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CHAPTER 2  

Theory and Literature Review 

  The idea and theory applied in this thesis consist of the return on asset, unit root 

test, risk management, portfolio optimization, ARMA with GARCH model, Extreme 

Value Theory, and Copula model. These theories have different property, advantage, 

and disadvantage which can be explained as follows: 

2.1 Theory 

2.1.1 The return on asset 

    In this section, return is used to study because it is able to assess the 

investment efficiency or to compare a number of different investments efficiency. 

Campbell et al. (1997) gave a reason in using returns for investors, which a return has a 

completeness and the investment opportunity has scale-free summary. 

    From the definition of Campbell et al., let tP  be an asset price at time t . 

Assume at the moment that the asset pays no dividends. 
tR  is one-period simple net 

return that hold the asset for one period from 1t   to t , and would result in a simple 

return as follows: 
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The simple net return of one-period can be defined as: 
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    This thesis uses logarithmic return because this can be useful for the 

statistical hypothesis, and this value is close to the raw return. 
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2.1.2 Unit root and stationarity test 

    The unit root test is Augmented Dickey-Fuller and Phillips-Perron and the 

stationarity test is Kwiatkowski, Phillips, Schmidt and Shin. For the properties of these 

tests, the unit root tests are used to investigate data trend, the data should be regressed 

on time deterministic functions to display the data as first differenced, and the 

stationarity tests are aimed to complement unit root tests which test both the the unit 

root and stationarity hypothesis. We can separate the series that appears to be stationary, 

the series that appears have a unit root, and the series being not enough informative to 

be sure that they are stationary. The theory of unit root and stationarity test can be 

explained as follows: 

    1) Dickey-Fuller test (DF test) 

     The Dickey-Fuller test was summarized by Dickey and Fuller (1979) 

which this test is the testing by using an autoregressive model. DF test can be defined as 

follows: 

            1t t ty y    (4) 

where ty  and 1ty   are variable time series at time t  and 1t  ,   is coefficient of 

autocorrelation, and t  is random error. If assumed that 1  , the model would be non-

stationary which we can define the hypotheses in this case as: 
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     If 0H  is accepted, this means that ty  has unit root and is non-stationary. 

Equation (4) can be adjusted subtracting 1ty   on both sides: 
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and we can rewrite equation (5) as: 

           1t t ty y       (6) 
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where 1   . If 0  , then 1   and 
0H  is accepted. In contrast, if 1   then 

0   and aH  is accepted that they are stationary. Then the hypotheses can be written 

as: 

            
0 : 0

: 0a
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     If 0   or 1  , from equation (4); 
1t t ty y     we can get: 

            
t ty  

 
    (7) 

     For the above steps, there are three main aspects of the test as: 

 1. Test for a random walk:  

           
1t t ty y   

 
  (8) 

 2. Test for a random walk with drift:  

          
0 1t t ty y         (9) 

 3. Test for a random walk with drift and deterministic time trend: 

         0 1 1t t ty t y       
 
 (10) 

where 0 1, ,    are the parameters and t  is the trend. 

     The unit root tests discussed above studied in time series characteristics 

using AR(1) with white noise. However, there is a complicated structure in many time 

series of finance. Said and Dickey (1984) augmented the autoregressive unit root test to 

facility general ARMA(p, q) models which their test was improved to be augmented 

Dickey-Fuller (ADF). Therefore, the ADF test is used in this study which will be 

conducted by adding the lagged the dependent variable values ty  in three equations. 

     There are three Augmented Dickey-Fuller tests consisting of: 

 1. Test for a random walk: 
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 2. Test for a random walk with drift: 
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 3. Test for a random walk with drift and deterministic time trend: 

        
0 1 1
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     In equations (11), (12), and (13), terms are added that is 1

m

i i t iy  . 

This term is a lagged difference terms which is a test that was developed to solve a 

problem of serial correlation. Moreover, ADF test has asymptotic distribution the same 

as DF-test, and can use the same critical values. 

    2) Phillips Perron test (PP test) 

     The PP test has difference from the ADF tests because it can deal with a 

serial correlation and heteroskedasticity. Particularly, in the test regression, the PP tests 

ignore any serial correlation, but the ADF tests use a parametric autoregression to 

approximate the ARMA structure of the errors. The regression for the PP tests is 

1t t t ty y x  
    , and modifies the   coefficient t-ratio to the serial correlation that 

does not affect the asymptotic distribution of the statistic test. The PP test can be shown 

as the formula based on the statistics as follows: 

          
1

0 0 02
1/ 2
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ˆ( )( ( ))
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T f se
t t

f f s
 

  
   (14) 

where t  the ratio of   and ̂  is the estimate, ˆ( )se   is the standard error coefficient, 

and s  is the standard error. Moreover, 0  is a consistent estimate of the error variance 

in 1t t t ty y x  
     (calculated as 2( ) /T k s T , where k is the regressors number) 

and the 0f  is the residual estimation at frequency zero. There are two choices which we 

have to making when conducting the PP test. In the test regression, we must first choose 

that to have a constant, a constant and a time trend, or neither. Second, we have to pick 

a approach for estimating 0f . 

