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CHAPTER 2 

 

Methodologies 

 

All the methods are discussed in this chapter, such as CAPM with belief function, 

CAPM with interval data, and CAPM-based vine copulas. First, this chapter introduces 

the CAPM model with Belief functions. Second, we present Interval value in linear 

regression .Third, we provide for some brief copula theory. Last, portfolio optimization 

method, which is useful for our studies in Chapters 3, 4 and 5.  

 

2.1 Capital Asset Pricing Model with Belief functions 

 

2.1.1 Maximum likelihood estimation of capital asset pricing model 

The CAPM represents a positive and linear relationship between asset 

return and systematic risk relative the overall market. The linear regression 

model is defined as  

 

 
𝐸(𝑅𝑖) − 𝑟𝑓 = 𝛼 + 𝛽𝐸(𝑅𝑀 − 𝑟𝑓), 

 
    (2.1) 

where 𝐸(𝑅𝑖) is the expected return of the asset,  𝐸(𝑅𝑀) is the expected 

market portfolio return, 𝑟𝑓is the risk free rate, 𝛼 is the intercept and  𝛽 is the 

equity beta, representing market risk. The observed the historical returns of 

stock 𝑅𝑖 = (𝑟𝑖1, … , 𝑟𝑖𝑛) and returns from market 𝑅𝑀 = (𝑟𝑚1, … , 𝑟𝑚𝑛).  The 

estimator of beta is a measure of risk for financial analysis and also for risk 

and portfolio managers. To measure the systematic risk of each stock via 

beta takes form as  

 

 

𝛽 =
𝑐𝑜𝑣(𝑅𝑖, 𝑅𝑀)

𝜎𝑀
2   ,     (2.2) 

where  𝜎𝑀
2   represents the variance of the expected market return. Given 

that, the CAPM predicts portfolio’s expected return should be about the 
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risk and the market returns. The parameter 𝛽 estimation procedure is 

defined by Arellano-Valle et al. (2010). The linear regression equation 

given in (2.1), which has extended into equation as follows: 

 𝑟𝑖 − 𝑟𝑓 = 𝛼 + 𝛽(𝑟𝑚 − 𝑟𝑓) + 𝜀𝑖 (2.3) 

or 

 𝑦𝑖 = 𝛼 + 𝛽𝑥𝑖 + 𝜀𝑖 , (2.4) 

where 𝑟𝑖  denotes the return of stock i, 𝑟𝑚 is the market return and 𝑟𝑓 

corresponds to the is free return , so that 

 

 
𝑦𝑖 = 𝑟𝑖 − 𝑟𝑓 , 

 
(2.5) 

and 

 

 
𝑥𝑖 = 𝑟𝑚 − 𝑟𝑓 , 

 
(2.6) 

represent the return of an asset in excess of risk free rate and the excess 

return of the market portfolio of assets. 

 

The estimation method with the considering in the financial model is based 

on the least squares theory under the assumption of the random errors 

𝜀1, … 𝜀𝑛 are independent and identically distributed according to the normal 

distribution. The normal density function can be expressed as 

 
𝑁(𝜀𝑖 , 0, 𝜎2) =

1

√2𝜎2
exp {

−1

2𝜎2
(𝑦 − 𝑥𝛽)2}. 

 
(2.7) 

The likelihood function is given by 

 𝐿 = Π𝑛=1
𝑛 𝑁(𝑦𝑖 , 𝑥𝑖 , 𝛽, 𝜎2) = (2𝜎2)

−𝑛

2 exp {
−1

2𝜎2
(𝑦 − 𝑥𝛽)′(𝑦 − 𝑥𝛽)}. (2.8) 
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2.2 Belief Function 

The theory of belief function is a formalism for reasoning with the uncertain, inaccurate 

and incomplete information. The model comprises several functions including Bel 

(degree of belief), Dis (degree of disbelief), Unc (degree of uncertainty) and Pls (degree 

of plausibilty), in range of [0,1]. Belief function can be defined on finite set and infinite 

set. Let us begin with finite case. 

 

2.2.1 Belief functions on finite set 

In the formalism of belief functions, we assign probabilities to sets (see, 

Pearl (1990)).The belief model as given below (see, Frikha (2014), Liu et 

al. (2014), Nampak et al. (2014)). 

 

Let 𝛩 be a finite set. 𝛩 is called frame of discernment of the problem of 

consideration. The power set of  𝛩  is denoted by 2𝛩.  A basic probability 

assignment (BPA) is a function 𝑚(. ) from  2𝛩 to [0,1] that assigns a 

number [0,1] to each subset 𝐴 of 𝛩. The quantity  𝑚(𝐴), called the mass of 

its subsets. This function satisfies the following conditions: 

 

 

0 ≤ 𝑚(𝐴) ≤ 1, 𝑚(∅) = 0, ∑ 𝑚(𝐴) = 1

𝐴⊆𝛩

. (2.9) 

When 𝑚(𝐴) ≥ 0, 𝐴 is called focal set of 𝑚.To each BPA, we can associate a 

belief function and a plausibility function are a mapping 𝐵𝑒𝑙(𝐴): 2𝛩 ⟶

[0,1] and  𝑃𝑙(𝐴) ∶ 2𝛩 ⟶ [0,1] respectively, defined as: 

 

 

𝐵𝑒𝑙(𝐴) = ∑ 𝑚(𝐵),

𝐵⊆𝐴

 (2.10) 

 
𝑃𝑙(𝐴) = ∑ 𝑚(𝐵),

𝐴∩𝐵≠∅

 

 

(2.11) 

where 𝐵𝑒𝑙(𝐴) measures the total belief completely attributed to 𝐴 ⊆ 𝛩. It is 

interpreted as the lower bound of probability of A. 𝑃𝑙(𝐴) is interpreted as 

the upper bound of probability of A. 
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The two functions satisfied the following properties: 

 
 

𝐵𝑒𝑙(𝐴) ≤ 𝑃𝑙(𝐴), (2.12) 

 𝑃𝑙(𝐴) = 1 − 𝐵𝑒𝑙(𝐴̅), 
(2.13) 

where A is the complement of A and 𝐵𝑒𝑙𝐴̅ is called a degree of disbelief in 

A. The uncertainty can be measured by plausibility and belief functions. Eq. 

(2.14) represents the difference between belief and plausibility. 

