APPENDIX A

Spectroscopic Data of Isolated Compounds from D. yunnanense

Figure A2 IR Spectrum of Obtusipetadione (DY1)

Figure A6 HMQC Spectrum of Obtusipetadione (DY1) in CDCl₃

Figure A8 HRESIMS Spectrum of Obtusipetadione (DY1)

Figure A10 IR Spectrum of (–)-Sinactine (DY2)

Figure A12 ¹³C NMR, DEPT135 and DEPT90 Spectra (CDCl₃, 100 MHz) of (–)-Sinactine (**DY2**)

Figure A14 HMQC Spectrum of (-)-Sinactine (DY2) in CDCl₃

Figure A16 UV Spectrum of (–)-Epicatechin (DY3)

Figure A18 ¹H NMR Spectrum (acetone-*d*₆, 400 MHz) of (–)-Epicatechin (DY3)

Figure A20 COSY Spectrum of (-)-Epicatechin (DY3) in acetone-d₆

Figure A22 HMBC Spectrum of (-)-Epicatechin (DY3) in acetone-d₆

Figure A24 IR Spectrum of 3'-O-Methyl-(–)-epicatechin (DY4)

Figure A25 ¹H NMR Spectrum (acetone-d₆, 400 MHz) of 3'-O-Methyl-(-)-epicatechin

Figure A26 UV Spectrum of Goniopedaline (DY5)

Figure A28 ¹H NMR Spectrum (DMSO-d₆, 400 MHz) of Goniopedaline (DY5)

Figure A30 COSY Spectrum of Goniopedaline (DY5) in CDCl3

Figure A32 HMBC Spectrum of Goniopedaline (DY5) in CDCl₃

Figure A34 IR Spectrum of Aristolactam BII (DY6)

Figure A35 ¹H NMR Spectrum (DMSO-d₆, 400 MHz) of Aristolactam BII (DY6)

Figure A36 UV Spectrum of Piperolactam A (DY7)

Figure 38 ¹H NMR Spectrum (DMSO-*d*₆, 400 MHz) of Piperolactam A (DY7)

Figure A40 IR Spectrum of Aristolactam AII (DY8)

Figure A42 UV Spectrum of 10-Amino-3,6-dihydroxy-2,4-dimethoxyphenanthrene-1carboxylic acid lactam (DY9)

Figure A43 IR Spectrum of 10-Amino-3,6-dihydroxy-2,4-dimethoxyphenanthrene-1-

Figure A44 ¹H NMR Spectrum (DMSO-*d*₆, 400 MHz) of 10-Amino-3,6-dihydroxy-2,4dimethoxyphenanthrene-1-carboxylic acid lactam (**DY9**)

Figure A45 UV Spectrum of 3,5-Dihydroxy-2,4-dimethoxyaristolactam (DY10)

Figure A46 IR Spectrum of 3,5-Dihydroxy-2,4-dimethoxyaristolactam (DY10)

3,5-Dihydroxy-2,4-dimethoxyaristolactam (DY10)

Figure A49 COSY Spectrum of 3,5-Dihydroxy-2,4-dimethoxyaristolactam (DY10)

Figure A50 HMQC Spectrum of 3,5-Dihydroxy-2,4-dimethoxyaristolactam (DY10) in Acetone-*d*₆

Figure A52 UV Spectrum of Piperolactam C (DY11)

Figure A54 ¹H NMR Spectrum (DMSO-d₆, 400 MHz) of Piperolactam C (DY11)

Figure A56 IR Spectrum of (+)-Crotepoxide (DY12)

Figure A58 ¹³C NMR, DEPT135 and DEPT90 Spectra (CDCl₃, 100 MHz) of (+)-Crotepoxide (DY12)

Figure A60 HMQC Spectrum of (+)-Crotepoxide (DY12) in CDCl₃

Figure A61 HMBC Spectrum of (+)-Crotepoxide (DY12) in CDCl₃

Figure A62 UV Spectrum of Corydaldine (DY13)

Figure A64 ¹H NMR Spectrum (CDCl₃, 400 MHz) of Corydaldine (DY13)

