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CHAPTER 2 

Experimental and methods 

2.1 Chemical, Apparatus and Instruments 

 2.1.1 Chemicals 

  1) Rice sample 

2) 1.00 µL of 0.50 mg/mL 2, 6-Dimethoxyphenol (DMP) in toluene 

  3) 2,4,6-Trimethylpyridine (TMP) 

 2.1.2 Apparatus and instruments 

  1) Powdered machine; Cyclotec TM 1093 

  2) The 0.5 mm screen sieve; Foss, Hoganan, Sweden 

  3) Gas chromatograph; BRUKER technologies model 450-GC 

4) GC column; HP-5MS capillary (dimension of 30 m × 0.32 mm i.d. × 

0.25 µm film thickness) 

5) Headspace sampler; QUMA headspace sampler model 40/111 

  6) Nitrogen-phosphorus detector (NPD) 

 

 

 

 

 

 

 



 

8 

 

2.2 Design of experiment (DOE) 

 In this work, the experiment was systematically designed in order to provide 

sufficient information from the smallest number of experiments. Central composite 

design (CCD), a method of DOE, was chosen because it comprises the advantages of 

full a factorial design, a star design and replicates at the centroid [18, 29]. This 

experiment has five treatment levels in each factor. The relationships between 

independent factors and response factor were investigated using mathematical model 

that was generated using the experimental data from CCD. Moreover predictive ability 

of the response could be provided using the established model.  

In this work, the concentrations of nitrogen fertilizer and sodium salt were 

varied in each experiment. There were 9 treatments corresponding to 9 combinations of 

the studied factors. Each of the treatments had 5 replicate pots; therefore, the 

constructed design consisted of 45 experimental rice plants in total. Each of the rice 

plants was hydroponically grown in a plastic pot (10 L; 20 cm high). The rice cultivar 

was Pathum Thani 1 (PT1), an improved fragrant temperate indica type (Oryza sativa 

L.) and non-photosensitive rice [16]. The nutrient solution used in this studied was 

modified based on Hoagland’s nutrient standard solution [30]. Ammonium nitrate 

(NH4NO3) was used as the nitrogen source, while sodium chloride (NaCl) was used to 

induce saline condition in the experiments. The concentration of each factor was used in 

the range of maximum and minimum concentration that rice plant could be successfully 

grown. The concentrations of nitrogen and sodium salt in nutrient solutions were shown 

in Table 2.1. 

Prior to the transplanting, the rice seeds were soaked in water for 24 h, and then 

incubated under moist and dark condition for 48 h. After that, each of the germinated 

seeds was transplanted in a sponge placed inside 1.5 inch thick plastic foam floating on 

the nutrient solution.  During the first week of the transplanting, 50% concentration of 

the standard Hoagland’s nutrient solution was used. Later, each of the experimental pots 

was treated with the nutrient solution according to the experimental design. The nutrient 

solutions were renewed weekly and the water level for each of the pots was maintained 

daily using fresh water if necessary.  
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Table 2.1 Coded values and the concentrations of N and NaCl added to the standard 

Hoagland’s nutrient solution for the central composite design (CCD) 

Treatments   

Coded Values   Concentrations (ppm)  

N   NaCl   N  NaCl  

1 0.71 0.71 234 34 

2 0.71 -0.71 234 6 

3 -0.71 -0.71 150 6 

4 -0.71 0.71 150 34 

5 1 0 252 20 

6 -1 0 132 20 

7 0 1 192 40 

8 0 -1 192 0 

9 0 0 192 20 

 

The experiments were conducted in Mae Hia Agricultural Research, 

Demonstrative and Training Center, Chiang Mai University in Chiang Mai, Thailand, 

during the dry season (November 2013 to March 2014). The plant growth parameters 

including of number of tillers, plant height and root length were measured at various 

times (Table 2.2). After harvest, yield components such as number of grains per panicle, 

panicle length, plant weight, shoot and root dry weights, number of panicles per plant, 

number of grains per plant and thousand grain weight were collected (Table 2.3).  
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Table 2.2 Growing data of the rice plants a 

Treat. 

