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CHAPTER 4  

Empirical Result 

4.1 Descriptive Statistic  

  In the first state, precious metal prices (secondary data) consisting of gold, 

palladium, platinum, and silver were used to calculate the natural log returns which are 

defined as  , , , 1ln /i j i j i jr P P 

 

where ,i jP  is the thi  metal price at time j , ,i jr

 

is the thi  

log return of metal price at time j , and 
i

 

indicated the thi  precious metal price. The 

daily return of each precious metal is shown in Figure 4.1. The return plots in markets 

move in a similar fashion. 

  In table 4.1, it is clear that the mean of each precious metal variable is positive 

except platinum. The highest mean returns is palladium (0.000333), the lowest mean 

return is platinum (-0.000016), and the standard deviations in silver is highest 

(0.023551) and in gold lowest (0.012547). The value of skewness and kurtosis in all of 

the precious metal returns are not equal to zero and have excess kurtosis, respectively. 

Consequently, the distributions of metal returns have a fatter tail than the normal 

distribution. Moreover, the Jaque-Bera test, which is the normal distribution test of 

return series, rejects the null hypothesis, thus the return series of precious metal price is 

non-normal distribution. 

Table 4.1 Descriptive statistics on precious metal returns 

 GOLD PALLADIUM PLATINUM SILVER 

Mean 0.000276 0.000333 -0.000016 0.000089 

Median 0.000306 0.000000 0.000000 0.000000 

Maximum 0.068653 0.109199 0.069395 0.182786 

Minimum -0.101624 -0.178590 -0.084934 -0.186926 

Std. Dev. 0.012547 0.020347 0.014856 0.023551 

Skewness -0.518193 -0.596640 -0.633697 -0.415566 

Kurtosis 8.462625 9.509218 7.899701 12.026550 

Jarque-Bera 2854.427 4043.631 2364.967 7586.972 

Probability 0.000000 0.000000 0.000000 0.000000 

Source: Calculation 
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Figure 4.1 Precious metal returns 
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4.2 Unit Root Test Result 

  There are 3 approaches for the unit root test to test the stationarity of return 

consisting of Augmented Dickey-Fuller (ADF), Phillips and Perron (PP), and 

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test shown in table 4.2. The result shows 

that the unit root tests for each variable have a statistical significance level of 0.01 and 

all statistic values are less than critical value which conforms to the hypothesis in 

chapter 3. This means that all of the precious metal returns are stationary characteristics. 

Therefore, these variables can be used to estimate ARMA-GARCH model in the next 

step.  

Table 4.2:  Augmented Dickey-Fuller test, Phillips and Perron test, and Kwiatkowski-

Phillips-Schmidt-Shin test on precious metal returns 

Unit Root 

Test 

GOLD PALLADIUM PLATINUM SILVER 

Statistic 
Critical 

Value 
Statistic 

Critical 

Value 
Statistic 

Critical 

Value 
Statistic 

Critical 

Value 

ADF-test         

None -47.273* -2.566 -45.986* -2.566 -44.112* -2.566 -51.945* -2.566 

Intercept -47.284* -3.433 -45.987* -3.433 -44.103* -3.433 -51.934* -3.433 

Trend and 

Intercept 
-47.338* -3.962 -45.979* -3.962 -44.124* -3.962 -51.951* -3.962 

PP test         

None -47.297* -2.566 -45.986* -2.566 -44.120* -2.566 -51.938* -2.566 

Intercept -47.319* -3.433 -45.987* -3.433 -44.110* -3.433 -51.927* -3.433 

Trend and 

Intercept 
-47.403* -3.962 -45.978* -3.962 -44.128* -3.962 -51.952* -3.962 

KPSS test         

Intercept 0.373 0.739 0.108 0.739 0.218 0.739 0.184 0.739 

Trend and 

Intercept 
0.0364 0.216 0.098 0.216 0.062 0.216 0.059 0.216 

Source: Calculation 

Note: 1) * denote significant at level 99%  

  2) Critical value at 1% level 

4.3 Marginal Distribution Result 

  4.3.1 Filter the Returns for Each Index 

    In this section, we first consider in the sample autocorrelation function 

(ACF) of the precious metal returns and the sample ACF of the squared precious metal 

