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CHAPTER 5 

 

Optimizing Stock Returns Portfolio Using the Dependence Structure 

Between Capital Asset Pricing Models 

: A Vine Copula-based approach 

 
This chapter is developed from the original paper namely, “Optimizing Stock Returns 

Portfolio Using the Dependence Structure Between Capital Asset Pricing Models: A 

Vine Copula-based approach”. The contents are extracted from the original paper that 

was published in “Causal Inference in Econometrics”, Studies in Computational 

Intelligence Volume 622, pp 319 – 331. This paper can be found in the appendix C. The 

methodology of this study was described in Chapter 2.  

 

5.1 Introduction 

 

An important task of financial institutions is evaluating the exposure to market and 

credit risks. Market risks arise from variations in prices of equities, commodities, 

exchange rates, and interest rates. Credit risks refer to potential losses that might occur 

because of a change in the counterparty’s credit quality such as a rating migration or a 

default. The dependence on market or credit risks can be measured by changes in the 

portfolio value, or gains and losses. 

 

The classical portfolio theory was originally conceived by Markowitz in 1952, the idea 

that explained the return of the portfolio by mean and variance. Since econometrics 

concerns quantitative relations in modern economic life, its analysis consists mainly of 

determining the impact of a set of variables on some other variable of interest. For 

example, we wish to determine how return on market X affects return on asset Y in a 

stock exchange. Now this problem is a regression problem, namely, capital asset 

pricing model (CAPM). We regress the values of the variable of interest Y, usually 

called the dependent variable in the explanatory variable X, often called the 
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independent variable. This regression problem is formulated by Sharpe (1964) and 

Lintner (1965). 

 

Many pieces of research on the CAPM model is used to explain the diversification of 

the risk parameter and the performance of portfolios. The investigated issue from 

Zabarankin et al. (2014) purposed drawdown parameter in CAPM model to provide 

tools for hedging against market drawdowns. Fabozzi and Francis (1977), Levy (1974) 

used CAPM measure risk parameter for a various period. The contributions to the 

CAMP are the papers of Papavassiliou (2013), Chochola et al. (2014), Da et al. (2012). 

 

A typical risk assessment situation is this. Consider a portfolio consisting of  𝑛 assets 

whose possible losses are random variables 𝑋1, 𝑋2, … , 𝑋𝑛. We are interested in the 

overall risks of the portfolio at some given time, i.e., the total loss 𝑌 = 𝑋1 + 𝑋2 + ⋯ +

𝑋𝑛. The value-at-risk (VaR) is a commonly used methodology for estimatingof risks. 

The essence of the VaR computations is the estimation of high quantiles (see, 

Autchariyapanitkul et al. (2014)) in the portfolio return distributions. Usually, these 

computations are based on the assumption of normality of the financial return 

distribution. However, financial data often reveals that the underlying distribution is not 

normal. The standard value-at-risk is 𝐹𝑌
−1(𝛼), the maximum possible total loss at 

level 𝛼 𝜖 [0,1], i.e., 

 
𝑃(𝑌 ≥ 𝐹𝑌

−1(𝛼)) ≤ 1 − 𝛼 (5.1) 

 

In order to obtain the distribution 𝐹𝑌 of Y, we need the joint distribution of the 

regressors (𝑋1, 𝑋2, … , 𝑋𝑛), since, clearly, we cannot “assume” that the 𝑋𝑖
′𝑠  are mutually 

independent. A multivariate normal distribution will not work, in the view of empirical 

work of Mandelbrot (1963) and Fama (1965) financial variables are rather heavy-tailed. 

Not only do we need copulas to come up with a realistic multivariate model (i.e., a joint 

distribution for (𝑋1, 𝑋2, … , 𝑋𝑛), but we also need copulas to describe quantitativelythe 

dependence among assets. 
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Vine copulas started with Harry Joe in 1996. He gave a construction of multivariate 

copulas in terms of bivariate copulas, expressed in terms of distribution functions. 