Transplanting  Tillering  Panicle initiation  Harvest  

Plant height 

(cm) 
Tillers 

Root length 

(cm) 

Plant height 

(cm) 
Tillersb 

Root lengthb 

(cm) 

Plant height 

(cm) 
Tillersb 

Root lengthb 

(cm) 

Plant heightb 

(cm) 
Tillers 

1 7.23 ± 1.26 3 ± 1 13.57 ± 2.50 7.80 ± 1.87 6 ± 2 17.33 ± 4.54 19.87 ± 2.51 16 ± 5 31.33 ± 2.47 73.33 ± 3.14 114 ± 31 

2 6.00 ± 0.83 3 ± 1 16.54 ± 4.28 8.92 ± 0.58 8 ± 1 18.80 ± 2.61 19.70 ± 1.57 39 ± 6 27.00 ± 3.92 81.41 ± 4.79 117± 21 

3 6.63 ± 0.91 3 ± 0 17.12 ± 1.23 8.50 ± 0.60 9 ± 1 18.88 ± 1.55 18.58 ± 1.59 55 ± 6 26.00 ± 1.08 84.76 ± 1.80 100 ± 11 

4 7.28 ± 0.83 4 ± 1 15.80 ± 1.96 8.92 ± 0.32 9 ± 1 20.60 ± 2.43 18.80 ± 0.97 27 ± 4 30.00 ± 2.57 81.52 ± 3.57 94 ± 16 

5 6.76 ± 1.18 3 ± 1 16.42 ± 4.20 8.24 ± 1.10 9 ± 2 19.00 ± 4.06 19.34 ± 0.76 47 ± 13 26.00 ± 2.00  85.32 ± 2.53 115 ± 17 

6 7.10 ± 0.50 3 ± 1 18.58 ± 2.16 8.20 ± 0.56 9 ± 1 23.00 ± 1.00 18.48 ± 1.66 29 ± 7 34.20 ± 2.11 80.67 ± 4.57 99 ± 21 

7 7.40 ± 1.16 3 ± 0 16.64 ± 2.54 9.30 ± 0.78 7 ± 2 21.28 ± 1.13 19.92 ± 0.79 27 ± 7 31.50 ± 3.06 79.22 ± 7.95 93 ± 16 

8 7.42 ± 1.77 3 ± 0 16.88 ± 3.82 9.10 ± 2.16 10 ± 2 19.62 ± 4.82 19.90 ± 1.68 62 ± 11 23.88 ± 2.32 90.21 ± 3.83 112 ± 12 

9 7.66 ± 0.59 4 ± 1 18.74 ± 2.30 9.38 ± 0.83 11 ± 1 23.10 ± 2.46 19.14 ± 0.86 45 ± 3 25.10 ± 1.29 85.12 ± 3.76 105 ± 12 

aData are means ± SD. bStatistically significant at p < 0.05. 
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Table 2.3 Yield component dataa 

Treat. 
Grains per 

panicle 

Panicle length  

(cm) 

Plant weightb 

(kg) 

Shoot dry weightb 

(g) 

Root dry weight 

(g) 
Panicles per plant Grains per plant 

1000 grains 

weight (g) 

1 127 ± 21 26.33 ± 1.41 2.54 ± 0.66 444.60 ± 26.84 43.01 ± 4.94 116 ± 16 1285 ± 512 20.84 ± 0.99 

2 127 ± 19 25.67 ± 0.95 2.75 ± 0.09 552.20 ± 51.48 48.87 ± 8.44 118 ± 16 3631 ± 1627 21.68 ± 0.79 

3 143 ± 16 26.89 ± 1.84 2.50 ± 0.22 505.53 ± 20.27 50.85 ± 6.16 107 ± 17 3095 ± 2005 23.28 ± 0.55 

4 142 ± 5 27.41 ± 1.31 1.94 ± 0.18 403.69 ± 57.24 43.69 ± 4.36 96 ± 12 3297 ± 728 21.57 ± 1.02 

5 133 ± 12 26.70 ± 1.73 2.36 ± 0.31 460.37 ± 84.20 42.46 ± 7.70 118 ± 13 3664 ± 1312 22.16 ± 1.08 