     3) Kwiatkowski–Phillips–Schmidt–Shin test (KPSS test) 

      The unit root tests are used to test for the null hypothesis that a time 

series yt is I(1). Besides, the stationarity tests are used to test for the null that yt is I(0). 
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The KPSS test was purposed by Kwiatkowski, Phillips, Schmidt, and Shin (1992) and 

started with the formula as follows: 
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where Dt has a defined components consisting of a constant and a constant with a time 

trend which ut represents I(0) and may have heteroskedastic. μt is random walk with 

variance 2

 . We can show the null hypothesis that yt is I(0) in the formula as 

2

0 : 0H   , which means that μt is a constant. This null hypothesis means a unit root of 

moving average in the ARMA form of Δyt. The KPSS test is the Lagrange multiplier 

statistic for testing 2 0   with the alternative that 2 0   and is given by 
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where 
1

ˆ ˆ
t

t jj
S u


 , ˆ

tu  is residual in yt regression on Dt, and 2̂  is an estimating 

consistent for 
tu  the long-run variance by using ˆ

tu . Based on the null that yt is I(0), 

KPSS converges to a standard Brownian motion function that relies on the deterministic 

terms Dt but not their coefficient values β. Especially, if Dt = 1 then 

          
1

1
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( )
d

KPSS V r dr    (17) 

where 1( ) ( ) (1)V r W r rW   and ( )W r  is a Brownian motion for [0,1]r . If D (1, )t t   

then  

          
1

2
0

( )
d

KPSS V r dr   (18) 

where 
1

2

2
0

( ) ( ) (2 3 ) ( ) 6 ( 1) ( )V r W r r r W r r r W s ds      . The critical values in 

equation (17) and (18) must be obtained by simulation approachs. So that, from the 

optimal asymptotic distribution (17) or (18), we rejects the null of stationarity at the 

100·α% level if the KPSS test statistic (16) is greater than the 100·(1 − α)% quantile. 
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2.1.3 Risk Management 

    The risk management is the evaluation and prioritization for risks applying 

the coordination and resource allocation in the economy to investigate, control, and 

minimize the probability of poor events or to maximize the positive opportunities. The 

risk management purpose to assure that an unstable does not deflect the effort from the 

business goal (Hubbard, 2009).  

    There are various sources of risk consisting of threats from project failures, 

uncertainty in financial markets, accidents, natural causes and disasters, or events of 

uncertainty etc. There are two events types, namely positive events classified as 

opportunities while negative events classified as risks.  

    For risk management, there are many methods to asses or investigate the 

risk for hedges that may occur in the future. This study uses value at risk (VaR) and 

expected shortfall (ES) estimates to manage risk which can be explained as follows: 

    1) Value at Risk (VaR)  

     VaR is widely used in risk management to measure risk and has been 

applied to market risks. The advantages of this model is able to summarize single 

character of risk which does not depend on an identified kind of distribution or an easy 

to understand number, and any kind of financial asset applied this model (Bob, 2013).  

     For the VaR definition, McNeil et al. (2005) gave a confidence level 

(0,1)  . We defined the portfolio VaR at confidence level   by the smallest number l 

in the probability that the loss L exceeds l is no larger than (1 ) . Formally, 

         : ( ) 1 ( )LVaR inf l P L l inf l F l           (19) 

     The equation (19) is the definition of VaR and presents the profit and loss 

probability distribution, where the cumulative distribution function (cdf) is ( )LF l  and 

the minus sign presents VaR only as a positive value. The approaches for VaR 

estimation can be represented as follows: 
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     1.1) The Historical Simulation (HS) 

       The HS approach is the use of the historical distribution of assets’ 

prices or log returns in portfolio to estimate the VaR of portfolio, assuming that we hold 

portfolio over the period of time covered by our historical data set. To apply this 

approach, first the different instruments are identified in portfolio and a sample of their 

historic log returns is collected over some observation period. Then, use the weights in 

our current portfolio to simulate the discounted loss distribution (
tL ) . Thus, the HS 

approach does not depend on any parametric model assumptions. However, this 

approach depends on the stationarity of the historical data set to ensure convergence of 

the empirical discounted loss distribution to the true discounted loss distribution. 

       Assume this historical distribution is a good approximation of the 

log returns distribution that we face over the next holding period. This means that we 

assume that the history will repeat itself in the future. Finally, the relevant quantile from 

the historical log returns’ distribution will lead us to the expected portfolio VaR.  

       Moreover, it does not rely on assumption about the distributions of 

log returns because it allows the data to explain and determine the distribution. To 

ensure sufficient estimation precision, HS requires large amounts of data. However, this 

method is not always practically feasible to obtain such large appropriate sample data, 

and even if it is, the history may not repeat itself or contain sufficient extreme 

observations for the VaR estimation. 

     1.2) The Variance - Covariance Method (VC) 

       The VC method is the most well-known approach for VaR 

estimation. Based on this method, VaR for portfolios can be derived by estimating the 

variance and the covariance of some predefined risk factors’ log returns and the 

sensitivity of the portfolio to those risk factors. The log returns of risk factor are 

independently and identically distributed (i.i.d.) is the most basic assumption in the 

model with a multivariate normal distribution.  

       Note that the VC method is only appropriate to a portfolio whose 

gain or loss being assets returns in a linear function. Therefore, it gives a poor estimate 

for portfolios with non-linear instruments such as options. However, the outstanding 

disadvantage of the method is the common assumption. Most financial assets are 



 

18 
 

recognized to have log return distributions being fat tailed, implies that in truth, extreme 

results are more feasible than the normal distribution would suggest. Consequently, the 

VaR estimate might be understated. 

     1.3)  The Monte Carlo Simulation (MCS) 

       Based on the MCS approach aimed to repeatedly simulate a 

random process that governs all financial instruments’ prices in the portfolio. Each 

simulation gives a feasible value for portfolio at the end of target horizon. The 

simulated portfolio values distribution will concentrate to the portfolio’s unknown 

“true” distribution, if we take enough of these simulations, and we can use the 

distribution simulated to compute the “true” VaR.  