returns, because some degree of autocorrelation and heteroskedasticity is exhibited in 

most financial return series. In figure 4.2 and figure 4.3 show the sample ACF of 

precious metal returns and sample ACF of squared precious metal returns.  
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Figure 4.2 The sample autocorrelation function of precious metal returns  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 The sample autocorrelation function of squared precious metal returns 
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    Figure 4.2 and Figure 4.3 demonstrate the degree of persistence in variance, 

so the asymmetric ARMA-GARCH model was used to remove the autocorrelation and 

to capture the conditional heteroskedasticity (Avdulaj, 2010). The ARMA-GARCH 

model with normal and student-t distribution is shown in appendix table 1 and table 4.3, 

respectively. The appropriated distribution was selected using Bayesian information 

criterion (BIC) and Akaike information criterion (AIC) which found that student-t 

distribution is appropriate for modeling because AIC and BIC in model with student-t 

distribution is less than the normal distribution. When selecting optimal lag for 

ARMA(p,q), we found that the return on Gold, Palladium, Platinum, and Silver satisfied 

ARMA(1,1), ARMA(3,3), ARMA(3,3), and ARMA(2,1) with GARCH(1,1), 

respectively.  

Table 4.3 Estimate of ARMA (q, p) GARCH (1, 1) in student-t distribution result 

Variable GOLD PALLADIUM PLATINUM SILVER 


 0.00059*** 0.00055** -0.00046 -0.00138 

AR(1) 0.68338** -0.76281*** 0.21323*** 0.90825*** 

AR(2) - 0.65244*** 0.57005*** 0.09116*** 

AR(3) - 0.85021*** 0.21249*** - 

MA(1) -0.70547*** 0.77797*** -0.19034*** -0.99808*** 

MA(2) - -0.66865*** -0.57062*** - 

MA(3) - -0.87610*** -0.23831*** - 

  9.98E-07** 2.90E-06*** 1.97E-06** 2.51E-06** 

  0.03759*** 0.06524*** 0.05380*** 0.03051*** 


 0.95863*** 0.93225*** 0.93695*** 0.96336*** 

K (t-coefficeint) 4.02879*** 4.47291*** 5.914737*** 5.25578*** 

AIC -6.195892 -5.306617 -5.917003 -4.974453 

BIC -6.177869 -5.278274 -5.888660 -4.953848 

Q (25)  29.499 26.619 15.619 22.797  

Q2 (25)  33.478 26.104  24.102 14.841  

ARCH LM (30)  1.2153 1.1584 0.9524 0.5039 

Jarque-Bera test 2678.741*** 599.8361*** 216.1603*** 5055.118*** 

Observations 2,215 2,213 2,213 2,214 

Source: Calculation 

Note: *, **, and *** denote significant at 90%, 95%, and 99%, respectively 

    In the ARMA-GARCH model above, we obtained the ordinary residuals, 

then the ordinary residuals of model were divided by conditional standard deviation, 

/t t tz   , and thus obtaining standardized residuals which are approximately 

identically and independently distributed. We can compare figure 4.4 and 4.5 with 

figure 4.2 and 4.3 which reveal that all autocorrelation is removed and a data are 

approximately i.i.d.  
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    Moreover, the Ljung–Box (Q and Q2) and ARCH LM statistics were tested 

for indication of any serial correlation and conditional heteroskedasticity, respectively. 

The result in table 4.3 showed that in Ljung–Box and ARCH LM test for each precious 

metal residuals were not at a statistical significance level of 0.01, 0.05, or 0.1. This 

result reveals that any serial correlation and the heteroskedasticity condition that existed 

in the precious metals returns series have removed and indicate no significant 

appearance of the ARCH effect. In terms of the Jarque-Bera test, it is the statistic to test 

whether the standardized residuals are normal distribution. The results showed that the 

standardized residuals are leptokurtic, and the Jarque-Bera statistic rejects the 

hypothesis of normal distribution which means that the fat-tailed asymmetric 

conditional distributions outperform the normal for modeling and forecasting the 

precious metals volatility returns.  