6 147 ± 15 26.72 ± 1.23 2.20 ± 0.15 428.51 ± 40.56 47.45 ± 5.11 114 ± 21 4036 ± 1493 22.30 ± 1.29 

7 142 ± 31 26.49 ± 2.24 2.06 ± 0.28 393.42 ± 75.07 41.71 ± 5.10 108 ± 16 3364 ± 1092 21.34 ± 1.20  

8 145 ± 10 26.42 ± 1.38 2.74 ± 0.31 524.40 ± 134.26 49.60 ± 8.81 120 ± 12 3845 ± 1511 24.19 ± 0.42 

9 134 ± 21 26.46 ± 1.52 2.17 ± 0.24 378.21 ± 58.90 43.28 ± 5.43 102 ± 16 2971 ± 1614 21.35 ± 0.82 

aData are means ± SD. bStatistically significant at p < 0.05.  
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2.3 Determination of 2-acetyl-1-pyrroline (2AP) in rice grains 

The nine rice grain samples, from mixing rice samples of each replicate, that 

represent nine experimental samples was powdered using a Cyclotec TM 1093 mill with 

a 0.5 mm screen sieve (Foss, Hoganan, Sweden). One gram (1.00 g) of each sample was 

then put into a 20 mL headspace vial, this being followed by the addition of 1.00 µL of 

0.50 mg/mL 2, 6-DMP in toluene. The headspace vial was then immediately sealed with 

a PTFE/silicone septum and aluminum crimp cap. It was shaken at a room temperature 

of 27 °C for 10 min prior to analysis by SHS-GC. 

  SHS-GC determination of 2AP was carried out using BRUKER technologies 

(Goes, Netherlands) model 450-GC gas chromatograph equipped with an QUMA 

headspace sampler model 40/111 (Wuppertal, Germany). A nitrogen-phosphorus 

detector (NPD) was used for selective determination of the aroma impact compound, 

2AP. Optimization of SHS-GC-NPD condition was performed similar to the way 

described by Sriseadka et al. [31]. The loop filling time, pressurizing time, and injection 

time were set at 0.01, 0.50, and 0.50 min, respectively. Oven temperature was 120 °C, 

vial equilibration time at 10 min, and sample loop and transfer line temperatures were 

set at 130 and 135 °C, respectively. A sample headspace was collected through a 1 mL 

sample loop and automatically transferred to the GC via a heated transfer line. The GC 

column was a HP-5MS capillary with dimension of 30 m × 0.32 mm i.d. × 0.25 µm film 

thickness (J&W Scientific, Folsom, CA) and was operated in a temperature program 

mode that started at 50 °C and then increased 5 °C/min to 125 °C. The NPD 

temperature was 300 °C. SHS-GC-NPD employed a splitless injection at 230 °C and 

carrier gas flow rate was 2 mL/min.  

 2AP contents in rice seed samples were determined by means of a standard 

calibration curve. Areas under peaks of 2AP and 2,4,6-Trimethylpyridine (TMP), used 

as internal standard, were measured and the ratios were correlated with concentrations 

of 2AP in the rice samples. The calibration curve was set to be linear over the 

concentration range of 0.10–10.00 mg/L for 2AP with a regression coefficient of 0.996. 

The relative standard deviation calculated for each data point of concentration was less 

than 10%, based on 3 independent runs. 
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2.4 Chemometric analyses  

In this work, the studied factors should be simultaneously used to predict 2AP 

content and investigated their effect to response factor (2AP content in rice grain). Due 

to the traditional method could not be used, chemometric techniques were chose. 

Chemometrics were used for the two proposes, establish model to predict 2AP content 

and investigate the effect of each studied factors on 2AP content. Partial least squares 

(PLS) regression was used to establish the model to predict 2AP content. Moreover, the 

PLS coefficients showed the effect of each studied factor on 2AP content. Supervised 

self-organizing map (SSOM) was used to study the behavior of studied factors 

including to response factor. 