    2) Expected Shortfall (ES)  

     ES is a measure that produces better motivation for traders than VaR. 

Sometimes, this method is also called as conditional VaR (CVaR) which Artzner et al. 

(1997) have suggested the ES use to deal with the problems in VaR. ES is a tail VaR 

that combines the VaR aspects with more information in the returns distribution (Kevin 

Sheppard, 2013). The definition and condition of ES can be explained as follows: 

     2.1) Expected Shortfall Definition  

       ES is defined as all losses average or the expected value of 

portfolio loss which are greater or equal than a VaR that has computed. For the 

unconditional ES can be defined as 

        

1 0 1 0

0 0

t t

W W W W
ES E VaR

W W

E r r VaR

  
   

  

    

 (20) 

where 
1, 0,1W t   is the assets value in the portfolio, and 1 and 0 is a time length such as 

one day, one year, etc.   

     2.2) Conditional Expected Shortfall  

       We can estimate ES with the return that we obtain from prediction, 

which the conditional ES can be defined as: 
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          1 1 1 1t t t t tES E r r VaR   
     . (21) 

where 
1tr 
 is a portfolio return at time 1t  . Since t  refer to a time measure, and 1t   

refers to a time unit in the future such as one day, one month, or five years, etc. 

2.1.4 Portfolio Optimization 

    The optimal portfolio is the selecting processes of various assets proportions 

that are held in a portfolio in order to make the best portfolio. The criterion will be 

considered directly or indirectly in the portfolio's rate return in the expected value and 

maybe other measures in financial risk.  

    For this section we first explain the terminology that will be used by 

assuming that we have n assets with random rates of returns ξ1, ξ2,..., ξn. The expected 

rates of return are E[ξ1], E[ξ2],..., E[ξn]. Suppose that there is a portfolio n assets, and wi 

is the asset weight i in the portfolio, by 
1

1
n

ii
w


 . Therefore, the portfolio returns are 

1

n

i ii
w

  and the expected portfolio return is 
1

[ ]
n

i ii
w E 

 . 

    Risk is often specified as the variance of portfolio, 
2 . The random 

variable’s variance is its second central moment, and its mathematical definition is  
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    Given the individual assets’ variance, the portfolio’s variance can be 

computed by using the covariance between asset i and asset j - 2 . 

    Let 2

i  be the variance of asset i and 
2

p  be the variance of portfolio. The 

variance of portfolio can be computed as follows:  

     

2 2 2

1 1

2

1 1 0

2

1

, 1

[( ) ] [( ) ]

[( ( )) ] [( ( ))( ( ))]

[( ( )( )) ]

n n

p p p i i i i

i i

n n n

i i i i i i i i i

i i i

n

i j i i j j

i

n

i j ij

i j

E E w w

E w E w w

E w w

w w

    

     

   



 

  





   

    

  



 

  





. (23) 
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    On the other way, let W  be the vector that represents the each asset 

weights,   be the variance-covariance matrix, and P be the position of current 

portfolio. The variance of portfolio can be shown as 

            
2 T(W W)p    (24) 

    1) Problem of Maximum Expected Returns  

     The problem of maximizing the expected return of the portfolio for an 

investor can be shown as: 
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 (25) 

    2) Minimum Variance Portfolio 

     Although Portfolio’s maximizing returns might be attractive, the model 

in equation (25) does not take into account the portfolio risk. Therefore, investors being 

risk-averse might wish to minimize the portfolio risk. For the problem given the 

minimum variance in portfolio, we can define the formula as: 
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    3) Mean-Variance Efficient Portfolio 

     The minimum variance and maximum returns portfolio give the returns 

and risk in two extremes. Most investors wish to have portfolio being a balance between 

the minimum variance and maximum returns. The mean-variance in optimal portfolio 

can be regulated as follows: 
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     In the equation (27) provide the optimal portfolio namely minimum risk 

for the specified minimum required wealth, R, which mean that other portfolios cannot 

give higher return with a lower risk. On the other way, we could set the maximize 

returns problem given a risk level  , which can be illustrated in the equation below. 

           

1

1

, 1

maximize [ ]

subject to 1

n

i i

i
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






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 (28) 

    4) Efficient Frontier 

     Finding and plotting all optimum portfolios on a returns and risk 

diagram, we can get the plotting of efficient frontier. This figure means that portfolios 

proving the maximum returns for a given risk level. In order to get the efficient frontier, 

firstly, we solved the problem of minimum risk, ignoring any constraints of returns, 

consequently, we will obtain a minimum expected return Wmin. Then, we solved the 

problem of maximum returns, ignoring any constraints of the risk level, so obtaining a 

maximum expected return Wmax. Hence, we can solve the problem of minimum risk for 

a plot set [ , ]min maxW W W . Therefore, the resulting shows a plot sets form the efficient 

frontier. In Figure 2.1 show the sample of the efficient frontier. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Efficient frontier 
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2.1.5 ARMA and GARCH model 

    The asymmetric ARMA and GARCH model was used to filter the time 

series in order to obtain “independent and identically distributed” (i.i.d.) in residual or 

random variables being necessary for implementation of Extreme Value Theory in next 

step. 

    1) Autoregressive Moving Average model (ARMA)  

     The ARMA model was found by Box and Jenkins (1970) to fit data 

removing the linear dependence and to obtain the random variable or residuals 

uncorrelated. This model is used widely in time series of finance modeling and is a 

linear model consisting of two parts, AR(p) and MA(q) process, which the linear 

processes can be conducted as follows: 

     1.1) The AR (p) process 

            1

p

t i t i t

i

r r  



    (29) 

where 1,..., p   are the model’s parameter,   is constant, and 
t  is white noise. 