 

 
𝑃𝑙(𝐴) − 𝐵𝑒𝑙(𝐴) = 𝑈𝑛𝑐. 

 

(2.14) 

If Unc = 0, then  𝑃𝑙(𝐴) = 𝐵𝑒𝑙(𝐴).  

The schematic description of the relationship between belief, disbelief and 

uncertain functions is shown as follows: 

 

Fig.2.1 Schematic description of the relationship between belief, 

disbelief and uncertainty (Carranza et al. (2005)). 
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2.2.2 Belief functions on infinite set 

In an infinite case, there may not be a mass function associated with 

completely monotone function as in the finite case, Denoeux (2013). The 

definitions are provided which defined by Denoeux (2013) as following: 

Let(Ω, 𝐵) be a measurable space (i.e., B is a sigma–field, that is a non–

empty subset of 2𝛩closed under complementation and countable union). A 

belief function on B is a function 𝐵𝑒𝑙: ⟶ [0,1]  verifying the following 

three conditions: 

1. 𝐵𝑒𝑙(𝜙) = 0 

2. 𝐵𝑒𝑙(Ω) = 0 

3. For any 𝑘 ≥ 2 and any collection  𝐵1, … , 𝐵𝑘 of elements of B, 

 

 

𝐵𝑒𝑙(𝑈𝑖=1
𝑘 𝐵𝑖) ≥ ∑ (−1)|𝐼|+1𝐵𝑒𝑙(⋂𝑖∈𝐼𝐵𝑖)

𝜙≠𝐼(1,…,𝑘)

 

 

(2.15) 

Furthermore, a belief function 𝐵𝑒𝑙 on (Ω, 𝐵)  is continuous if for any 

decreasing  sequence 𝐵1 ⊃ 𝐵2 ⊃ 𝐵3 …  of elements of  B, 

 

 
lim

𝑖⟶∞
𝐵𝑒𝑙(𝐵𝑖) = 𝐵𝑒𝑙(⋂𝑖∈𝐼𝐵𝑖) 

 

(2.16) 

2.2.3 Likelihood–based belief functions 

The likelihood-based belief functions have been derived by Shafer (1976). 

They have been applied by Abdallah et al. (2014), among others, and 

justified by Denoeux (2014). 

 

Let 𝑥 ∈ 𝑋 be the observable data with a probability density function (pdf) 

𝑝𝜃𝑋, where 𝜃 ∈   is an unknown parameter. In this study, we use the 

method proposed by Shafer (1976).The belief function be derived from the 

Likelihood Principle and Least Commitment Principle (LCP). The 

information about Q can be represented by the likelihood function which is 
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defined by 𝐿𝑥(𝜃) = 𝑝𝜃𝑋  for all  𝜃 ∈ .  The likelihood ratio is meant to be 

a “relative plausibility”, which can be written as: 

 

 
𝑝𝑙𝑥(𝜃1)

𝑝𝑙𝑥(𝜃2)
=

𝐿𝑥(𝜃1)

𝐿𝑥(𝜃2)
. 

 

(2.17) 

For all (𝜃1, 𝜃2) ∈ 2     or, equivalent 𝑝𝑙𝑥(𝜃) = 𝑐𝐿𝑥(𝜃)   

for all 𝜃 ⊆ Θ  and some positive constant c. From LCP, it can be implied 

that the highest possible value of C is 
1

𝑠𝑢𝑝𝜃∈
= 𝐿 (

𝜃

𝑋
). Thus, the contour 

function is defined as follow: 

 

 

𝑝𝑙(𝜃; 𝑥) =
𝐿(𝜃; 𝑥)

𝑠𝑢𝑝𝜃∈𝐿(𝜃; 𝑥)
 . 

 

(2.18) 

The information about 𝜃 are expressed by the belief function    𝐵𝑒𝑙𝐴
 with 

contour function 𝑝𝑙𝑥 , i.e., with corresponding plausibility function 𝐵𝑒𝑙𝐴
 =

𝑠𝑢𝑝𝜃∈𝐴𝑝𝑙𝑥(𝐴) , for all 𝐴 ⊆ Θ.The focal sets of 𝐵𝑒𝑙𝐴
 the levels sets of 𝑝𝑙𝑥 

defined as follows: 

 

 
Γ𝑥(𝜔) = {𝜃 ∈ Θ|𝑝𝑙𝑥(𝜃) ≥ 𝜔} 

 

(2.19) 

for 𝜃 ∈ [0,1]. Equation (2.19) is called plausibility regions. With the 

inducing of the Lebesgue measure 𝜆 on [0,1] and multi–valued mapping 

Γ𝑥  from [0,1] ⟶ 2  the belief function is equivalent to the random set 

(see, Kanjanatarakul et al. (2014)). We remark that the MLE of 𝜃  is the 

value of  𝜃 with highest plausibility. 

 

2.2.4 Incorporating the belief functions 

The objective is to forecast the risk premium of the return of stock 𝑖, 𝑦𝑖 =

𝑟𝑖 − 𝑟𝑓.  The methodology to incorporate the belief function framework into 

the prediction procedure follows Kanjanatarakul et al. (2014).  From the 

CAPM equation above, the return equation can be written as: 
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 𝑦𝑖 = 𝛼 + 𝛽𝑥 + 𝜎𝐹−1(𝑢), (2.20) 

where  𝐹~𝑁𝑜𝑟𝑚𝑎𝑙(0,1) and  𝑈~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1).  