Thus, it suffices, besides estimating the marginals, to come up with a high dimensional 

copula to arrive at a joint distribution for the marginal. In one hand, while lots of 

parametric bivariate copulas models exist in the literature, there seems not to be the 

case for higher dimensional copulas. On the contrary, we want a high dimensional 

copula to capture, say, pairwise dependencies between capital asset pricing models. 

First, we modeled pairwise dependencies by bivariate copulas and then glue them 

together to obtain the global high dimensional copula. Zhang et al. (2014) used vine 

copula methods estimate CVAR of the portfolio based on VaR measurement, and 

showed that D-vine copula model is superior to C-vine and R-vine copulas. Also, to 

study construct dependence structure, So and Yeung (2014) used the time varying vine 

copulas based GARCH model to show that Kendall ’s tau and linear  correlation of the 

stock return change over time. Moreover, an enormous number of papers about vine 

copulas that we can found in a study of  Aas et al. (2009), Guegan and Maugis (2011), 

Roboredo and Ugolini (2015). 

 

In this paper, we intend to use C-vine and D-vine copulas to examine the dependence 

structure between CAPM models. Then, use the joint distribution that minimize 

expected shortfall with respect to the expected returns to show the optimal weight of 

stocks in portfolios. Similarly to the work of Autchariyapanitkul (2014) introduced 

multivariate t-copula to optimize stock returns in portfolio analysis. 

 

5.2 Data 

 

We used the stock returns in SET50 index.  The data consist of the returns from the 8 

big capitalization companies, high return. There are Banpu Public Company Limited  

(BANPU), Bank of Ayudhya Public Company Limited (BAY), Bangkok Bank Public 

Company Limited(BBL), Central Pattana Public Company Limited (CPN), Land and 

Houses  Public Company Limited (LH), Pruksa Real Estate Public Company Limited 

(PS), Thanachart Capital Public Company Limited (TCAP) and Thai Oil Public 

Company Limited (TOP). All the weekly data are extracted from DataStream from 
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March 2009 until Jan 2014 with a total of 260 observations for each selected 

companies. The stock return prices are calculated by 𝑟𝑡 = ln(𝑃𝑡) − 𝑙𝑛𝑃𝑡−1.  Table 5.1 

presents a summary of the variables. 

 

Table 5.1 Summary statistics 

Statistics SET50 BANPU BAY BBL CPN LH PS TCAP TOP 

Mean 0.0025 -0.0036 0.0028 0.0020 0.0055 0.0015 0.0020 0.0016 -0.0002 

Median 0.0041 -0.0051 0.0000 0.0025 0.0048 0.0000 0.0000 0.0000 0.0000 

Maximum 0.0706 0.1802 0.1341 0.1000 0.1268 0.1638 0.1650 0.1475 0.1377 

Minimum -0.0706 -0.1324 -0.1658 -0.1039 -0.1406 -0.1947 -0.1926 -0.1581 -0.2173 

Std. Dev. 0.0253 0.0422 0.0425 0.0344 0.0426 0.0503 0.0567 0.03825 0.0413 

Skewness -0.3412 0.1823 -0.1674 0.1789 -0.1494 0.1803 -0.3417 -0.2854 -0.3675 

Kurtosis 3.8347 4.6789 4.2171 3.2542 3.6822 4.2344 3.8459 4.6276 6.2557 

Jarque-

Bera 

12.5927 31.9757 17.2625 2.0867 6.0089 17.9156 12.8106 32.2261 120.6802 

PROB 0.0080 0.0010 0.0034 0.3097 0.0454 0.0030 0.0077 0.0010 0.0010 

Note: All values are the log return. 