Moreover, the AR (p) process can also be written as: ( ) t tL X   (without constant), 

where 1( ) 1 ... p

pL L L       which can write the AR (p) as the MA (∞) process: 

( )t tr L  , where 
1

1( ) (1 ... )p

pL L L       . 

     1.2) The MA (q) process 

            1

q

t i t i t

i

r d   



    (30) 

where 1,..., q   are the parameter of model, d  is a constant, and 
t  is white noise. If 

we set the condition 1  , then we can show rt as an AR (∞) process. This condition is 

known as invertibility condition. Because the MA models are feebly stationary by 

construction, they are finite the white noise in linear combination. 

     1.3) The ARMA (p, q) model is 

          1 1

p q

t i t i i t i t

i i

r r     

 

      (31) 
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     We can call the ARMA (p, q) model that a causal process if 

0t i t ii
r  




  where

 
i
 

should satisfy 
0 ii





  . If we write the characteristic 

equation of ARMA (p, q), it can be illustrated that: 

          

1

1

( ) 1 ...

( ) 1 ...

p

p

q

q

a a a

a a a

  

  

    


   

 (32) 

and given that ( )a  and ( )a  have no general roots. The ARMA processes are causal 

if and only if ( )a  does not has roots in a unit circle 1a  . So in the stationary ARMA 

process, we should have 1( ... ) 1p    . 

    2) GARCH model 

     Because of the volatilities clustering and the effect of leverage, so the 

ARMA equation cannot account for the effects of heteroskedastic in the time series 

process generally observed in the fat tails form. Engle (1982) proposed the 

Autoregressive Conditional Heteroskedastic model, namely ARCH model. This model 

can observe that there are the same volatility effects in negative and positive shocks. 

However, in empirical testing, these effects are asymmetric, and the ARCH model 

reacts slowly to large isolated shocks. Bollerslev (1986) presented the Generalized 

Autoregressive Conditional Heteros-kedastic (GARCH) model that is the ARCH model 

extension. The GARCH (k,l) is described by the equations set as follows: 

 
              t t tz     (33) 

             
(0,1)tz N  

 

                     
 
                                  

2 2 2

1 1

k l

t i i t i t i

i i

      

 

     (34) 

where tz
 
is an i.i.d. process with mean 0 and variance 1. Although t  

is uncorrelated by 

definition that its variance condition is 2

t . We consider in the following differ only in 

functional form for the conditional variance in all the GARCH models. (0,1)N  is the 

function of probability density of the innovations.   is the additional distributional 



 

24 
 

parameter to describe the skew and the shape of the distribution. GARCH model can be 

reduced to the ARCH model, if the coefficients   is zero.  

     Therefore, from the explanation above ARMA (p,q) - GARCH (l,k) 

model can be set as:  

          1 1

p q

t i t i i t i t

i i

r r     

 

      (35) 

             t t tz 
    

(36)
 

         2 2 2

1 1

k l

t i i t i t i

i i

      

 

     (37) 

    3) Distribution assumptions 

     In this section, we focus on the normal and the student-t distribution to 

consider the return distributions in the skewness, excess kurtosis, and heavy-tails. For 

the detail, it can be illustrated as follows: 

     3.1) Normal Distribution 

       The normal distribution is widely used in predicting GARCH 

models. The standard normal distribution in log-likelihood function is given by 

      

2

22 2 2

2
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1 1
ln [ln(2 ) ln( ) ]
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t

t
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T t t

tt
t

L e z



  






      (38) 

if the error term follows a normal, where /t t tz    is i.i.d and the [ ] 0tE z  , 

var[ ] 1tz  , and T  is the observation number with regards to the return series. 

     3.2) Student-t Distribution 

       Bollerslev (1986) suggested student-t distribution being used to fit 

the GARCH model for the standardized error in order to better capture the return series 

having the observed fat tails. The symmetric is around mean 0 and function of log-

likelihood can be formulated as follows: 
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 (39) 

where 2v   is parameter of shape, 2 v   and (.)  is function of gamma. If v is 

lower than 2, there will be fatter tails. 

2.1.6 Extreme Value Theory (EVT) 

    LeBaron and Samanta, 2005 supported EVT which aimed to forecast the 

occurrence of exceptionally rare events. This theory is widely used in weather disasters 

management (such as modeling the maximum damages from floods, storms, etc.), in 

insurance, and is particularly well adapted to model financial crashes.  

    EVT can be divided into two approaches when it model extreme events. 

First is the Block Maxima model, and second is the Peak Over Threshold (POT). In 

Block maxima model, the point of maximum data in periods is the extremes value or we 

can call these values that the generalized extreme value distribution (GEV) (Fisher and 

Tippett, 1928). On the other hand, the POT method focuses only on the sample of 

observations that exceeds a certain threshold.  

 

 

 

 

 

 

 

 

 

Source: Gilli and KÄellezi (2006) 

Figure 2.2 Block-maxima and excesses over a threshold u  

    The Block-maxima diagnoses the maximum variable taken in successive 

time periods, for instance monthly or annual. These chosen data include the extreme 

events, can called that a block maxima. For the Figure 2.2 (a), the observations X2, X5, 

(b) (a) 



 

26 
 

X7 and X11 represents that the three observations in each block have the block maxima 

for four time periods. 

    The Peak Over Threshold method focuses on a realization exceeding a given 

threshold (calculated). As Figure 2.2 (b), the observations following will be considered 

as extreme events, that are X1, X2, X7, X8, X9 and X11, all exceeding the threshold u.  