 

Discussed in Kanjanatarakul et al. (2014), the forecasting problem is the 

inverse problem of the regular inference problem.  Given the knowledge on 

the set of parameters 𝜃 = (𝛼, 𝛽, 𝜎) and the distribution 𝐹(. ), the future 

value of 𝑦𝑖 can be forecasted. 

 

Belief function framework allows us to forecast an interval [𝑦𝑖
𝐿 , 𝑦𝑖

𝑈] for the 

future value of 𝑦𝑖.  The estimation of  [𝑦𝑖
𝐿 , 𝑦𝑖

𝑈] can be done using Monte 

Carlo method.  Given a set two Uniform(0,1) random variables(𝑢𝑠, 𝜔𝑠), in 

each simulation 𝑠, the lower bound 𝑦𝑖,𝑠
𝐿  and the upper bound 𝑦𝑖,𝑠

𝑈  solve the 

following optimization problems respectively, 

 
𝑦𝑖,𝑠

𝐿 = min
𝜃

𝛼 + 𝛽𝑥 + 𝜎𝐹−1(𝑢𝑠), 

 
(2.21) 

subject to 

 
𝑝𝑙(𝜃) ≥ 𝜔𝑠, 

 (2.22) 

and 

 
𝑦𝑖,𝑠

𝑈 = max
𝜃

𝛼 + 𝛽𝑥 + 𝜎𝐹−1(𝑢𝑠), 

 
(2.23) 

subject to 

 
𝑝𝑙(𝜃) ≥ 𝜔𝑠. 

 (2.24) 

In the constraints, the plausibility function 𝑝𝑙(𝜃, 𝑢𝑠) can be derived from 

the likelihood function. Therefore, using the likelihood function, the 

plausibility function is as follows: 

 𝑝𝑙(𝜃) =
𝐿(𝜃)

𝐿(𝜃∗)
, (2.25) 

where   𝜃∗ is such that 𝐿(𝜃∗) ≥ 𝐿(𝜃), ∀𝜃. 
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The belief and the plausibility functions corresponding to a given set A can 

be calculated by: 

 𝑏𝑒𝑙̂(𝐴) =
1

𝑁
#{𝑠 ∈ {1, … , 𝑁}|[𝑦𝑖,𝑠

𝐿 , 𝑦𝑖,𝑠
𝑈 ] ⊂ 𝐴}, 

 
(2.26) 

  𝑝𝑙̂(𝐴) =
1

𝑁
#{𝑠 ∈ {1, … , 𝑁}|[𝑦𝑖,𝑠

𝐿 , 𝑦𝑖,𝑠
𝑈 ] ∩ 𝐴 ≠ ∅}. 

 
(2.27) 

The lower bound and the upper bound of the prediction for 𝑦𝑖 is, thus, 

 𝑦̂𝑖
𝐿 = 𝐸(𝑦𝑖,𝑠

𝐿 ) =
1

𝑁
∑ 𝑦𝑖,𝑠

𝐿  , (2.28) 

 𝑦̂𝑖
𝑈 = 𝐸(𝑦𝑖,𝑠

𝑈 ) =
1

𝑁
∑ 𝑦𝑖,𝑠

𝑈  . 

 
(2.29) 

2.3 Interval –Valued Data 

 

2.3.1 An interval-valued data in a linear regression model 

Suppose we can observe an i.i.d. random paired intervals variables 𝑥𝑖 =

𝑥𝑖 , 𝑥𝑖  and   𝑦𝑖 = [𝑦𝑖, 𝑦𝑖] , 𝑖 = 1,2, … , 𝑛  where 𝑥𝑖, 𝑦𝑖   are the maximum 

values of 𝑥𝑖 and 𝑦𝑖 and  𝑥𝑖 , 𝑦𝑖, are the minimum values of 𝑥𝑖 and  𝑦𝑖. 

Additionally, we can rewrite the value of  𝑥𝑖, 𝑦𝑖 in the form of intervals as 

 𝑥𝑖 = [𝑥𝑖
𝑚 − 𝑥𝑖

𝑟, 𝑥𝑖
𝑚 + 𝑥𝑖

𝑟], (2.30a) 

 𝑦𝑖 = [𝑦𝑖
𝑚 − 𝑦𝑖

𝑟, 𝑦𝑖
𝑚 + 𝑦𝑖

𝑟], 𝑖 = 1,2, … , 𝑛 ,  (2.31b) 

where 𝑥𝑖
𝑚, 𝑦𝑖

𝑚 is the mid-points of 𝑥𝑖 and 𝑦𝑖and 𝑥𝑖
𝑟 , 𝑦𝑖

𝑟  is the radii of 𝑥𝑖 and 

𝑦𝑖, satisfying 𝑥𝑖
𝑟 , 𝑦𝑖

𝑟 ≥ 0 Suppose, we consider the following linear 

regression model given by 

 
𝑦𝑖 = 𝑎𝑥𝑖 + 𝑏 + 𝜀𝑖, 𝑖 = 1,2, … , 𝑛. 