Figure A66 COSY Spectrum of Corydaldine (DY13) in CDCl₃

Figure A68 UV Spectrum of *trans*-5,6-Diacetoxy-1-(benzoyloxymethyl)-1,3-cyclohexadiene (DY14)

Figure A70 ¹H NMR Spectrum (CDCl₃, 400 MHz) of *trans*-5,6-Diacetoxy-1-(benzoyloxymethyl)-1,3-cyclohexadiene (**DY14**)

Figure A72 COSY Spectrum of *trans*-5,6-Diacetoxy-1-(benzoyloxymethyl)-1,3-cyclohexadiene (**DY14**) in CDCl₃

Figure A73 HMBC Spectrum of *trans*-5,6-Diacetoxy-1-(benzoyloxymethyl)-1,3-cyclohexadiene (**DY14**) in CDCl₃

Figure A74 UV Spectrum of (–)-Desoxypipoxide (DY15)

Figure A76 ¹H NMR Spectrum (CDCl₃, 400 MHz) of (–)-Desoxypipoxide (DY15)

Figure A78 IR Spectrum of (–)-Arcabucoine (DY16)

Figure A79 ¹H NMR Spectrum (CDCl₃, 400 MHz) of (–)-Arcabucoine (DY16)

Figure A80 UV Spectrum of (+)-Senediol (DY17)

Figure A83 ¹³C NMR Spectrum (CDCl₃, 100 MHz) of (+)-Senediol (DY17)

Figure A84 UV Spectrum of 1*S*,2*R*,3*R*,4*S*-2-[(Benzoyloxy)methyl]cyclohex-5-ene-1,2,3,4-tetrol-4-acetate (**DY18**)

Figure A86 ¹H NMR Spectrum (CDCl₃, 400 MHz) of 1*S*,2*R*,3*R*,4*S*-2-[(Benzoyloxy)methyl]cyclohex-5-ene-1,2,3,4-tetrol-4-acetate (**DY18**)

Figure A87 ¹³C NMR Spectrum (CDCl₃, 100 MHz) of 1*S*,2*R*,3*R*,4*S*-2-[(Benzoyloxy)methyl]cyclohex-5-ene-1,2,3,4-tetrol-4-acetate (**DY18**)

Figure A88 UV Spectrum of Uvaribonol G (DY19)

Figure A90 ¹H NMR Spectrum (CDCl₃, 400 MHz) of Uvaribonol G (DY19)

Figure A92 COSY Spectrum of Uvaribonol G (DY19) in CDCl₃

Figure A94 HMBC Spectrum of Uvaribonol G (DY19) in CDCl₃

Figure A96 IR Spectrum of (–)-Corydalmine (DY20)

Figure A98 ¹³C NMR, DEPT135 and DEPT90 Spectra (CDCl₃, 100 MHz) of (–)-Corydalmine (DY20)

Figure A100 HMQC Spectrum of (–)-Corydalmine (DY20) in CDCl₃

Figure A102 UV Spectrum of *trans-N*-Cinnamoyltyramine (DY21)

APPENDIX B

Spectroscopic Data of Isolated Compounds from M. cuneata

Figure B2 IR Spectrum of Miliusacunine A (MC1)

Figure B3 ¹H NMR Spectrum (acetone-*d*₆, 400 MHz) of Miliusacunine A (MC1)

Figure B4 ¹³C NMR, DEPT135 and DEPT90 Spectra (acetone-*d*₆, 100 MHz) of Miliusacunine A (**MC1**)

Figure B6 HMQC Spectrum of Miliusacunine A (MC1) in Acetone-d₆

Figure B7 HMBC Spectrum of Miliusacunine A (MC1) in Acetone-d₆

Elemental Composition Report

Single Mass Analysis

Tolerance = 5000.0 PPM / DBE: min = -1.5, max = 50.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Page 1

Figure B10 IR Spectrum of Miliusacunine B (MC2)

Figure B12 ¹³C NMR, DEPT135 and DEPT90 Spectra (acetone-*d*₆, 100 MHz) of Miliusacunine B (**MC2**)