2.4.1 Partial least squares (PLS) regression 

Partial least squares (PLS) regression is one of the most powerful multivariate 

calibration methods. This method captures variations from both of the predictive (X) 

and response (c) parameters and these variations were simultaneously used for 

constructing the regression model [22]. Therefore, PLS, in most cases, could 

satisfactorily provide predictive results. In this work, the design data, plant growth data 

and yield-related components were used as the predictive parameters where the 

concentrations of 2AP in the rice grains were used as a response. A simple approach to 

analyze these data was to generate individual PLS model where the design data was 

only used as predictor. The established models could be used to investigate the effect of 

the design data on the 2AP content. Also, it was possible to investigate how the design 

data affected the plant growth parameters or the yield-related components. However, 

this was not easy to envision the effect of these additional parameters with respect to the 

aromatic quality of the rice grains. The aim of this research was to investigate if it was 

possible to estimate the rice aromatic quality based on the designed parameters. At the 

same time, we sought to identify and interpret any other factors influencing the rice 

aromatic quality. Therefore, these parameters were additionally incorporated into the 

predictive parameters for the PLS model resulting in a data with multiple blocks. 

In fact, there are several algorithms that could be used to cope with the 

multiblock data. For example, multiblock PLS (MB-PLS) [32] and serial PLS (S-PLS) 

[33]. Using MB-PLS, weighting factors between the data blocks were identified as a 
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parameter affecting on the model prediction [34]. The MB-PLS solution was the same 

as ordinary PLS for the same weighting of the data blocks. Placing different weights on 

data, in this case the design data versus the plant growths and the component yields, 

could have impact on the predictive results but this could also blur interpretation of the 

relationship between the parameters. Moreover, MB-PLS required that the same number 

of components were applied for all the data blocks which, in this case, was limited to 2 

according to the number of design parameters used. On one hand, S-PLS differs from 

MB-PLS in that S-PLS decomposed the predictor blocks in a serial mode, and therefore, 

it was possible to use a different number of components for the different data blocks. 

But, if the model acquired enough information from the first block data for modeling 

the response, only small improvement could be achieved when the second block data 

was used. Consequently, the coefficients of the second block data calculated using S-

PLS were relatively smaller. This made S-PLS impossible to see if there were variables 

in the second block that might contribute to the model. An alternative analysis for these 

situations was to use an ordinary PLS. In this case, the data blocks were simply 

concatenated into a single block and a conventional PLS was performed. Several works 

have reported that an ordinary PLS with the combined data seemed to perform rather 

the same as the modified multiblock algorithms regarding the variance of the parameter 

estimates [34, 35]. Yaroshchyk et al. [36] reported that, in their work, the ordinary PLS 

performed the best when compared with the multiblock regressions (MB-PLS and S-

PLS). 

   The optimum number of PCs of the PLS model was determined using leave-one-

out cross-validation (LOOCV) [19]. In addition to the predictive model, the significance 

of each of the parameters was evaluated using PLS coefficients and variable influence 

on projection (VIP) [37]. For a calibration model, different data pre-processing can 

strongly influence the analysis results and there are no clear-cut guidelines when to use 

or to avoid certain pre-processing methods. Based on a "trial-and-error" approach, 

several data pre-processing methods and the order in which the methods were applied 

were tested. The outcome was that square root scaling following by mean centring 

resulted in the best performing model. The model with a unit-variance scaling or 

standardization were also tested, but showed less satisfactory results. Therefore, for this 

dataset, square root scaling with mean centring were chosen. In most case, 
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standardization could equalize the effect of each variable to contribute to the model 

evaluation. But, unimportant variables which were not useful for the prediction became 

important and they could perhaps worsen the model prediction. On the other hand, a 

square root transformation, though not completely, could reduce influences of variables 

with large values brining about a "pseudo-scaling" effect. In addition, mean centring 

adjusted all the parameter values to fluctuate around zero instead of around their means. 

Hence, it adjusted for the difference in the offset between high and low sizes of 

parameters, and therefore, could be used to focus on the variation parts of the data for 

the analysis. 