 (2.32) 

Analogously, it is easily to interpret the meaning of 𝑥𝑖 , 𝑦𝑖 by the distance of 

centers and radii as the following equations: 

 
𝑥𝑖 = 𝑥̃𝑖 + ∆𝑥𝑖, 𝑥𝑖 ∈ 𝑁(0, 𝑘0∆𝑥𝑖), (2.33a) 
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𝑦𝑖 = 𝑦̃𝑖 + ∆𝑦𝑖 , 𝑦𝑖 ∈ 𝑁(0, 𝑘0∆𝑦𝑖), (2.33b) 

where 𝑥̃𝑖, 𝑦̃𝑖 are the centers of 𝑥𝑖and 𝑦𝑖, respectively. Then, ∆𝑥𝑖 =

𝑥𝑖−𝑥𝑖

2
,  ∆𝑦𝑖 =

𝑦𝑖−𝑦𝑖

2
  are the radii of 𝑥𝑖 and 𝑦𝑖, respectively and 𝑚𝑥𝑖 =

𝑥𝑖+𝑥𝑖

2
, 

𝑚𝑦𝑖 =
𝑦𝑖+𝑦𝑖

2
   are the mid-point of  𝑥𝑖 and 𝑦𝑖, respectively. Thus, given the 

linear regression for the interval-valued data we have 

 
𝑦̃𝑖 + 𝛿𝑦𝑖 = 𝑎𝑥̃𝑖 + 𝑎𝛿𝑥𝑖 + 𝑏, 

 (2.34a) 

 𝑦̃𝑖 = 𝑎𝑥̃𝑖 + 𝑏 + (𝑎𝛿𝑥𝑖 − 𝛿𝑦𝑖), (2.34b) 

where (𝑎𝛿𝑥𝑖 − 𝛿𝑦𝑖)~𝑁(0,1) ≡ 𝑁(0, 𝑘0√𝑎2∆𝑥𝑖
2 + ∆𝑦𝑖

2).  Assume that 

𝑎𝛿𝑥𝑖 − 𝛿𝑦𝑖 is  an i.i.d thus, we can estimate parameter 𝑎, 𝑏, 𝑘0 by the 

maximum likelihood function given by 

max ln 𝐿(𝑎, 𝑏, 𝑘0
𝑎,𝑏,𝑘0

 ⃓ ([𝑥𝑖, 𝑥𝑖] , [𝑦𝑖 , 𝑦𝑖]) , 𝑖 = 1, … , 𝑛)

= max
𝑎,𝑏,𝑘0

{∑ 𝑙𝑛∅(
𝑦̃𝑖 − 𝑎𝑥̃𝑖 − 𝑏

𝑘0√𝑎2∆𝑥𝑖
2 + ∆𝑦𝑖

2
)

𝑛

𝑖=1

}, 

 

     (2.35) 

where  ∅(. )~𝑁(0,1). This approach was already developed in Sun and Li 

(2015).  

 

2.3.2 Goodness of fit in linear regression model for an interval-valued data 

In the deterministic linear regression model, we use variance to describe 

variation of the variable interested and so that as we knew the ratio   

𝑎2𝑉𝑎𝑟(𝑋)

𝑉𝑎𝑟(𝑌)
∈ [0,1]  can be explained as an indication of goodness-of-fit. In 

this study, we used the concept of the chi-squared test (𝜒2) of the goodness 

of fit. Recall that 𝜎𝑥𝑖 = 𝑘0∆𝑥𝑖  and 𝜎𝑦𝑖 = 𝑘0∆𝑦𝑖.  Given the simple linear 

regression, we have 
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 𝑦𝑖 = 𝑎𝑥𝑖 + 𝑏, 
  (2.36a) 

 
𝑦𝑖

𝑚 + 𝛿𝑦𝑖 = 𝑎𝑥𝑖
𝑚 + 𝑎𝛿𝑥𝑖, 

   (2.36b) 

 
𝑦𝑖

𝑚 − 𝑎𝑥𝑖
𝑚 − 𝑏 = 𝑎𝛿𝑥𝑖 − 𝛿𝑦𝑖 , 

   (2.36c) 

where 𝛿𝑥𝑖, 𝛿𝑦𝑖~𝑁(0, 𝜎2). Thus, we have  𝑎2𝛿𝑥𝑖
2 + 𝛿𝑦𝑖

2 , by replacing  

𝑘0
2(𝑎2∆𝑥𝑖

2 + ∆𝑦𝑖
2) to above equation (2.24). The empirical chi-squared test 

(𝜒2) is obtained by estimated this following equation 

 𝜒𝑐𝑎𝑙
2 = ∑

(𝑦𝑖
𝑚 − 𝑎𝑥𝑖

𝑚 − 𝑏)2

𝑘0
2(𝑎2∆𝑥𝑖

2 + ∆𝑦𝑖
2)

𝑛

𝑖=1

, 
(2.37) 

where the degree of freedom is  𝑛 − 2. 

 

2.3.3 Beta estimation with interval data 

From the CAPM model in equation (2.1), we calculate the 𝛽 coefficient 

through the likelihood by equation (2.35) instead. Suppose we have 

observed the realization of interval stock return  (𝑅𝐴) , [𝑅𝐴𝑖 , 𝑅𝐴𝑖 , ] =

[(𝑟𝑎1 , 𝑟𝑎1, … , 𝑟𝑎𝑛 , 𝑟𝑎𝑛)] , 𝑖 = 1,2, … , 𝑛  and interval return from market 

[𝑅𝑀𝑖 , 𝑅𝑀𝑖, ] = [(𝑟𝑚1 , 𝑟𝑚1, … , 𝑟𝑚𝑛 , 𝑟𝑚𝑛)] , 𝑖 = 1,2, … , 𝑛  over the past N years. 

These observations will be assumed an independent random. From 

likelihood for an interval values we have 

 

max 𝐿(𝑎, 𝑏, 𝑘0
𝑎,𝑏,𝑘0

⃓ ([𝑅𝑀𝑖, 𝑅𝑀𝑖] , [𝑅𝐴𝑖 , 𝑅𝐴𝑖]) , 𝑖 = 1, … , 𝑛)  . 