Figure B14 HMQC Spectrum of Miliusacunine B (MC2) in Acetone-d₆

Figure B15 HMBC Spectrum of Miliusacunine B (MC2) in Acetone-d₆

Page 1

-Elemental Composition Report

Single Mass Analysis

Tolerance = 5000.0 PPM / DBE: min = -1.5, max = 50.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions 1 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)

141030_FON0	01_MCL6 195 (2.040) AI	M (Cen,4, 80	.00, Ar,10900.(MCL6 0,333.06,0. 392.1112	; 70); Cm (195)	nena	30-Oct-2014 10:37:23 TOF MS ES+ 2.44e4
%-	Copyr ³⁰	4.2419	633	202.1	ang Mi	ai Univen	S
0	2041260.1090 240 260 280 30	305.2711 00 320	333.0985 	420.1 80 400	376 425.1375 469 100 420 440 460	9.2279 533.5518 559 480 500 520 54	9.5529 585.5702 might from m/z 0 560 580
Minimum: Maximum:		5000.0	5000.0	-1.5 50.0			
Mass	Calc. Mass	mDa	PPM	DBE	Score	Formula	
392.1112	392.1110	0.2	0.5	11.5	1	C20 H19 N 06 M	Na

Figure B16 HRESIMS Spectrum of Miliusacunine B (MC2)

192

Figure B18 IR Spectrum of Miliusacunine C (MC3)

Figure B22 HMQC Spectrum of Miliusacunine C (MC3) in CDCl₃

Figure B23 HMBC Spectrum of Miliusacunine C (MC3) in CDCl₃

Elemental Composition Report

Page 1

Single Mass Analysis Tolerance = 8.0 PPM / DBE: min = -1.5, max = 120.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3 Monoisotopic Mass, Even Electron lons 1004 formula(e) evaluated with 6 results within limits (up to 20 closest results for each mass) Elements Used: C: 8-40 H: 0-70 N: 0-10 O: 0-12 Na: 0-1 MC 3 SP Thanaphat MC 3 73 (1.754) AM2 (Ar,8000.0,0.00,0.57); ABS; Cm (71:73) 1: TOF MS ES+ 5.21e+002 376.0819 100 378.0958 % 377.0884 378.9787 379.2859 375.6496 377.1924 374.9129 373.7933 376.7221 379.8694 380.2121 372.9921 0-— m/z 376.00 377.00 378.00 379.00 380.00 373.00 374.00 375.00 -1.5 Minimum: 120.0 5.0 8.0 Maximum: i-FIT (Norm) Formula Mass Calc. Mass mDa PPM DBE i-FIT 0.4 1.1 11.5 59.8 1.9 C19 H17 N 06 378.0958 378.0954 Na

Figure B26 IR Spectrum of Miliusacunine D (MC4)

Figure B28¹³C NMR, DEPT135 and DEPT90 Spectra (CDCl₃, 100 MHz) of Miliusacunine D (MC4)

Figure B30 HMQC Spectrum of Miliusacunine D (MC4) in CDCl₃

Figure B31 HMBC Spectrum of Miliusacunine D (MC4) in CDCl3

Page 1

Elemental Composition Report

Single Mass Analysis

Tolerance = 8.0 PPM / DBE: min = -1.5, max = 120.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron lons 1013 formula(e) evaluated with 7 results within limits (up to 20 closest results for each mass) Elements Used: C: 8-40 H: 0-70 N: 0-10 O: 0-12 Na: 0-1 MC 4 SP Thanaphat MC 4 37 (0.904) AM2 (Ar,10000.0,0.00,1.00); ABS; Cm (36:37) 1: TOF MS ES+ 1:33e+002

100	Copyri	g Mai University							
%-	AÌÌ	r i	380.1104		381.2877				
0-1	377.2274 377.6566 377.00 378.00	379.0250 379.0250 379.0	79.2946 379.804 00 380	1 380.6811 .00 381.0	382.0	383.0 817 	383.00	384.10 383.7549 384.00	72 384.3513 1977 - m/z
Minimum: Maximum:		5.0	8.0	-1.5 120.0					
Mass	Calc. Mass	mDa	PPM	DBE i	-FIT i	-FIT	(Norm)	Formula	
380.1104	380.1107 380.1110	-0.3 -0.6	-0.8 -1.6	14.5 6 10.5 6	8.8 2 8.9 2	2.1		C17 H14 C19 H19 Na	N7 04 N 06