2.4 2 Empirical method: Monte Carlo for confirming the significance test 

To confirm the significance of the parameters picking out by the PLS 

coefficients, a Monte Carlo experiment was performed [19]. This empirical significance 

test was investigated to determine how large the PLS coefficients obtained from the 

certain data by comparing with the coefficients obtained during Monte Carlo 

permutations or a set of null distribution. This null distribution was created using 

randomly permuted vector of the response, in this case, the 2AP contents. Then, the 

PLS model was constructed based on the randomly assigned 2AP vector resulting in 

another set of PLS coefficients. This procedure was repeated for 5000 times; therefore, 

generating a null distribution for benchmarking the significance of the coefficient for 

each parameter. It is noted that the distribution of the coefficients was two tailed, hence 

the absolute PLS coefficients were used for the comparison. In this work, a threshold of 

90% was used. If a coefficient was higher than this value, it was considered to be a 

significant parameter. 
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2.4.2 Self-organizing map (SOM) 

Self Organising Maps (SOMs) were first described by Kohonen in the 1980s as 

a method for visualising the relationship between different speech patterns [38]. SOMs 

can be considered as an unsupervised learning method which is an alternative to 

principal component analysis (PCA) since they can be used to present the structure of a 

data using a low-dimensional display, although it also can be modified to be used in a 

supervised mode. A SOM involves a map which is often represented by a two 

dimensional grid consisting of a certain number of units. This map will be trained using 

training samples and the aim is to locate the positions of the training samples on the 

map such that the relative distance between them in the original data space is preserved 

as much as possible. SOM algorithm has several stages and a number of parameters that 

need to be set, as described below. 

 Initialisation  

In the initialisation process, a trained map consisting of a grid of units is 

generated. The shape of the units is not specific, although squares and hexagonal are 

particularly favourable because they have neighbours that have the same distance apart 

in numerous directions (Figure 2.1).  

 

Figure 2.1 Example of lattices used for SOMs 

Yet, the difference between squares and hexagons is that the squares favour only 

the vertical and horizontal directions during the learning process, whereas the hexagons 

do not. In this chapter, the SOM algorithm is demonstrated using hexagonal units, 

however, the same algorithm can be adopted when the other shapes are used. A map 

consisting of K (=P×Q) map units in the hexagons is shown in Figure 2.2. Each map 

unit is characterised by a weight for each variable in the dataset, resulting in a 1×J 

weight vector wk, where J corresponds to the number of variables. Therefore, each 

HexagonsSquares
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variable j has K weight units which, in this thesis, are generated from randomly selected 

values from a uniform distribution within the measured range of variable j.  

 

 

Figure 2.2 P × Q map with J weights containing a total of K map units and the 

corresponding weight matrix W. 

 Training 

After the map containing random values for each variable is created, this map 

will be trained. During the training process, the samples gradually move towards a 

region of the map that they are most similar to, and so samples that are close together in 

the high-dimensional input space are mapped to the units that are close together in the 

map space. Two important parameters, the neighbourhood width φ and the learning rate 

ψ, control this training process. Both of them are dependent on the dimensions of the 

map and the total number of iterations as described below.  

 Neighbourhood Width  

The neighbourhood width φ is the parameter that controls the number of map 

units around the sample’s Best Matching Unit (BMU), which will be updated. For a 

map unit to be updated its distance from the current BMU must less than this 

neighbourhood width, otherwise it is not updated. The neighbourhood width φ for 

iteration t can be defined using an exponential function:  
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where T is the total number of iterations and φt is the neighbourhood width for 

iteration t using φo as the initial neighbourhood width. Normally, the initial 

neighbourhood width is defined with a value such that a large proportion of the map 

units will be updated in the first stage of the learning process. After that, this parameter 

will be decreased monotonically as the learning process continues. Therefore, it can be 

seen that the neighbourhood width φt is directly related to both the map size and the 

total number of the training iterations T.  

 Learning Rate 

The learning rate ψ is used to control the maximum amount a map unit can adapt 

its weight vector to represent a training sample. In this thesis, the similar exponential 

function used for the neighbourhood width is used for the learning function: 
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where T is the total number of iterations and ψt is the learning rate for iteration t 

and ψo is the initial learning rate. The initial learning rate ψo can be a number between 0 

and 1. Using too high learning rate (close to 1), a larger number of learning iterations 

may be needed to ensure that the map has stabilised. On the other hand, using too small 

a value (close to 0), the weight vectors in the neighbourhood around the BMU may be 

inadequately trained so that regions in the map may never learn to represent one type of 

sample. However, to define how much each map unit around the BMU can learn is also 

dependent on its distance from the BMU. The units which are closer to the BMU will be 

adapted to be more similar to the input sample more that the unit which is further away. 

