CONTENT

Acknowledgement	c
Abstract in Thai	d
Abstract in English	e
List of Tables	i
List of Figures	j
List of Abbreviations and Symbols	1
Chapter 1 Introduction	1
1.1 Historical Background	2
1.2 Photocatalytic application	4
1.3 Photocatalytic reduction	6
1.4 Disinfection	6
1.5 Literature reviews	9
1.6 Research objective	10
Chapter 2 Material and Experimental	11
2.1 Materials and chemicals	11
2.2 Instruments	12

2.3.1 Ca(NO ₃) ₂ .4H ₂ O as a precursor	12
2.3.2 $Ca(NO_3)_2.4H_2O$ as a precursor with ethanol as additive	12
2.3.3 $Ca(NO_3)_2.4H_2O$ as a precursor with ascorbic acid as additive	13
2.3.4 Ca(NO ₃) ₂ .4H ₂ O as a precursor with Triton-X as additive	13
2.3.5 Ca(OH) ₂ as precursor	13
2.3.6 $CaCO_3$ as a precursor	13
2.3.7 CaCl ₂ as precursor	13
2.4 Evaluation of photocatalytic activity	14
2.4.1 Photocatalytic oxidation	14
2.4.2 Photocatalytic reduction	15
2.5 Antibacterial assay	15
2.6 Oxygen releasing	15
2.7 Characterization	16
2.7.1 X-Ray Diffraction (XRD)	16
2.7.2 The Brunauer–Emmett–Teller (BET)	16
2.7.3 Scanning Electron Microscopy (SEM)	17
2.7.4 Transmission electron microscopy (TEM)	17
2.7.5 UV-vis spectrophotometry	17
Chapter 3 Result and discussion	18
Copyright [®] by Chiang Mai University	
3.1 Characterization of the powders synthesized by different precursors	18
3.2 Characterization of the powders synthesized by different H_2O_2	
additional rate	20
3.3 Characterization of the powders precipitated by NaOH and NH_4OH	21
3.4 Characterization of the powders after washing by acetone,	
NH ₄ OH and distilled water	22
3.5 Characterization of the powders after drying at various temperatures	23
3.6 Characterization of the powders synthesized with different additives	24

3.7 Characterization of the CaO ₂ powders by Scanning electron	
microscope (SEM)	26
3.8 Characterization of the CaO ₂ powders by Transmission electron	
microscope (TEM)	31
3.9 The Brunauer–Emmett–Teller (BET) results	32
3.10 Disinfection of the synthesized CaO ₂ powders	33
3.11 UV -Vis diffuse reflectance spectrum of the CaO ₂ powders	34
3.12 Photocatalytic activity of CaO ₂ powders under UVA, UVB	
and visible light	35
3.13 Photocatalytic activity of CaO ₂ compared to Ca(OH) ₂ , CaCO ₃	
powders and H ₂ O ₂ solution under UVA and visible light	36
3.14 Photocatalytic activity of CaO_2 mixed with additive under visible light	38
3.15 Photoreduction of CaO ₂ , CaCO ₃ and H ₂ O ₂ determinate by Resazurin	39
3.16 Oxygen releasing	41
Chapter 4 Conclusion and suggestion	42
	40
4.1 Conclusion	42
4.2 Suggestion	42
References	43
Appendix 41 UNIVE	49
Curriculum Vitae ลิปสิทธิ์มหาวิทยาลัยเชียงใหม่	60
Copyright [©] by Chiang Mai University	
All rights reserved	

LIST OF TABLES

Table 1. Reactive Species producing from hydrogen peroxide	7
Table 2. Disinfection of S.aureus and E.coli showing clear zone around calcium	
compounds	33
Table 3. Photoreduction of CaO_2 , $CaCO_3$ and H_2O_2 in visible and UV light	39
Table 4. Repeatability of photoreduction of CaO ₂ in UV light	40
Table 5. Volume of oxygen in oxygen releasing of CaO ₂ varying pH	41
CHAI UNIVERSIT	
ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright [©] by Chiang Mai University All rights reserved	

LIST OF FIGURES

Figure 1. Reaction of photocatalytic activity	5
Figure 2. Resazurin and Resorufin structure	6
Figure 3. Schematic flow chart of synthesis of calcium peroxide varying	
precursors	14
Figure 4. Apparatus in the experiment of oxygen releasing	16
Figure 5. XRD patterns of CaO ₂ powders prepared using several precursors	
e.g. CaCO ₃ , Ca(OH) ₂ , CaCl ₂ and Ca(NO ₃).	19
Figure 6. XRD patterns of powders obtained by the effect of rate of	
H ₂ O ₂ addition	21
Figure 7. XRD patterns of powders precipitated by NaOH and NH ₄ OH	22
Figure 8. XRD patterns of powders washing with different solutions	23
Figure 9. XRD patterns of CaO ₂ powders after drying at 80°C, 150°C and 200°C	
showed some different phases.	24
Figure 10. XRD patterns of synthesized CaO ₂ with additives such as	
Triton-X, ethanol and Ascorbic acid	25
Figure 11. SEM images of CaO ₂ powders synthesized using Ca(NO ₃) ₂	
after calcination at 80°C 2hr.	26
Figure 12. SEM images of CaO ₂ powders synthesized using Ca(NO ₃) ₂	
after calcination at 200°C 2hr.	26

Figure 13. SEM images of CaO ₂ powders after calcination at 200°C 6 hr in	
magnification of 40,000x	27
Figure 14. SEM images of CaO ₂ powders after calcination at 200°C 6 hr in	
magnification of 70,000x	27
Figure 15. SEM images of CaO ₂ powders in ethanol 1	28
Figure 16. SEM images of CaO ₂ powders in ethanol 2	28
Figure 17. SEM images of CaO ₂ when adding ascorbic acid	29
Figure 18. SEM images of Ca(OH) ₂ commercial	30
Figure 19. SEM images of CaCO ₃ commercial	30
Figure 20. TEM images of the shape of CaO ₂ mixing of mostly spherical	
and small amount of rod were obtained for the high purity CaO ₂ powders	31
Figure 21. The best condition in synthesis of high purity CaO ₂ nanoparticle	32
Figure 22. UV -Vis diffuse reflectance spectrum of the CaO ₂ powders	34
Figure 23. Wavelength of UVA, UVB and UVC	34
Figure 24. Light absorption overlapping of CaO ₂ powders and methylene	
blue solution in visible light (400-800 nm)	35
Figure 25. Photocatalytic activity of CaO ₂ with different irradiation	36
Figure 26. Photocatalytic activity of CaO2 with UVA light in an hour	37
Figure 27. Photocatalytic activity of CaO_2 with UVB light in an hour	38
Figure 28. Photocatalytic activity of CaO_2 with visible light in an hour	39

LIST OF ABBREVIATIONS AND SYMBOLS

JCPDs

The Joint Committee for Powder Diffraction Standards XRD X-ray Diffraction Spectrometry SEM Scanning Electron Microscopy TEM Transmission Electron Microscopy 2124.27 BET Brunauer-Emmett-Teller gram g Μ Molar h hour degree celsius °C RENG MAI ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University rights reserved