    In this thesis, we focused on the the Peak Over Threshold (POT) method 

and Generalized Pareto Distributions (GPD) which can be explain as follows: 

    Nystrom and Skoglund (2002b) and McNeil et al. (2005) state that POT is 

choice method when applying EVT to find tails of financial returns distributions. The 

starting point is a sample of i.i.d. observations ( )t tX 
 which focus on the distribution 

followed by observations in Figure 2.2 on a certain threshold.  

    Following Jondeau et al., 2006, let u be the threshold in the support of Xt, 

which there is the formula as follows: 

         

( ) [ ]

( ) ( )
,0

1 ( )

u r t t

X X
F

X

F y P X u y X u

F y u F u
y x u

F u

   

 
   



. (40) 

    This formula is the excess distribution function or edf of the random 

variables Xt over the threshold u, and the formula ( ) [ ]t te u E X u X u    is the mean-

excess function or mef.  

    Moreover, we can approximate the asymptotic distribution of the scaled 

excess over threshold by the generalized Pareto distribution (Balkema and De Haan, 

1974 and Pickands III, 1975). Theorem can be shown as follows: 

    We can approximate the excess distribution Fu(y), if FX is in the attraction 

domain of the extreme value distribution Hξ, which there must be a u large enough, as 

follows: 

           ,( ) ( ),uF y G y u     

where       
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with 
[0, ], 0

[0, 1/ ], 0

if
y

if



 

 


 
 for 0 Fy x u   , is generalized Pareto distribution. The 

preceding formula can be rewritten as: 
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 (42) 

if we define x = y + u, which, ξ is the tail index and identically to GEV distributions. 

 

 

 

 

 

 

 

 

 

 

Source: Avdulaj, 2010 

Figure 2.3 Probability density functions and cumulative distribution function. 0   

exponential, 0.5    Pareto type II and 0.5   Pareto distribution. In all 

case 1   and 0  . 

    In the above description, the the POT and block maxima method provide a 

parametric density of distribution in tails, which is important for risk managers. In order 

to get a tails distribution estimation for y, refer back to the excess distribution function 

(edf) definition: 

          

( ) [ ]

( ) ( )

1 ( )

1 ( ) (1 ( ))(1 ( ))

u r

u

F y P Y y Y u

F y F u

F u

F y F u F y u

  






    

 (43) 
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    the tail of y was estimated by applying EVT. Nystrom and Skoglund 

(2002b) assume the observations that are sorted in ascending (or minimum to 

maximum) defining , 1,...n n nY Y  , and 1,k nu Y   as the threshold. We then analyze the 

following observations: , ,...k n n nY Y  , and an estimator for 1 ( )F u  is k/n. The 

estimator for the F(y) tail is obtained by using the GPD as follows: 

         

1/

1,ˆˆ ( ) 1 / 1
ˆ
k ny Y

F y k n









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 (44) 

with ̂  and ̂  estimates of the GPD parameters. Now we have to calculate the high 

quantiles q = F(zq) of the y distribution using the above equation, we obtain 

         , 1,

ˆ 1
ˆ ˆ 1
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q q k k n

q
y y Y

k n










  
        

  (45) 

This clearly shows that the quantiles values estimates are dependent on the sample size 

n and the threshold u and also clear that the GPD parameters need to be estimated 

before obtaining the quantiles estimates. Additionally, the maximum likelihood is 

recommended by most studies and scholars and is the choice method here. 

Selecting the optimal threshold u  

   Although the threshold u already demonstrated to the importance, there are 

some tricky to find its optimal value: u should be high enough, so that the observations 

distribution is larger than the threshold but the higher the u converges to the GPD.  

   There are several methods to estimate u such as a the mean-excess plot or 

simple graphical method (Jondeau et al., 2006). Assuming the underlying GPD 

distribution, the mean excess formula can be shown as: 

           

( ) [ ]

1

t te u E X u X u

u 



  






 (46) 

where 1  , which is clear that a linear function in u is the mef. T observations (x1, ...,xT 

) are assumed to be above the threshold u. The mef estimate can be computed as the sum 

of the excess observations that divided by the number of observations above the 

threshold Nu. 
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The mean-excess plot can be shown as: 

          , ,
ˆ, ( ) 1,..,t T t Tx e x where t T     (48) 

and where  ,

T

t Tx  is the ordered observations sample. The u was selected so that the 

plot of ,
ˆ( )t Te x  is approximately linear for ,t Tx u . The ME plot has a negative slope for 

thin tailed distributions and the extremes are not far from center, while fat-tailed 

distributions exhibit an increasing ME plot. 

   For another way to choose an arbitrary threshold, u is picked at k observations 

exceeding it in an n sample of observations. So, the integer value (k+1)/n is often 

selected as u. An MLE is fitted to 1, ,{ ,..., }n k nx u x u   to estimate ξ and β. There are still 

ways to choose a threshold such as Nystrom and Skoglund (2002) argued that the 

percentage of observations that exceed u should be between 5-12% of the data. The 

exceedances were choosed to be the 10th percentile of the sample for the upper and 

lower tail because the 10th percentile is the appropriateness to choose in the generalized 

Pareto model, and there isthe same biases occurred as in the stable law analysis 

(Dumouchel, 1983). 

2.1.7 Copula Model 

    Copula model is a statistical measure that illustrates a multivariate uniform 

distribution or a function combining univariate distributions to obtain a joint 

distribution, which examines the relation or dependence between many random 

variables. This model is flexible because it distinguishes the choice of dependence 

among variables from the marginal distributions choice of each variable. Copulas are 

useful in portfolio or risk management by helping the marginal modeling and 

dependence structure modeling of a multivariate probability model. The basic and main 

ideas in copula model can be explained as follows: 

    1) Pearson’s correlation 

     After Markowitz (1952) wrote the article on mean-variance in portfolio, 

Pearson’s correlation coefficient has become the most popular to model dependencies. 