    The above testing represents that the standardized residuals of precious 

metals in student-t distribution are close to i.i.d. Thus, the filtering procedure has been 

effective in producing i.i.d. residuals on which EVT can be implemented (McNeil and 

Frey, 2000) and can suggest that the selected asymmetric ARMA-GARCH models are 

well specified. Therefore, now we have the data that is a required form to apply in the 

Extreme Value Theory and Copula model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 The sample autocorrelation function of precious metal residuals 
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Figure 4.5 The sample autocorrelation function of squared precious metal residuals 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Residuals and Conditional Standard Deviation of Precious Metals 
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  4.3.2 Extreme Value Applying 

    In this section, we estimate the semi-parametric cumulative distribution 

function for the standardized residual that obtain from ARMA-GARCH model. 

    EVT is then applied to those residuals which Generalized pareto distribution 

(GPD) specially is for tail estimation. We chose the exceedances to be the 10th 

percentile of the sample for the upper and lower tail of the residual distribution of the 

residuals (see Dumouchel, 1983) because of the appropriateness to choose the 10th 

percentile in the generalized Pareto model, and the same biases occurred as in the stable 

law analysis. We assumed that excess residuals over threshold follow the GPD and use 

the Gaussian kernel estimate for the remaining part. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Semi-parametric cumulative distribution functions   

    In Figure 4.7, we plotted the semi-parametric cumulative distribution 

function of the 4 precious metals case which was plotted from the standard innovation 

from EVT. The figure represents the lower and upper tail regionns or GPD estimate, 
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expressed by red line and blue lines, respectively and is suitable for extrapolation. 

Likewise, the kernel-smoothed interior or empirical distribution estimate, displayed in 

black line, is suitable for interpolation. Moreover, we plotted the empirical CDF of the 

upper tail exceedances of the residuals along with the CDF fitted by the GPD in figure 

4.8 to assess the GPD fit. The diagrams indicate that the fitted distribution (blue line) 

close to the exceedance data (red line) thus the GPD model is a good choice to apply 

with each residual of precious metals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 Fitted cumulative distribution functions for upper tail 

    We have confirmed that GPD is a good choice for each residual of precious 

metals. Therefore, the shape parameter  ,
 
scale parameter  , and threshold u for each 

precious metal’s residuals were estimated. We chose the exceedances to be the 10th 

percentile of the sample and used the MEF and Hill plot of sample to define an optimal 

threshold, which the left tail, right tail, and threshold are demonstrated in table 4.4.  
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Table 4.4 Parameter estimation for each precious metal’s residual  

 Gold Palladium Platinum Silver 

Threshold 
Lu  -0.0207 -0.0313 -0.0223 -0.0346 

L  0.1265 0.1291 -0.0046 0.2803 

L  0.0093 0.0168 0.0160 0.0163 

Threshold 
Ru  0.0187 0.0297 0.0215 0.0324 

R  0.1758 -0.0586 0.0807 0.1401 

R  0.0070 0.0170 0.0093 0.0152 

Source: Calculation 

4.4 Copula estimation result 

  After obtaining the GPD parameter and residuals , 1,2,3,4, 1,2,...,itz i t T  , we 

substituted 
itz  into equation (81) and obtained the marginal distribution ( )i itu F z . 

Then the standardized residuals were transformed to uniform variates by the semi-

parametric ECDF derived above (Figure 4.7) of each margin and calibrating of t copula 

to data by maximum log-likelihood method. According to the estimate of the copula 

parameter represented in section 3.2.3, the t copula can be fit by the transformed data 

above and then capture the dependence structure between time series. In table 4.5, we 

have the correlation matrix obtained from fitting the t copula while the degrees of 

freedom are 11.1430. The t copula was used to estimate because the Gaussian copula 

cannot capture the dependence of a fat tail and can show the observations in the tails 

more than the Gaussian (Wang et al., 2010). 

