | crude glycerol and pH, temperature and demethanolized crude                                                              |      |
|        | glycerol, temperature and pH                                                                                             |      |
| 3.4    | $\beta$ -carotene in three-dimension for quadratic response surface                                                      | 65   |
| 5.4    | optimization. The comparison was made between demethanolized                                                             | 05   |
|        |                                                                                                                          |      |
|        | crude glycerol and pH, temperature and demethanolized crude glycerol, temperature and pH                                 |      |
|        | gryceror, temperature and pri                                                                                            |      |

### LIST OF FIGURES (CONTINUED)

#### Figure

98

- 3.5 Total carotenoids in three-dimension for quadratic response surface 70 optimization. The comparison was made between demethanolized crude glycerol and pH, temperature and demethanolized crude glycerol, temperature and pH
- Time course of dry cell weight, residual glycerol, pH, lipids, β carotene and total carotenoids by *Sporobolomyces pararoseus* TISTR5213 under optimal conditions
- 4.1 Phylogenetic tree constructed using the 26S rRNA gene sequence of 84 Sporidiobolus pararoseus
- 4.2 Effect of formic acid, acetic acid, citric acid and succinic acid on dry 86 cell weight, lipids, β-carotene and total carotenoids of *Sporidiobolus pararoseus* KM281507 cultivated with demethanolized crude glycerol as a carbon source under optimal condition
- 4.3 Effect of Tween 20, Tween 40, Tween 60, Tween 80, oleic acid 88 (C18:1) and olive oil on dry cell weight, total lipids, β-carotene and total carotenoids of *Sporidiobolus pararoseus* KM281507 cultivated with demethanolized crude glycerol as a carbon source under optimal condition
- 5.1 Time course of dry cell weight, pH, residual glycerol, lipids,  $\beta$ carotene and total carotenoids of *Sporidiobolus pararoseus* KM281507 in an stirred-tank bioreactor with an uncontrolled pH regime, with a controlled pH regime of 5.63 and airlift bioreactor with an uncontrolled pH regime and with a controlled pH regime of 5.63
- 5.2 Effect of aeration rate at 2 vvm, 4 vvm and 6 vvm on the production of 102 dry cell weight, residual glycerol, lipids, β-carotene and total carotenoids of *Sporidiobolus pararoseus* KM281507 in airlift bioreactor

# LIST OF FIGURES (CONTINUED)

# Figure

| 5.3 | Effect of irradiation and dissolved oxygen (DO) on dry cell weight,      | 106 |
|-----|--------------------------------------------------------------------------|-----|
|     | lipids, $\beta$ -carotene and total carotenoids on batch fermentation of |     |
|     | Sporidiobolus pararoseus KM281507, when cultured under natural           |     |
|     | light, dark, light 1,000 Lux, light 10,000 Lux, pure oxygen and light    |     |
|     | 10,000 Lux plus pure oxygen                                              |     |
| 6.1 | Effect of UV irradiation time on the survival of Sporidiobolus           | 117 |
|     | pararoseus KM281507                                                      |     |
| 6.2 | Effect of different carbon sources on total carotenoids and dry cell     | 118 |
|     | weight produced by the wild-type and UV-induced mutant strains of        |     |
|     | Sporidiobolus pararoseus KM281507                                        |     |
| 6.3 | Effect of EMS concentration and incubation time on the survival of       | 119 |
|     | Sporidiobolus pararoseus KM281507                                        |     |
| 6.4 | Effect of different carbon sources on total carotenoids and dry cell     | 120 |
|     | weight produced by the wild-type and EMS-induced mutant strains of       |     |
|     | Sporidiobolus pararoseus KM281507                                        |     |
| 6.5 | Effect of time and 5BU concentration on the survival of Sporidiobolus    | 121 |
|     | pararoseus KM281507                                                      |     |
| 6.6 | Effect of carbon source on total carotenoids and dry cell weight         | 123 |
|     | produced by the wild-type and 5BU-induced mutant strains of              |     |
|     | Sporidiobolus pararoseus KM281507                                        |     |
| B1  | Chromatogram of glycerol analyzed by HPLC                                | 147 |
| C1  | Chromatogram of $\beta$ -carotene analyzed by HPLC                       | 151 |
| C2  | The $\beta$ -carotene concentration standard curve                       | 152 |

### ABBREVIATIONS AND SYMBOLS

| g                  | gram                                              |
|--------------------|---------------------------------------------------|
| L                  | liter                                             |
| mg                 | milligram                                         |
| mL                 | milliliter                                        |
| μg                 | microgram                                         |
| μm                 | micrometer                                        |
| μL                 | microgram<br>micrometer<br>microliter<br>molarity |
| М                  | molarity                                          |
| mM //G             | millimolar                                        |
| mm                 | millimeter                                        |
| m 😵                | meter                                             |
| Hz                 | hertz                                             |
| Lux                | luminous intensity                                |
| etc.               | et cetera                                         |
| С                  | carbon                                            |
| h                  | hour                                              |
| min                | minute                                            |
| rpm                | round per minute                                  |
| <sub>рн</sub> ада1 | power of hydrogen                                 |
| vvm Copyr          | volume air per volume medium per minute           |
| ppm                | parts per million                                 |
| amu                | atomic mass unit                                  |
| FAME               | fatty acid methyl ester                           |
| DO                 | dissolved oxygen                                  |
| BMP                | basal medium supplemented with pure glycerol      |
| BMC                | basal medium supplemented with crude glycerol     |
| DCW                | dry cell weight                                   |
| CCD                | central composite design                          |