Table 5.1 summarizes the statistics, including the mean, standard deviation,  maximum 

, minimum returns , skewness, kurtosis , Jarque-Bera of the 8 stocks and SET50. We 

can see that the returns are mostly positive, except in the case of BANPU and TOP. The 

returns mostly present a negative skewness, except in the case of BANPU, BBL and 

LH. In addition, all returns have a high kurtosis above 3. Regarding to the value of 

Jarque-Bera, non-normality distribution is presented in all returns. These means that the 

marginal distributionof these returns are not a normal distribution and there have a 

heavy tail to the left and high kurtosis. 
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5.3 Empirical results 

 

This study aims to apply the copulas approach to estimate the optimal weight in 

portfolio analysis. Given CAPM equation of each stock returns, we can calculate the 

joint dependency structure via C-vine and D-vine to carry out the optimization process. 

The standardized residuals of from each equations are, then, transform to be the 

uniform [0,1] using the empirical cumulative distribution function. The estimated 

CAPM models are shown Table 5.2   

Table 5.2 Parameters estimation from CAPM models 

 

Para- 

meters 

 

BANPU 

 

BAY 

 

BBL 

 

CPN 

 

LH 

 

PS 

 

TCAP 

 

TOP 

 
𝜷𝟎 

 

-0.0060 

(0.0021) 

 

0.0003 

(0.0021) 

 

-0.0005 

(0.0014) 

 

0.0030 

(0.0022) 

 

-0.0014 

(0.0024) 

 

-0.0009 

(0.0029) 

 

-0.0008 

(0.0018) 

 

-0.0028 

(0.0020) 

𝜷𝟏 0.9653 

(0.0846) 

1.0098 

(0.0835) 

1.0248 

(0.0554) 

0.9695 

(0.0855)  

1.2592 

(0.0956) 

1.2617 

(0.1153) 

0.9556 

(0.7280) 

1.0543 

(0.0773) 

 

𝝈𝟐 0.0012 0.0012 0.0005 0.0012 0.0015 0.0022 0.0009 0.0010 

 

𝑹𝟐 0.3350 0.3620 0.5700 0.3320 0.4020 0.3170 0.4000 0.4190 

KS test 0.0811 0.7856 0.4211 0.8055 0.4854 0.6835 0.4326 0.0678 

 

According to table 5.2. The result shows the positive beta value (𝛽1) for all stock 

returns these mean that the market returns have a positive effect to stock returns. We 

observe that the PS return presents the highest rate of return and highest beta value 

(𝛽1).There are five stocks, consisting BAY, BBL, LS, PS and TOP, present the value of 

beta coefficients (β) which are above 1 (β > 1) while the rest of 3 stocks are BANPU, 

CPN and TCAP offered less expected return rate less than stock market does. Their 

beta coefficients (β) are below 1 (β < 1).This indicates that BAY, BBL, LS, PS and 

TOP return have the high expected risk and their price will be  volatile than the SET  

market while BANPU, CPN and TCAP return has the low expected risk and their price 

will be less volatile than the SET market. 
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In addition, the Kolmogorov–Smirnov (KS) test is used as the uniform test for the 

transformed marginal distribution functions of these CAPM residuals. The result shows 

that none of the KS test accepts the null hypothesis. Therefore, it is evident that all the 

marginal distributions are uniform on[0,1] .  

Table 5.3 Estimated Results of C-vine copula 

Pairs Families Parameter 1  Parameter 2 AIC Upper-Lower tail 

dependence 

Kendall’s 

tau 

1,2 Frank -1.1185 

(0.4133) 

  -5.2231 (0,0) -0.1227 

1,3 Gumbel 1.0630 

(0.0372) 

 -9.6632 (0,0.804) 0.0566 

1,4 Frank -0.8447 

(0.4256) 

 -1.9134 (0,0) -0.0931 

1,5 Frank -1.2610 

(0.4217) 

 -6.7918 (0,0) -0.1379 

1,6 Frank -0.8455 

(0.4355) 

 -1.2042 (0,0) -0.0932 

1,7 rotated BB8 

Copula(90) 

-1.2335 

(0.1805) 

-0.9483 

(0.0876) 