The definition of Pearson’s coefficient can be demonstrated as follows: 
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[ , ]

[ , ] ,
[ ] [ ]

Cov X Y
X Y

Var X Var Y
   (49) 

with [ 1,1]   . The correlation coefficient of Pearson essentially captures the linear 

relationship between two variables, and its usage is represented when modeling the 

dependencies between jointly normally distributed returns. However, this coefficient 

has been used to model dependence structures between variables being not assumed to 

be normally distributed. For example credit risk, leading to a widespread misjudgment 

of risks that eventually contributed to the financial meltdown in 2008. 

     Embrechts et al. (1999) stated that the random variables that are analyzed 

should have elliptical distributions. These distributions have densities which are 

constant on ellipsoids. The multivariate normal and student-t distributions are examples 

of elliptical distributions and this idea can be used with mean-variance portfolio, VaR, 

and justified correlation.  

    2) Copulas and Sklar’s theorem 

     Copulas can be used to model the dependence structure between random 

variables following identical or different distributions. The copulas usefulness can be 

understood using this example:  

     Define X and Y, two random variables with marginal distributions      

F(x) = P[X ≤ x] and G(x) = P[Y ≤ y]. The joint distribution function is noted: H(x, y) = 

P[X ≤ x, Y ≤ y]. When the joint distribution exists like the multivariate normal 

distribution, H has a clear expression. In many cases, the margins are easy to obtain, 

while the joint distribution is very elusive. Copulas link the margins with the 

multivariate distribution function, and allow the dependence of risk factors to be 

modified independently of the marginal distributions which are a very useful tool for 

stress testing. 

Definition: Schmidt (2006) 

   A d-dimensional copula is a function C: [0, 1] × [0, 1] → [0, 1] being a 

cumulative distribution function (cdf) with uniform marginal distributions. Thus, 

copulas are noted: C(u) = C(u1,..., ud) and have three properties as follows: 
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   1. cdf are always increasing; any increase in each ui implies an increase of C(u) 

   2. The ith uniform marginal distribution is extracted by positing 1ju   for i j  

and:  

             (1,...,1, ,...,1)i iC u u  (50) 

   3. For 
i ia b , the probability 

1 1 1( [ , ],..., [ , ])d d dP U a b U a b   must be positive, 

which can be written as follows: 

           1

1

1
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1 1

... ( 1) ( ,..., ) 0d

d

d

i i

i d i

i i

C u u
 
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    (51) 

   Schmidt (2006) showed the results on transformation of quantile explain how a 

copula can link marginals and dependence structure. The generalized distribution 

function F inverse is defined by:  

           ( ) { : ( ) }F y inf x F x y    (52) 

   Let U be a random variable uniformly distributed on [0,1], and F be cdf. We 

have: 

            ( ( ) ) ( )P F U x F x    (53) 

   On the other hand, if the real-valued random variable Y follows the continuous 

distribution function F, then: 

             ( ) [0,1]F Y U  (54) 

   Thus, we can simulate random variables with any cdfs using uniformly 

distributed variables. Consequently, we obtain a multivariate distribution function 

which each distribution can be linked to a copula, by choosing a copula and some 

marginal.  

Theorem: Sklar (1959) 

   For a joint cdf F with marginal distributions F1,..., Fd, There exists a copula C, 

such that: 

           1 1 1( ,... ) ( ( ),..., ( ))d d dF x x C F x F x  (55) 
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for all xi in [−∞,∞], i = 1, ...,d. C is unique, if the marginal distributions are continuous 

for all i. Conversely, let us consider a copula C, and marginals F1,..., Fd, then F as 

defined in the equation (55) is a joint distribution based on the abovementioned 

marginal. 

   A copula density can be computed as: 

           

1

1( ,..., )
( )

...
d

d

d

u u

C u u
C u




 
 (56) 

   Densities are often used in practice which they are easy to interpret. 

    3) Non-parametric copulas 

     This approach can be used in order to model a non-linear dependence. 

This method has the advantage of not requiring any additional assumptions on the non-

linear dependence. However, it also has serious drawbacks, namely the non-linear 

dependence patterns can be complicated to interpret, and the results are often unstable 

even in the bivariate case. Deheuvels (1979) introduced the non-parametric copula, 

which is defined: 
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where x1,T ≤ ... ≤ xT,T are sorted observations. The empirical copula frequency is defined 

as: 
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 (58) 

We can link cT and CT through the equation: 
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    4) Copula families in Elliptical copula 

     In this thesis we examine in Value at Risk. So, in the copula model, we 

focused on determining Normal or student-t distributed copulas (Elliptical copula) 

because they are better suited for risk management purposes. 
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     One can extract the Gaussian and student-t copula from the multivariate 

Normal and t-distribution, two elliptical ones. 

Normal copula  

   In the bivariate case, we can define by the cdf: 

     1 1
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 (60) 

with Σ the 2 × 2 correlation matrix: 
1

1





 
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 

, 
  the bivariate standard normal cdf, and 

1  the inverse of the univariate Gaussian distribution and ρ denotes the Pearson 

correlation and belongs to the interval [-1,1]. Independence is equivalent to a correlation 

of zero, and in that case the normal copula is the independence copula. For ρ = 1, the 

normal copula is the comonotonicity copula, and for ρ = −1, it becomes the counter 

monotonicity copula. ρ is the only parameter needed to characterize the copula 

dependence structure which makes the normal copula a comprehensive one. 