| RSM               | response surface methodology                             |
|-------------------|----------------------------------------------------------|
| TLC               | thin layer chromatography                                |
| HPLC              | high performance liquid chromatography                   |
| GC                | gas chromatography                                       |
| GC-MS             | gas chromatography-mass spectrometry                     |
| GC-FID            | gas chromatography-flame ionization detector             |
| EI                | electro ionization                                       |
| TISTR             | Thailand Institute Scientific and Technological Research |
| AOAC              | Association of Official Analytical Chemist               |
| ANOVA             | analysis of variance                                     |
| OD <sub>600</sub> | optical density at 600 nm                                |
| CO <sub>2</sub>   | carbon dioxide                                           |
| O <sub>2</sub>    | oxygen                                                   |
| <i>g</i>          | g force                                                  |
| <i>p</i> -value   | probability value                                        |
| F                 | Fisher's                                                 |
| Y                 | response value                                           |
| k                 | number of input factors                                  |
| $R^2$             | coefficient of determination                             |
| e.g.              | example gratia                                           |
| °C                | degree Celsius                                           |
| % <b>a</b> dai    | percent                                                  |
| / Convr           | ight <sup>©</sup> by Chiang Mai University               |
| ± ^               | deviation                                                |
| $\alpha$          | <sub>alpha</sub> ights reserved                          |
| γ                 | gamma                                                    |
| β                 | beta                                                     |
| v/v               | volume by volume                                         |
| w/v               | weight by volume                                         |
| w/w               | weight by weight                                         |
| <                 | less than                                                |

| X <sub>max</sub> | Maximum dry cell weight (g/L)                               |
|------------------|-------------------------------------------------------------|
| μ                | Specific growth rate (h <sup>-1</sup> )                     |
| $\mu_{max}$      | Maximum specific growth rate (h <sup>-1</sup> )             |
| Y <sub>x/s</sub> | Biomass yield (g/g)                                         |
| Qs               | Glycerol consumption rate (g/L/d)                           |
| C <sub>max</sub> | Maximum volumetric productivity of total carotenoids (mg/L) |
| Y <sub>C/S</sub> | Total carotenoids yield (mg/g glycerol)                     |
| Y <sub>C/X</sub> | Specific total carotenoids production yield (mg/g DCW)      |
| Qc               | Total carotenoids productivity (mg/L/d)                     |
| $\beta_{max}$    | Maximum volumetric productivity of $\beta$ -carotene (mg/L) |
| Y <sub>β/S</sub> | β-carotene yield (mg/g glycerol)                            |
| Y <sub>β/X</sub> | Specific β-carotene yield (mg/g DCW)                        |
| Qβ               | $\beta$ -carotene productivity (mg/L/d)                     |
| L <sub>max</sub> | Maximum volumetric productivity of lipids (g/L)             |
| Y <sub>L/S</sub> | Lipids yield (g/g glycerol)                                 |
| Y <sub>L/X</sub> | Specific lipids yield (g/g DCW)                             |
| QL               | Lipids productivity (g/L/d)                                 |
|                  | TAI UNIVERSIT                                               |
|                  | Chine BSI'                                                  |
|                  | UNIVER UNIVER                                               |

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright<sup>©</sup> by Chiang Mai University All rights reserved

# ข้อความแห่งการริเริ่ม

- วิทยานิพนธ์นี้ได้เสนอวิธีการเพิ่มประสิทธิภาพในการผลิตลิพิดเพื่อใช้เป็นสารตั้งต้นในการ ผลิตไบโอดีเซลและการผลิตแคโรทีนอยด์เพื่อใช้เป็นแหล่งวิตามินและสารสีตามธรรมชาติ จากยีสต์โอลิจีนัสสีแดง Sporidiobolus pararoseus KM281507 โดยใช้กลีเซอรอลดิบที่ ได้จากการผลิตไบโอดีเซลเป็นแหล่งการ์บอน
- เพื่อการเพิ่มประสิทธิภาพของกระบวนการผลิตลิพิดและแคโรทีนอยด์จากยีสต์โอลิจีนัสสี แดงสายพันธุ์ KM281507 ได้ทำการศึกษาหาสภาวะที่เหมาะสม สารเติมแต่ง ปัจจัยทาง กายภาพในถังปฏิกรณ์ชีวภาพ และการใช้สารก่อกลายพันธ์ ซึ่งรายละเอียดต่าง ๆ เหล่านี้ได้ นำเสนอไว้ในวิทยานิพนธ์ฉบับนี้



ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright<sup>©</sup> by Chiang Mai University All rights reserved

### STATEMENTS OF ORIGINALITY

- This thesis proposes a method for increasing the efficiency of lipids production for biodiesel feedstock and carotenoids for use as a natural source of vitamins and pigments from an oleaginous red yeast *Sporidiobolus pararoseus* KM281507, by using crude glycerol as a carbon source.
- 2) In order to improve the efficiency of the whole process of lipids and carotenoids productions by the oleaginous red yeast strain KM281507, we studied the optimization of an additive agent and environmental factors in the bioreactor, and the use of a mutagenic agent, details of which are presented in this thesis.



ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright<sup>©</sup> by Chiang Mai University All rights reserved