 

= max
𝑎,𝑏,𝑘0

∏(
1

√2𝜋𝑘0
2(𝑎2∆𝑅𝑚𝑖

2 + ∆𝑅𝑎𝑖
2)

𝑛

𝑖=1

exp [−
1(

2

𝑅𝑎𝑖
𝑚 + 𝑎𝑅𝑚𝑖

𝑚 − 𝑏)2

𝑘0
2(𝑎2∆𝑅𝑚𝑖

2 + ∆𝑅𝑎𝑖
2)

] 

 

     

(2.38) 

 

 

2.4 Copula  
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Copula is a powerful tool to model the non-normal distribution. It can capture the 

complicated correlation between variables, including linear or non-linear. In finance 

and econometrics, Copula approach has been popular for modeling nonlinear stochastic 

relationships between two or more variables. Generally, Pearson correlation is used for 

variables dependence measure in linear relation and based on the assumption of 

normality. However, the financial returns tend to show asymmetric dependence. 

Pearson correlation can not capture the non-linear relations between variables and it is 

not invariant under strictly increasing transformations (Schirmacher and 

Schirmacher, 2008). 

 

Mathematically, copula is a multivariate distribution whose one-dimensional margins 

are uniform on the interval [0, 1].The definition of copula as follows: 

 

Definition: 𝐶: [0,1]𝑛 → [0,1] is a  n-dimensional copula if C is a joint   cumulative 

distribution function  of a n-dimensional random vector on the unit cube [0,1]𝑛   with 

uniform marginal. 

 

In analytic terms, 𝐶: [0,1]𝑛 → [0,1]    is a n-dimensional copula if 

1.𝐶(𝑢1, … , 𝑢𝑗−1, 0, 𝑢𝑗+1, … , 𝑢𝑛) = 0 , the copula is zero if one of the arguments is               

zero, 

2. (1, … ,1, 𝑢, 1, … ,1) = 𝑢 , the copula is equal u  if one of the arguments is u and all 

others 1, 

 Properties 1 and 2 ensure that marginal distributions are uniform distributions.  

3. 𝐶 is n-non-decreasing, i.e., for each hyper rectangle 𝐵 = ∏ [𝑥𝑖, 𝑦𝑖]𝑛
𝑖=1 ⊆ [0,1]𝑛 the C 

volume of  B is non-negative: 

∫ 𝑑𝐶(𝑢)
𝐵

= ∑ (−1)𝑁(𝑧)𝐶(𝑧) ≥ 0

𝑧∈×𝑖=1
𝑛 {𝑥𝑖,𝑦𝑖}

 

where the 𝑁(𝑧) = #{𝑘|𝑧𝑘 = 𝑥𝑘}. 

https://en.wikipedia.org/wiki/Cumulative_distribution_function
https://en.wikipedia.org/wiki/Cumulative_distribution_function
https://en.wikipedia.org/wiki/Multivariable_calculus
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For ensures that copula is a proper cumulative distribution function. 

 

Suppose we have a set of observations (𝑥1, 𝑦1) , (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛) from an unknown 

bivariate distribution 𝐻(𝑥, 𝑦). According to Sklar’s theorem (1959), the joint 

distribution function 𝐻(𝑥, 𝑦) of any pair of continuous random variables (𝑥, 𝑦) be 

written in the form 

 

 
𝐻(𝑥, 𝑦) = 𝐶(𝐹(𝑥), 𝐺(𝑦))  𝑥, 𝑦 𝜖  ℝ , 

 
(2.39) 

where 𝐹(𝑥)and G(y) are the marginal distributions of X and Y, and C is a function 

mapping [0, 1] × [0, 1] → [0, 1] known as a copula. 

 

The theorem is valid in the bivariate case (n = 2) and in all higher dimensions (n > 2).  

Consider in multivariate distribution. Let F be an n-dimensional distribution function 

with marginal functions 𝐹1, 𝐹2, … , 𝐹𝑛. Then there exists an n-dimensional copula C such 

that for all (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ ℝ𝑛, 

 
 

𝐹(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝐶(𝐹1(𝑥1), 𝐹2(𝑥2), … , 𝐹𝑛(𝑥𝑛)). (2.40) 

If the marginal functions   𝐹1, 𝐹2, … , 𝐹𝑛   are all continuous, then C exists and is unique.  

The inverse function of 𝐹𝑖(𝑖 = 1,2, … , 𝑛) respectively are 𝐹𝑖
−1 (𝑖 = 1,2, … , 𝑛), setting 

𝑢𝑖 = 𝐹𝑖(𝑖 = 1,2, … , 𝑛), whose copula function can be calculated as : 

 
 

𝐶(𝑢1, 𝑢2, … , 𝑢𝑛) = 𝐹(𝐹1
−1(𝑢1),𝐹2

−1(𝑢2), … , 𝐹𝑛
−1(𝑢𝑛)), (2.41) 

 

where 𝑢𝑖 = 𝐹𝑖(𝑖 = 1,2, … , 𝑛)  are the probability integral transformation (PIT) of the 

marginal models. 

The reverse of (2.40) where any multivariate distribution F can be written in terms of 

its marginals using a copula representation.  

Assume 𝐹𝑖 and 𝐶 are differentiable. The joint density function 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛)  is 

defined as: 
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𝑓(𝑥1, 𝑥2, … , 𝑥𝑛)

= 𝑐(𝐹1(𝑥1), 𝐹2(𝑥2), … , 𝐹𝑛(𝑥𝑛))𝑓1(𝑥1), 𝑓2(𝑥2) … 𝑓𝑛(𝑥𝑛), 

 

        2.42) 

where the density of 𝐹𝑖 is given by  𝑓𝑖(𝑥𝑖) and the density of the copula is 

given by:                                                                                                    

 
𝑐(𝑢1, 𝑢2, … , 𝑢𝑛) =

𝜕𝑛𝐶(𝑢1, 𝑢2, … , 𝑢𝑛)

𝜕𝑢1𝜕𝑢2, … , 𝜕𝑢𝑛
. 