   The normal copula density can be written as:  
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 (61) 

with 1 1

1 2( ( ), ( ))u u      . Spearman’s rho and Kendall’s tau are given by: 
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 (62) 

In the multivariate case, the Gaussian copula is given by: 

         1 1

1( ( ),..., ( ))dC u u 

      (63) 

Student-t copula  

   The student-t can be defined as  
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with 
1

1 2 ,( ( ), ( )) ,n n nt u t u t    is the student-t cdf with n degrees of freedom (df), and 

correlation ρ, and 
1

,nt


 is the cdf inverse (Jondeau, Poon, and Rockinger, 2006). 

   Figure 2.4 plots sets of normal and student-t copulas (df=1.5). The first row 

shows the copulas for positive correlation ρ, while the second row reveals copulas for 

negatively correlated variables. Moreover, there are some differences between between 

the two types of copulas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Mudry, 2013 

Figure 2.4 Gaussian and t-copula with ρ = +/−0.4 and DoF = 1.5 

   The student-t copula exhibits stronger tail dependence than the normal copula 

and another interesting point is the student-t copula represents spikes in all four corners 

and can be explained by its mixing nature. 

   Further, the student-t copula clearly displays tail dependence, even for a 

correlation of zero. Assuming 1  , then: 
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 (65) 

   Therefore, student-t copula is more able than normal copula to model joint 

extreme positive and negative returns. Moreover, the dependence structure linked to 

these copulas enables to reproduce a feature observed during the financial crisis 2008.  

    5) Monte Carlo simulations using copulas 

     Copulas allow to model dependency structure between random variables 

more precisely than the other tools, so that copulas are great for using Monte Carlo 

simulations in financial portfolios. The idea of the simulation can be explain as:  

     We firstly need to simulate the uniform margins vector U 
1( ,..., )dU U  

and choosing the desired copula. Then we obtain the arbitrary marginal by using the 

quantile transformation. We repeated the algorithm n times to obtain a n independent 

sample i.i.d. multivariate pseudo random variables with the dependence structure which 

is defined by the copula. The procedure of Monte Carlo simulations using copulas can 

be concluded as follows: 

Normal copula 

  1. A matrix of arbitrary covariance  , deduct a correlation matrix   by resizing 

each cell components by a variance of 1. 

  2. Conduct a Cholesky-decomposition A A  . 

  3. Build standard normal variables 1,..., dX X  being i.i.d. 

  4. Obtain 1( ,..., ) ,dX X X AX    with 1( ,..., )dX X X . 

  5. Calculate U = (Φ(X1), ...,Φ(Xd)) with Φ the cumulative standard normal 

distribution. 

Student-t copula 

  1. Perform the above steps 1 to 4 from the procedure of normal copula.  

  2. Generate 
2

1
,ii

Y





 with 2. . . (0,1)iy i i d N   . 

  3. Obtain ( / / ), 1,...,i iU t X i d     with t  the univariate cdf student-t 

distribution with a df of ν. 
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2.2 Literature Review 

  Leonard (2007) studied about measuring market risk in a case study about copula 

and extreme value approach. This study presents a method for measuring the portfolio 

risk that is the assets’ component with heteroscedastic return series. To obtain a better 

estimate for VaR and ES, this model tried to capture the data generating for each return 

series and also the dependence structure that exists at the portfolio level. The return 

series was modeled by using GARCH model, and the dependence structure was defined 

using a student-t copula. These techniques was used to simulate a portfolio return 

distribution allowing risk measures which this method was applied to five portfolio 

Romanian stocks, and then the accuracy of risk measures was tested using a backtesting 

approach. 

  Chan (2009) studied the forecasting value at risk applying maximum entropy 

density which the usefulness of this method would be assessed empirically using S&P 

500 data. Moreover, VaR forecasts will also be constructed by ARMA-GARCH and 

ARMA-GJR models along with different assumptions of distribution. The empirical 

result showed that the estimated parameter under different assumptions of distribution 

was similar except ARMA-GARCH model under the student-t distribution. Therefore, 

the estimates could not be modeled in special case and the assessment on the VaR 

estimate was not conducted with the ARMA-GARCH model in the assumption on 

student-t distribution. The violation percentage is the ratio between the violations 

relative numbers that the total forecasts number should be approximate to the 

significance level. The performed MED is the best, followed by GARCH with GED 

distribution and GJR with normal distribution.  

  Hammoudeh et al. (2011) studied risk management in the precious metals. They 

examined the correlation dynamics and volatility in precious metals consisting of gold, 

silver, platinum, and palladium. They studied the risk management relating to market 

risk and hedging. VaR was used to analyze the poor situation in market associated with 

investments in financial market, and plan the optimum risk management. VaR was 

computed using three approaches consisting of, the different GARCH models, the 

calibrated RiskMetrics and the semi-parametric filtered historical simulation approach. 

The result showed that the economic importance was highlighted for assessing the daily 

capital charges which analyzed with the VaR estimate. 



 

37 
 

  Tesarov (2012) studied value at risk GARCH versus stochastic volatility models. 

This work compares GARCH volatility and stochastic volatility (SV) models with the 

assumption of student-t distribution in errors and its empirical forecasting performance 

of Value at Risk on five stock price indices: S&P, NASDAQ Composite, CAC, DAX 

and FTSE. It introduced in detail the problem of SV models Maximum Likelihood 

examinations and suggested a newly developed approach called efficient importance 

sampling (EIS). EIS is a procedure that provides an accurate Monte Carlo evaluation of 

likelihood function which depends on high-dimensional numerical integrals. 