The overall amount a map unit can learn is proportional to both the learning rate ψ and 

the neighbourhood width φ. A Gaussian function can be used to describe this parameter 

and it is defined as the neighbourhood weight ω: 
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where ωkt is the neighbourhood weight of map unit k for iteration t. 

),(D BMU kmm is the Euclidean distance between the Cartesian coordinate vector of the 

map unit mk and the Cartesian coordinate vector of the BMU mBMU. 

After the neighbourhood width φo and the learning rate ψo parameters are 

decided, the initial map can be trained as follows: 

1. A sample vector (randomly selected from the training samples for 

each iteration) is compared to the weight vector of each map unit using the Euclidean 

distance. The map unit with the most similar weight vector is declared as the ‘winner’ 

or Best Matching Unit (BMU) defined as follows: 

}{min)( ),(
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where b is the value of k with the most similar weight vector wk the 

randomly selected sample xz: 

}{minarg ),( kwxz
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k
  

2. The neighbourhood width φt, learning rate ψt and neighbourhood 

weight ωt are calculated for iteration t as described above. 

3. The Euclidean distance between the Cartesian coordinates of each map 

unit mk and the Cartesian coordinates of the BMU mBMU is calculated. The map units 

that are close enough to the BMU are declared as neighbours of the current BMU: 

 tkk  ),(D: BMUBMU mmη  

where 
BMUη contains the values for k for which the kth map units distance 

from the BMU is less than the neighbourhood width in iteration φt. 

4. The map units that have been declared as neighbours of the BMU are 

updated adjusting their weights proportionally to the learning rate and the 

neighbourhood weight for the current iteration:  
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The BMU and its neighbouring map units are then updated to become 

more like the sample and all the other map units remain unchanged.  

The entire process is illustrated in Figure 2.3 and is repeated until t = T. 

 

 

 

Figure 2.3 Schematic of the SOM training process 
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2.4.4 Supervised self-organizing map (SSOM) 

Supervised self-organizing map (supervised SOM) is an extension of self-

organizing map (SOM). In general, SOM focuses on representing sample data using a 

two-dimensional map. This map was trained based on an adaptive learning algorithm 

where the aim is to make the map to be well-suited for the variation of the modeling or 

training samples. Therefore, the structure of the samples on the original data space 

could be maintained as much as possible when they are placed and represented on the 

trained map. For a traditional SOM or an unsupervised SOM, only the information from 

the predictive data (X) is used during the training process and so the orientation of the 

samples on the map generated using the unsupervised learning often reflects the major 

variation that strongly influences over the dataset. Intentionally, for a supervised SOM, 

an addition of a response data is applied to each of the training samples as additional 

information. After that, the map was trained in the same manner of the unsupervised 

SOM [39]. This extension process could highlight minor variation that may be hidden 

by the major variation, thus enhanced the possibility of observing the clusters or groups 

with respect to response information provided. It is also possible to investigate whether 

the predictive parameters and the response behavior are alike by comparing between the 

component planes of each of the training parameters and the component planes of the 

response data or the response plane [39].  

In this work, the supervised SOM was used for observing the behavior of planting 

conditions, some growth parameters and yield components in connecting with the 

response which was the contents of 2AP in the PT1 rice grains. The SOM map consists 

a total of 10 × 15 map units and the SOM parameters such as iteration number, initial 

learning rate and initial neighborhood width, were set following recommended 

methodology [40]. The trained map was visualized using supervised color shading and 

component planes, which will be discussed in detail in the Results and discussions 

section. The same data-preprocessing used for the PLS analysis was applied prior to the 

analysis of supervised SOM. It is noted here that each of the rice plants was individually 

used for the SOM supervised training. All of the computations in this work were 

conducted using in-house scripts based on Matlab software. 

 