 

(2.43) 

2.4.1 Pair-copula decomposition of multivariate distribution 

For high-dimension distribution, multivariate copulas are obtained by pair-

copula construction method (PCC), was proposed by Aas et al. (2009). In 

PCC models, bivariate copulas are used as building blocks. Consider a 

vector 𝑋 = (𝑋1, … , 𝑋𝑛) of random variables with density function 

𝑓(𝑥1, … , 𝑥𝑛). This density can be factorized as 

 

 
𝑓(𝑥1, … , 𝑥𝑛)

= 𝑓𝑛(𝑥𝑛). 𝑓(𝑥𝑛−1|𝑥𝑛). 𝑓(𝑥𝑛−2|𝑥𝑛−1, 𝑥𝑛) … 𝑓(𝑥1|𝑥2, … , 𝑥𝑛). (2.44) 

De Melo Mendes (2010) illustrated that the conditional densities in (2.44) 

can be written as functions of corresponding copula densities by using the 

general formula as 

 𝑓(𝑥 |𝑣1, … , 𝑣𝑛) = 𝑐𝑥𝑣𝑗|𝑣−𝑗
{𝐹(𝑥|𝑣−𝑗), 𝐹(𝑣𝑗|𝑣−𝑗)}. 𝑓(𝑥|𝑣𝑗), 

(2.45) 

where 𝑣−𝑗  denotes the  n  dimensional vector 𝑣 excluding the  j th 

component.𝑐𝑥𝑣𝑗|𝑣−𝑗
(. , . )  is a bivariate marginal copula density. 

The conditional densities in (2.44) by means of (2.45) we derive a 

decomposition for  𝑓(𝑥1, … , 𝑥𝑛) that only consists of univariate marginal 

distributions and bivariate copulas. Thus we obtain the pair-copula 

decomposition for the n-dimensional copula 𝑐1, … , 𝑐𝑛, a factorization of a n-

dimensional copula based only in bivariate copulas.  
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The pair-copula construction involves marginal conditional distributions of 

the form 𝐹(𝑥 |𝑣). For every j, Joe (1996) showed that 

 𝐹(𝑥 |𝑣) =
𝜕𝐶𝑥𝑣𝑗|𝑣−𝑗

{𝐹(𝑥|𝑣−𝑗), 𝐹(𝑣𝑗|𝑣−𝑗)}

𝜕𝐹(𝑣𝑗|𝑣−𝑗)
. (2.46) 

 

2.4.2 Vine Copula  

Vine copula are a class of multivariate dependence model that are 

constructed on the theory of PCC models. Vine copula are more flexible 

than the bivariate copulas because they allow for decompositions. In 

addition, Vine copula can capture the asymmetry model as well as the tail 

behavior of the underlying risk exposures in the context of multivariate 

distribution (Han et al., 2014). 

 

Vines copula are dependence models that the multivariate distribution 

function be decomposed into bivariate copulas and marginal densities. The 

term vine was used because the shape of induced dependence structure can 

be seen like a grape vine. Three components of vine copula are the tree 

structure, the copula family for each edge in the tree structure and the 

corresponding dependence parameters for each pair copula (Czado et al., 

2013).  

 

The graphical of these structure are nested trees and then it is called regular 

vines. A vine on n variables is a nested set of trees 𝑇1, … 𝑇𝑛−1, where the 

edges of tree  𝑗 are the nodes of the tree  𝑗 + 1 with 𝑗 = 1, … , 𝑛 − 2 . Two 

subclasses of regular vines are canonical (C-Vine) and drawable vine (D-

vine) in which two edges in tree 𝑗 are joined by an edge in tree 𝑗 + 1 only if 

these edges share a common node. The n-dimensional density function of 

C-vine and D- vine are defined as follows:   
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C- vine: 

 𝑓(𝑥) = ∏ 𝑓𝑘(𝑥𝑘). ∏ ∏ 𝑐𝑗,j+i|1,2,…𝑗−1(𝐹(𝑥𝑗

𝑛−𝑗

𝑖=1

𝑛−1

𝑗=1

𝑛

𝑘=1

𝑥1, … , 𝑥𝑗−1), 𝐹(𝑥𝑗+𝑖 𝑥1, … , 𝑥𝑗−1).    (2.47) 

D-vine: 

𝑓(𝑥) 

= ∏ 𝑓𝑘(𝑥𝑘). ∏ ∏ 𝑐𝑖,𝑖+ji+1,2,…𝑖+𝑗−1(𝐹(𝑥𝑖

𝑛−𝑗

𝑖=1

𝑛−1

𝑗=1

𝑛

𝑘=1

𝑥𝑖+1, … , 𝑥𝑖+𝑗−1), 𝐹(𝑥𝑖+𝑗 𝑥𝑖+1, … , 𝑥𝑖+𝑗−1). 

   

(2.48) 

where  𝑓𝑖 is the marginal density of 𝑥𝑖 , 𝑐𝑖,𝑗|𝑘   is the bivariate copula 

distribution  function. j refers to tree, i refers to the edge of a tree. Only one 

node is connected with m-j edges and other nodes connected with one edge 

in trees of C-vine respectively, and trees of D-vine just as lines. 

 

2.4.3 Inference for a C-Vine and  D-Vine  

The parameters of the C-Vine density given by (2.47) or D-Vine density 

given (2.48) can be estimated by maximum (log) likelihood estimation 

(MLE). 

For the C-Vine, Log-likelihood is given by  

𝑙𝐶𝑉(𝜃|𝑥) = ∑ ∑ ∑ log [𝑐𝑗,𝑗+𝑖|1,…,𝑗−1{𝐹(𝑥𝑗,𝑡|𝑥1,𝑡 , … ,

𝑇

𝑡=1

𝑛−𝑗

𝑖=1

𝑛−1

𝑗=1

𝑥𝑗−1,𝑡), 𝐹(𝑥𝑗+1,𝑡|𝑥1,𝑡 , … 𝑥𝑗−1,𝑡)}. 
   