Table 4.5 Empirical GARCH EVT t copulas parameters ( ̂ ) 

11. 30ˆ 14   
GARCH EVT t Copula 

Gold Palladium Platinum Silver 

Gold 1.00000 0.39968 0.52048 0.46417 

Palladium 0.39968 1.00000 0.72882 0.52720 

Platinum 0.52048 0.72882 1.00000 0.61118 

Silver 0.46417 0.52720 0.61118 1.00000 

Source: Calculation 

  We have the empirical GARCH EVT t copulas parameters so the simulation 

algorithm described in section 3.3 was applied in this step. We are able to simulate the 

returns at time t+1 or any time to predict based on the correlation structure of t copula or 

copulas parameters in table 4.5.  
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4.5 Portfolio Risk Analysis 

  Now we can find the Value-at-Risk of portfolio. Unfortunately, Avdulaj (2010) 

states that there is one more thing that should be considered before calculating VaR. As 

we are working with log returns, we have to be careful because log returns are time 

additive but not portfolio additive. On the other hand, the simple returns are portfolio 

additive but not time additive. Thus, when we constructed the portfolio return series, we 

first converted the individual logarithmic returns to simple returns and multiplied each 

return series with its weight in the portfolio. In this way, we obtained the portfolio 

arithmetic return. Finally, we converted back the portfolio return to logarithmic form.  

  Avdulaj (2010) represented the reasoning clearly, by denoting that 
1/t t tr logP P  

is the log returns, 
1 1( ) /t t t tR P P P    is the simple returns, and w the weight of each 

index in the portfolio (w is column vector). Lets first convert from log return to simple 

return: 
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 (90) 

  We weighed the individual simple return for the portfolio at time t: ,( 1 )* ,i tr

ie w  

where {1,..., 4}i  represents each index. Converting back to log returns and calculating 

the cumulative returns (the gain/loss during the risk horizon) will be used to construct 

the ECDF for the simulated returns: 

         , ,

1 1

(1 ( 1) )j i t

T H
r

i

t j

log e w
 

    (91) 

where {1,..., 4}i  stands for each index. H is the risk horizon in days and T is the length 

of the simulated time series (also called trials, in our case we set as T = 100,000). 

  We simulated 100,000 independent random trials of dependent standardized index 

residuals for a risk horizon of 1, 10, and 22 trading days. Then, using the simulated 

standardized residuals as the i.i.d. input noise process, restoring it into equation (78), 

(79), and (80), we can obtain returns at time t + 1, t + 10, and t + 22. 
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  Finally, given the each of simulated returns, we formed a 1/4 equally weighted 

index portfolio composed of the individual indices, and calculated the VaR at 99% 

confidence levels at risk horizon. The 90%, 95%, and 99% VaR estimate are shown in 

Table 4.6. For the results shown in table 4.6, the estimation of VaR with 90% 

confidence level for 1 trading day is 2.3405%. We can interpret that in 90% confidence, 

we expect that worst daily loss will not exceed 2.3405%. For example, if we invest 

$100, worst daily loss will not exceed $2.3405 ($100×-2.3405%). Additionally, if we 

take look at a ten day and one month horizon, with 90% confidence, we expect that the 

worst ten days and one month loss will not exceed 3.2070% and 5.3335%, respectively. 

We can say that if we invest $100, our worst ten day and monthly loss will not exceed 

$3.2070 and 5.3335, respectively. For the maximum loss for a one day, ten days, and 

one month risk horizon, it will be 25.3954%, 51.4035%, 82.7718%, respectively. It 

implies that maximum loss for one day, ten days, and one month trading will be 

$25.3954, $51.4035, $82.7718, respectively, if we invest $100. 

Table 4.6 Value at Risk based on Monte-Carlo simulation and GARCH EVT t Copula 

by using cumulative return 

 1 trading day 10 trading day 22 trading day 

Simulated 90% VaR: -2.3405% -7.3904% -10.8867% 

Simulated 95% VaR: -3.2070% -9.9119% -14.4865% 

Simulated 99% VaR: -5.3335% -15.2624% -22.5964% 

Maximum Simulated Loss: 25.3954% 51.4035% 82.7718% 

Maximum Simulated Gain: 20.8516% 35.5827% 50.6751% 

Source: Calculation 

  From the simulated returns, we can plots the profit and loss distribution of our 

EVT and copula model illustrating in figure 4.9 which shows the empirical CDF of the 

simulated portfolio returns over 1 trading day, 10 trading days, and 22 trading days or 

one month. VaR measures can be read from the curve such as VaR at 90% of one month 

is approximately -0.10, corresponding to 10% cumulative probability. We can say that, 

at 90% confidence, our portfolio will lose no more than 10% over the next month. 
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Figure 4.9 Empirical cumulative distribution function of simulated returns 