-0.2098 (0,0) -0.0868 

1,8 Clayton 0.0837 

(0.0626) 

 -3.7487 (0.0003,0) 0.0398 

2,3|1 rotated 

Gumbel 

Copula(180) 

-1.0667 

(0.0370) 

 -10.4321 (0,0) -0.0625 

2,4|1 Clayton 0.2005 

(0.0691) 

 -8.1257 (0.0312,0) 0.0909 

2,5|1 Clayton 0.2150 

(0.0784) 

 -1.0440 (0.0397,0) 0.0950 

2,6|1 rotated 

Gumbel 

Copula(180) 

1.0453 

(0.0338) 

 1.4950 (0.0591,0) 0.0433 

2,7|1 Frank -0.2854 

(0.4018) 

 -6.7201 (0,0) -0.0316 

2,8|1 rotated 

Clayton 

Copula(180) 

-0.0551 

(0.0596) 

 0.9857 (0,0) -0.0268 

3,4|1,2 

 

 

rotated BB8 

Copula(270) 

-1.3483 

 (0.3361) 

-0.8992 

 (0.1688) 

-3.0042 (0,0) -0.1037 
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Table 5.3 ( Continued) 

Pairs Families Parameter 1 Parameter 2 AIC Upper-Lower tail 

dependence 

Kendall’s 

tau 

3,5|1,2 Gaussian -0.1832 

(0.0596) 

 -6.6535 (0,0) -0.1172 

3,6|1,2 Student-t -0.0835 

(0.0725) 

 -3.1033 (0.0041,0.0041) -0.0532 

3,7|1,2 Gaussian -0.1824 

(0.0596) 

9.8817 

(4.8793) 

-6.5825 (0,0) -0.1167 

4,5|1,2,3 rotated 

Gumbel 

Copula(180) 

1.1679 

(0.0527) 

 -19.5084 (0.1896,0) 0.1437 

4,6|1,2,3 Clayton 0.1389 

(0.0678) 

 -3.5559 (0.0068,0) 0.0649 

4,7|1,2,3 Frank 0.8175 

(0.4013) 

 -2.1411 (0,0) 0.0902 

4,8|1,2,3 Clayton 0.0698 

(0.0551) 

 0.0668 (0.00004,0) 0.0337 

5,6|1,2,3,4 Gaussian 0.0817 

(0.0620) 

 0.2960 (0,0) 0.0520 

5,7|1,2,3,4 Rotate Joe 

copula(180 

degree) 

1.0722 

(0.0522) 

 -1.4888 (0.0912,0) 0.0399 

5,8|1,2,3,4 Gaussian -0.0643 

(0.0619) 

 0.9325 (0,0) -0.0409 

6,7|1,2,3,4,5 Clayton 0.1207 

(0.0658) 

 -2.5254 (0.0042,0) 0.0569 

6,8|1,2,3,4,5 Frank 0.5211 

(0.4039) 

 0.3410 (0,0) 0.0609 

7,8|1,2,3,4,5,6 Frank 0.8498 

(0.3956) 

 -2.6209 (0,0) 0.0937 

 

( ) standard error is in parenthesis, 5% level of significant. *1=BANPU, 2=CPN, 3=TOP, 4=PS, 5=LH, 6=TCAP, 

7=BBL, 8=BAY. 
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Table 5.4 Estimated Results of D-vine copula 

Pairs Families Parameter 1  Parameter 2 AIC Upper-Lower 

tail dependence 

Kendall’s 

tau 

1,2 Gaussian -0.198 

(0.0586) 

 -57.8570 (0,0) -0.1235 

2,3 Frank 0.8544 

(0.4129) 

 -2.2602 (0,0) 0.0942 

3,4 Frank -0.8447 

(0.4256) 

 -1.9134 (0,0) -0.0935 

4,5 Frank -1.1185 

(0.4133) 

 -5.2231 (0,0) -0.1298 

5,6 rotated 

Gumbel 

Copula 

(180 degrees) 