Figure B32 HRESIMS Spectrum of Miliusacunine D (MC4)

Figure B34 IR Spectrum of Miliusacunine E (MC5)

Figure B36 ¹³C NMR, DEPT135 and DEPT90 Spectra (CDCl₃, 100 MHz) of Miliusacunine E (MC5)

Figure B38 HMQC Spectrum of Miliusacunine E (MC5) in CDCl₃

Figure B40 HRESIMS Spectrum of Miliusacunine E (MC5)

Figure B41 UV Spectrum of 5-Hydroxy-3,7-dimethoxy-3',4'-methylenedioxyflavone (MC6)

Figure B42 IR Spectrum of 5-Hydroxy-3,7-dimethoxy-3',4'-methylenedioxyflavone (MC6)

Figure B44 UV Spectrum of Pachypodol (MC7)

Figure B46 ¹H NMR Spectrum (CDCl₃, 400 MHz) of Pachypodol (MC7)

Figure B48 COSY Spectrum of Pachypodol (MC7) in CDCl₃

Figure B50 HMBC Spectrum of Pachypodol (MC7) in CDCl₃

Figure B51 UV Spectrum of 4'-Hydroxy-3,5,7,3'-tetramethoxyflavone (MC8)

Figure B52 IR Spectrum of 4'-Hydroxy-3,5,7,3'-tetramethoxyflavone (MC8)

Figure B54 UV Spectrum of (+)-Miliusol (MC9)

Figure B56 ¹H NMR Spectrum (CDCl₃, 400 MHz) of (+)-Miliusol (MC9)

Figure B58 COSY Spectrum of (+)-Miliusol (MC9) in CDCl₃

Figure B60 HMBC Spectrum of (+)-Miliusol (MC9) in CDCl₃

Figure B62 IR Spectrum of (+)-Syringaresinol (MC10)

Figure B63 ¹H NMR Spectrum (CDCl₃, 400 MHz) of (+)-Syringaresinol (MC10)

Figure B64 ¹³C NMR Spectrum (CDCl₃, 100 MHz) of (+)-Syringaresinol (MC10)

Figure B65 HMBC Spectrum of (+)-Syringaresinol (MC10) in CDCl₃

Figure B66 UV Spectrum of Chrysoplenetin (MC11)

Figure B68 ¹H NMR Spectrum (CDCl₃, 400 MHz) of Chrysoplenetin (MC11)

Figure B70 IR Spectrum of *trans-N*-Feruloyltyramine (MC12)

Figure B71 ¹H NMR Spectrum (acetone-d₆, 400 MHz) of trans-N-Feruloyltyramine

Figure B72 UV Spectrum of *trans-N*-Caffeoyltyramine (MC13)

Figure B74 ¹H NMR Spectrum (acetone-*d*₆, 400 MHz) of *trans-N*-Caffeoyltyramine (MC13)

Figure B78 HMBC Spectrum of trans-N-Caffeoyltyramine (MC13) in Acetone-d₆

Figure B80 IR Spectrum of *trans-N*-Coumaroyltyramine (MC14)

Figure B81 ¹H NMR Spectrum (acetone-*d*₆, 400 MHz) of *trans-N*-Coumaroyltyramine

CURRICULUM VITAE

Author's Name	Miss Atchara Jaidee	
Date/Year of Birth	28 th December 1986	
Place of Birth	Chiang Mai Province, Thailand	
Education	2009	B.S., Department of Chemistry, Faculty of Science, Chiang Mai Rajabhat University, Chiang Mai, Thailand.
	2012 2015	M.S., Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand. Ph.D., Department of Chemistry, Faculty of Science,
Scholarships	2012-2014	Human Resource Deverlopment in science Project (Science Achievement Scholarship of Thailand, SAST)
	2015	Graduate school, Chiang Mai University

<mark>ธิ์มหาวิทยาลัยเชียงใหม่</mark> pht[©] by Chiang Mai University rights reserved