(2.49) 
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For the D-Vine, Log-likelihood is given by  

𝑙𝐷𝑉(𝜃|𝑥)

= ∑ ∑ ∑ log [𝑐𝑖,𝑖+𝑗|𝑖+1,..,𝑖+𝑗−1{𝐹(𝑥𝑖,𝑡|𝑥𝑖+1,𝑡 , … ,

𝑇

𝑡=1

𝑛−𝑗

𝑖=1

𝑛−1

𝑗=1

𝑥𝑖+𝑗−1,𝑡), 𝐹(𝑥𝑖+1,𝑡|𝑥𝑖+1,𝑡 , … 𝑥𝑖+𝑗−1,𝑡)}], 

   

(2.50) 

where  𝜃 is  the parameter vector ,  𝑐𝑗,𝑗+𝑖|1,…,𝑗−1 and  𝑐𝑖,𝑖+𝑗|𝑖+1,..,𝑖+𝑗−1  are the 

bivariate copula density in equation (2.44) and (2.45). 

 

2.4.4 Canonical Vine (C-vine) 

A C-vine is a regular vine such that each tree 𝑇𝑗has a unique node of 

degreed-j.The node with maximal degree in  𝑇1 is the root, Here, we focus 

on  eight  assets, for eight-dimension (n=8) C-vine copulas can written as 

 

𝑇1: Nodes: 1(root), 2,3,4,5,6,7,8; Edges: 12,13,14,15,16,17,18 

𝑇2: Nodes: 12(root)13,14,15,16,17,18; Edges: 23|1,24|1,25|1,26|1,27|1,28|1 

𝑇3: Nodes: 23|1(root)24|1,25|1,26|1,27|1,28|1; Edges: 34|12,35|12,36,12,37|12,38|12 

𝑇4: Nodes: 34|12,35|12,36|12,37|12,38|12; Edges; 45|123,46|123,47|123,48|123 

𝑇5: Nodes: 45|123,46|123,47|123,48|123; Edges; 56|1234,57|1234,58|1234 

𝑇6: Nodes: 56|1234,571234,58|1234; Edges; 67|12345,68|12345 

𝑇7: Nodes: 67|12345,68|12345; Edges; 78|123456 

The decomposition of joint densities in terms of C-vines copulas is 

illustrated as follows. 

 

Consider n = 8. As in the case of C-copulas, consider a decomposition of 

the following form  
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Fig 2.2 The C-vine structure for eight dimensional variables. 

 

The decomposition of joint densities in terms of C-vines copulas is illustrated as 

follows. 
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𝑓(𝑥1, 𝑥2, … , 𝑥8) = ∏ 𝑓𝑖(𝑥𝑖). 𝑐12(𝐹1. 𝐹2). 𝑐13(𝐹1. 𝐹3).

8

𝑖=1

𝑐14(𝐹1. 𝐹4). 𝑐15(𝐹1. 𝐹5) 

                                               . 𝑐16(𝐹1. 𝐹6). 𝑐17(𝐹1. 𝐹7). 𝑐18(𝐹1. 𝐹8)𝑐23|1(𝐹2|1. 𝐹3|1) 

                                               . 𝑐24|1(𝐹2|1. 𝐹4|1). 𝑐25|1(𝐹2|1. 𝐹5|1). 𝑐26|1(𝐹2|1. 𝐹6|1) 

                                               . 𝑐27|1(𝐹2|1. 𝐹7|1). 𝑐28|1(𝐹2|1. 𝐹8|1). 𝑐34|12(𝐹3|12. 𝐹4|12)                                                  

                                               . 𝑐35|12(𝐹3|12. 𝐹5|12). 𝑐36|12(𝐹3|12. 𝐹6|12). 𝑐37|12(𝐹3|12. 𝐹7|12) 

                                               . 𝑐38|12(𝐹3|12. 𝐹8|12). 𝑐45|123(𝐹4|123. 𝐹5|123)𝑐46|123(𝐹4|123. 𝐹6|123) 

                                               . 𝑐47|123(𝐹4|123. 𝐹7|123). 𝑐48|123(𝐹4|123. 𝐹8|123) 

                                               . 𝑐56|1234(𝐹5|1234. 𝐹6|1234). 𝑐57|1234(𝐹5|1234. 𝐹7|1234) 

                                               . 𝑐58|1234(𝐹5|1234. 𝐹8|1234). 𝑐67|12345(𝐹6|12345. 𝐹7|12345) 

                                               . 𝑐68|12345(𝐹6|12345. 𝐹8|12345). 𝑐78|123456(𝐹7|123456. 𝐹8|123456). 

 

2.4.5 Drawable Vine (D-vine) 

The decomposition of the joint density in terms of bivariate pairwise 

copulas and marginals is drawable, and hence is called a D-vine. With this 

drawable vine copula, the joint density is obtained simply by multiplying all 

(bivariate) copula densities which appeared in the tree together with all 

marginal densities. The usefulness of graphical displays is this. When trying 

to model dependencies in a multivariate model (i.e., we do not know the 

joint distribution), we choose a D-vine, according to important pairwise 

dependencies of interest, and from which we have a “formula” to arrive at 

the joint distribution, i.e., to arrive at a model capturing the dependencies of 

interest. How to use D-vine copulas to build multivariate models? In 

general, we should figure out that, any n-dimensional copula density can be 

decomposed in 
𝒏(𝒏−𝟏)

𝟐
different ways. 

𝑛 = 8, 𝑋 = 𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋8  a possible D-vine is 



 

28 
 

 

Fig.2.3 The D-vine structure for eight dimensional variables. 