Comparison analysis was separated to in-sample and out-of-sample forecasting 

performance and evaluated using standard statistical probability backtesting methods as 

conditional and unconditional coverage. Based on empirical analysis, the thesis showed 

that SV models can perform at least as good as GARCH models if not superior in 

forecasting volatility and parametric VaR. 

  Bob (2013) studied VaR estimation with GARCH-EVT-Copula approach. This 

study applied this approach with the stock index data from Germany, Spain, Italy and 

France. The marginal distributions was modeled by using an asymmetric GARCH and 

EVT method for each log returns series, and then used Copula functions to capture the 

dependent structure. The Monte Carlo Simulation approach was used to estimates the 

portfolio VaR. Backtesting methods were used to check the goodness of the approach. 

The results was concluded that, the GARCH-EVT-Copula approach was better 

performances than other approach and could estimate accurate VaR. 

  Tang et al. (2014) studied the risk estimate of natural gas portfolios by using 

GARCH-EVT-Copula approach. Firstly, the univariate ARMA-GARCH was used to 

model and extract residuals from each natural log return series. Second, they fitted the 

residuals tails by using EVT to model marginal distributions. Third, they capture the 

copula parameter with multivariate normal and student-t copula to explain the 

dependence structure of natural gas portfolio. Finally, they simulated N portfolios to 

estimated VaR and ES. The empirical results showed that, the VaR and ES value of the 

five natural gases in equally weighted portfolio obtained from the student-t copula are 

higher than value obtained from the normal copula. Additionally, in the minimizing 

portfolio risk, the natural gas portfolio optimization weights found that the multivariate 

normal copula and student-t copula are similar and different confidence levels. 
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Table 2.1 Literature Review Methodology 

Author Topic 
Variables used 

in the study 
Methodology 

Stanga Alexandru 

Leonard (2007) 

Measuring market risk: 

a copula and extreme 

value approach 

A portfolio of five 

Romanian equities 

traded on the 

Bucharest Stock 

Exchange. 

1) GARCH models  

2) Extreme Value Theory 

(EVT) models 

3) Copula models 

4) Measures of risk 

Felix Chan 

(2009) 

Forecasting Value-at-

Risk using Maximum 

Entropy Density 

S&P 500 1) Parametric Volatility 

Models and Value-at-Risk 

2) Maximum Entropy Density 

Burcak Bulut 

(2010) 

Forecasting the Prices 

of Non-Ferrous Metals 

with GARCH Models 

and Volatility Spillover 

from World Oil Market 

to Non-Ferrous Metal 

Markets 

The mean three-month 

futures prices of three 

commonly traded non-

ferrous metals (copper, 

aluminum, lead, nickel, 

tin, and zinc) 

GARCH family is GARCH, 

TGARCH and EGARCH 

models 

Henrik Skaarup 

Andersen and 

David Sloth 

Pedersen (2010) 

Extreme Value Theory 

with Applications in 

Quantitative Risk 

Management 

Danish OMX C20 

Index consist of   

1) Novo Nordisk ’B’ 

(NOVO B) 

2) Carlsberg ’B’ 

(CARLS B)  

3)  Danske Bank 

(DANSKE) 

Univariate Methods 

1) Historical Simulation (HS) 

2) HS with a GARCH-type 

model (HS-GARCH and 

HS-GARCH-t) 

3) Filtered Historical 

Simulation (FHS) 

4) HS with Conditional EVT 

(HSCONDEVT) 

Multivariate Methods 

1) Variance-Covariance (VC) 

2) Variance-Covariance with 

EWMA (VC-EWMA) 

3) Constant Conditional 

Correlation Model (CCC-

GARCH),  

4) Dynamic Conditional 

Correlation Model (DCC-

GARCH) 

5) Multivariate Conditional 

EVT 

 Shawkat 

Hammoudeh, 

Farooq Malik, 

and Michael 

McAleer (2011) 

Risk Management of 

Precious Metals 

All precious metals are 

traded at COMEX in 

New York 

1) Value-at-Risk 

2) Risk Metrics 

3) GARCH with t distribution 

4) GARCH - Filtered 

Historical Simulation (FHS) 
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Table 2.1 (Cont.) 

Author Topic 
Variables used 

in the study 
Methodology 

Bc. Viktoria 

Tesarov (2012) 

Value at Risk GARCH 

vs. Stochastic 

Volatility Models: 

Empirical Study 

1) S&P 500 (GSPC)  

2) NASDAQ 

Composite (IXIC) 

3) FTSE 100 (FTSE) 

4) CAC 40 (FCHI)   

5) DAX 30 (GDAXI) 

1) Value at Risk 

2) GARCH model 

3) Stochastic Volatility 

Models 

4) Backtesting 

Ngoga Kirabo 

Bob (2013) 

Value at Risk 

estimation A GARCH-

EVT-Copula Approach 

1) DAX 

2) IBEX 35 

3) FTSE MIB  

4) CAC 40 

1) Value at Risk 

2) Copula functions 

3) Extreme Value Theory 

(EVT)  

4) GARCH models 

Jiechen Tang et 

al. (2014) 

Estimating Risk of 

Natural Gas Portfolios 

by Using GARCH-

EVT-Copula Model 

Spot and futures prices 

at the Title Transfer 

Facility (TTF) Hub 

1) GARCH model 

2) Extreme Value Theory 

(EVT) 

3) Copula 

4) Portfolio Risk Analysis 

consist of VaR and CVaR 

and Optimal Portfolio with 

Minimum Risk 

 