  The above VaR estimation is only one way to predict the risk in the future for risk 

management by using the cumulative return. The risk estimation can be estimated in 

expected shortfall value, which is easily optimized and requires a larger sample size 

than VaR for the same level of accuracy. Therefore, table 4.7 shows the calculation VaR 

and ES of the portfolio with an equally weighted portfolio of four precious metals by 

using simulated return. In Table 4.7, figure the estimated VaR and ES at level of 1%, 

5%, and 10% under the equally weighted assumption. In period t+1, the estimation ES 

are higher than VaR and converges to -3.689, -4.635 and -7.146 at 10%, 5%, and 1% 

level, respectively.  

Table 4.7 Value at risk and expected shortfall equally weighted portfolios by using 

simulated return 

Portfolio 
Expected Value (GARCH-t EVT Copula) 

1% 5% 10% 

VaR -5.391% -3.229% -2.359% 

ES -7.146% -4.635% -3.689% 

Source: Calculation 
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  The ES shows the loss exceeds VaR, appropriating to analyze portfolio risk. So 

the optimal portfolio weights of the selected assets were calculated under minimized 

expected shortfalls with respect to maximized returns following equation (89). 

  Figure 4.10 shows the result of the efficient frontier of the portfolio under 

different expected return at a given significance level of 5%, which comes from the 

optimization portfolio based on mean-CVaR (ES) model. For this result, the Monte 

Carlo simulation was applied to simulate a set of 100,000 samples and to estimate the 

expected shortfall of an optimal weighted portfolio.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 The efficient frontiers of CVaR under mean 

  For the discussion above, the VaR and ES of an equally weighted portfolio was 

focused on estimating. However, for commercial banks and individual investors, one of 

the major concerns is to minimize the risk of the investment portfolio. In order to 

address this concern, the optimal portfolio weight was calculated by minimizing the 

portfolio risk under minimize expected shortfall with respect to maximize returns. The 

result is shown in Table 4.8. This result illustrates that most of investment proportions 

are gold and silver, whereas palladium and platinum have little investment proportion, 

especially palladium, that having zero proportion in the precious metal portfolio. 
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Moreover, although platinum has a high investment proportion in portfolios 1 to 3, these 

portfolios have negative return. Therefore, most of investment proportions focus on 

gold and silver for portfolios 4 to 10. 

Table 4.8 Optimal investment proportion of precious metal portfolio with minimum 

risk (ES 5%) 

Portfolios 
Investment proportion 

Returns Risk 
Gold Palladium Platinum Silver 

1 0.280 0.000 0.720 0.000 -0.0079% 4.5220% 

2 0.426 0.000 0.574 0.000 -0.0050% 4.6159% 

3 0.550 0.000 0.436 0.014 -0.0020% 4.8674% 

4 0.631 0.000 0.315 0.055 0.0010% 5.2007% 

5 0.710 0.000 0.193 0.096 0.0039% 5.5886% 

6 0.798 0.000 0.069 0.133 0.0069% 6.0205% 

7 0.738 0.000 0.000 0.262 0.0099% 6.6171% 

8 0.492 0.000 0.000 0.508 0.0128% 8.1744% 

9 0.246 0.000 0.000 0.754 0.0158% 10.3610% 

10 0.000 0.000 0.000 1.000 0.0188% 12.7779% 

Source: Calculation 

  The result of optimum portfolio in table 6 suggests that the investment proportions 

in each portfolio should not have focused on palladium. The reasons are that, in 2013, 

the palladium price high oscillated, and in the palladium market was excess supply, so 

that the palladium prices declined along with gold price (Scotiabank, 2013). In addition, 

in 2015, the palladium price highly decreased because China’s automotive market had 

decreasing sales volumes (Arnold, 2015).  

 