 

The multivariate(density) model is as follow: 

𝑓(𝑥1, 𝑥2, … , 𝑥8) = ∏ 𝑓𝑖(𝑥𝑖). 𝑐12𝑐23

8

𝑖=1

𝑐34𝑐45𝑐56𝑐67𝑐78 

            . 𝑐13|2𝑐24|3𝑐35|4𝑐46|5𝑐57|6𝑐68|7 

             . 𝑐14|23𝑐25|34𝑐36|45𝑐47|56𝑐58|67 

          . 𝑐15|234𝑐26|345𝑐37|456𝑐48|567 

   .𝑐16|2346𝑐27|3456𝑐38|4567 

               .𝑐17|23456𝑐28|34567 

                                                                     .  𝑐18|234567  
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2.5 Value at Risk (VaR) and Conditional Value at Risk (CVaR) 

Value at Risk (VaR) is defined as the possible maximum loss over a given holding 

period within a fixed confidence level (cl). Following Sarykalin et al. (2008), 

mathematical the definition of VaR: 

 

Definition VaR : Let X is a random variable with the cumulative distribution function 

𝐹𝑋(𝑧) = 𝑃(𝑋 ≤ 𝑧). X has meaning the of loss. Given confidence level 𝛼 ∈ (0,1) the 

VaR of X is 

 𝑉𝑎𝑅𝛼(𝑋) = 𝑚𝑖𝑛{𝑧|𝐹𝑋(𝑧) ≥ 𝛼}. (2.51) 

Artzner et al. (1998) proposed a set of axioms for evaluation of risk measure. Any risk 

measure satisfies these axioms is said to be coherent. The four axioms are 

Monotonicity, Translation equivalence, Sub-additivity, and Positive Homogeneity. 

However, VaR based on the assumption of a systematical return distribution and lacks 

of subadditivity axiom. Therefore, VaR is not qualify for coherent risk measure. 

Conditional value at Risk (CVaR) was introduced by Rockafellar and Uryasev (2000). 

CVaR is more appealing than VaR because it can measure risk of fat tails and 

asymmetric distributions of losses and satisfies sub-additivity axiom.  

VaR and CVaR are related in connections. For 𝛼𝜖(0,1), the inverse of cumulative 

distribution function  of  𝐹𝑋(𝑧) is  the 𝛼 −quantile of X is the smallest value 𝐹𝑋
−1(𝛼) as 

follow: 

 𝐹𝑋
−1(𝛼) = inf{𝑥|𝐹(𝑥) ≥ 𝛼}, 

(2.52) 

and denoted  a risk measure, known as 

 𝑉𝑎𝑅𝛼(𝑋) = 𝐹𝑋
−1(𝛼). 

(2.53) 

CvaR is the conditional expectation of losses that exceed the 𝑉𝑎𝑅𝛼(𝑋)level. For 

random variables with continuous distribution functions, 𝐶𝑉𝑎𝑅𝛼(𝑋) equals the 

conditional expectation of X subject to𝑋 ≥ 𝑉𝑎𝑅𝛼(𝑋).Given confidence level ∈ [0,1] , 

the CVaR of X  is the mean of the generalized 𝛼-tail distribution : 



 

30 
 

 𝐶𝑉𝑎𝑅𝛼(𝑋) = ∫ 𝑧𝑑𝐹𝑋
𝛼(𝑧),

∞

−∞

 
(2.54) 

where  

 𝐹𝑋
𝛼(𝑧) = {

0               𝑤ℎ𝑒𝑛    𝑧 < 𝑉𝑎𝑅𝛼(𝑋)

𝐹𝑋(𝑧) − α 

1 − 𝛼
𝑤ℎ𝑒𝑛    𝑧 ≥ 𝑉𝑎𝑅𝛼(𝑋).

 (2.55) 

 

The relationship between VaR and CVaR is illustrated in the following graph: 

 

 

 

Fig 2.4 Graphical representation of VaR and CVaR (Sarykalin et al. (2008)). 

 

2.6 CVaR Optimization  

Portfolio optimization problem is the process of choosing the proportions of variety 

assets to be held in portfolio under the constraints. The purpose is to make investment 

maximizing returns to investors. The CVaR measure is used in the portfolio 

optimization problem not only because it is a coherent measure of risk but also, it is 

more in tune with the loss function of the tail distribution.  
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2.6.1 Optimal Portfolio with Conditional Value at Risk via Vine-Copulas 

We start our calculation of VaR and CVaR of an equally weighted portfolio 

and then, the optimal portfolio can be constructed by minimizing CVAR 

subject to maximum returns. The procedure of optimization, we refer to the 

paper from Autchariyapanitkul (2014). The following formula can show as 

below: 

 𝑀𝑖𝑛 𝐶𝑉𝑎𝑅 = 𝐸[𝑟𝑝𝑟 ≤ 𝑟𝛼] (2.56a) 

Subject to  

 𝐸(𝑟𝑝) = 𝑤1(𝑟1) + 𝑤2(𝑟2) + ⋯ +  𝑤𝑛(𝑟𝑛) (2.56b) 

 𝑤1 + 𝑤2 + ⋯ +  𝑤𝑛 = 1 (2.56c) 

 0 ≤ 𝑤𝑖 ≤ 1, 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2, … , 𝑛  

where 𝑟𝛼 is the lower  𝛼 − 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒, and 𝑟𝑝 is the return on individual asset 

at time t. 𝑤𝑖 is the weight of returns. 

 

We use vine copulas to extract dependence structure between CAPM 

equations and then use the solutions of C-vine and D-vine copulas 

parameters to create an efficient portfolio and find the optimal solutions for 

the expected returns with minimum lost.  

 

Next, we stimulate the errors terms of each stocks to get the simulated 

return through CAPM. By generating a uniform marginals from Vine 

Copulas and transform those marginal to be an errors using quantiles 

function of normal distribution. In this study, we stimulate 1,000,000 

samples for each stock get the return of portfolio with  𝑟 = ∑ 𝑊𝑖𝑋𝑖
𝑛
𝑖=1   , 

where  𝑊𝑖 is the weight of returns. 𝑋𝑖 is the individual return. Finally, we 

compute the portfolio’s VaR and CVaR. 

 