1.0518 

(0.0366) 

 -1.4600 (0.0671,0) 0.0492 

6,7 Clayton 0.1536 

(0.0737) 

 -3.9940 (0.0109,0) 0.0713 

7,8 rotated 

Clayton 

Copula 

(90 degrees) 

-0.0406 

(0.0499) 

 1.2452 (0,0) -0.0198 

1,3|2 rotated BB8 

Copula 

(270 degrees) 

-1.3060 

(0.2259) 

-0.9483 

(0.0876) 

-5.9783 (0,0) -0.1113 

2,4|3 rotated BB8 

Copula 

(270 degrees) 

-1.2359 

(0.1959) 

-0.9325 

(0.1116) 

-0.4941 (0,0) -0.819 

3,5|4 Clayton 0.2005 

(0.0691) 

 -10.4321 (0.0315,0) 0.0911 

4,6|5 Frank -0.7854 

(0.4253) 

 -1.3920 (0,0) -0.0867 

5,7|6 Gumbel 1.4941 

(0.2797) 

0.9002 

(0.1083) 

-9.4433 (0,0) 0.1443 

6,8|7 Frank 0.5461 

(0.4103) 

 0.2335 (0,0) 0.0604 

1,4|2,3 

 

Gumbel 1.0622 

(0.0369) 

 -9.1137 (0,0.0795) 0.0585 

2,5|3,4 

 

Frank -0.4316 

(0.3998) 

 0.8355 (0,0) -0.0478 

3,6|4,5 Clayton 0.1500 

(0.0668) 

 -5.0929 

 

(0.0098,0) 0.0697 
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Table 5.4 ( Continued) 

Pairs Families Parameter 1 Parameter 2 AIC Upper-Lower tail 

dependence 

Kendall’s 

Tau 

4,7|5,6 Frank -0.9638 

(0.4094) 

 -3.5019 

 

(0,0) -0.1061 

5,8|6,7 rotated 

Clayton 

Copula 

(90 degrees) 

-0.0776 

(0.0607) 

 -0.0134 (0,0) -0.0373 

1,5|2,3,4 Gaussian -0.0976 

(0.0618) 

 -0.4291 (0,0) -0.0622 

2,6|3,4,5 Clayton 0.1386 

(0.0652) 

 -4.2823 (0.0068,0) 0.0649 

3,7|4,5,6 rotated 

Gumbel 

Copula 

(180 degrees) 

1.1893 

(0.0539) 

 -21.7787 (0.2089,0) 0.1591 

4,8|5,6,7 Gaussian  0.0560 

(0.0597) 

 1.1273 (0,0) 0.0343 

1,6|2,3,4,5 Student-t -0.0585 

(0.0718) 

10.8479 

(6.0147) 

-0.9194 (0.0343,0.0343) -0.0372 

2,7|3,4,5,6 rotated Joe 

Copula 

(180 degrees) 

1.0944 

(0.0556) 

 -4.3223 (0.1161,0) 0.0515 

3,8|4,5,6,7 Clayton 0.0702 

(0.0576) 

 0.1823 (0.00005,0) 0.0339 

1,7|2,3,4,5,6 Frank -1.0796 

(0.4115) 

 -4.8556 (0,0) -0.1185 

2,8|3,4,5,6,7 

 

Gaussian 0.1336 

(0.0604) 

 -2.6796 (0,0) 0.0853 

1,8|2,3,4,5,6,7 

 

rotated 

Clayton 

Copula 

(90 degrees) 

-0.0926 

(0.0611) 

 -0.8799 (0,0) -0.0442 

( ) standard error is in parenthesis, 1=BANPU, 2=CPN, 3=TOP, 4=PS,5=LH, 6=TCAP, 7=BBL, 8=BAY. 

 

Table 5.3 and Table 5.4 show the estimated results for C-vine and D-vine copulas, 

respectively. According these estimation results, there is evident that the D-vine 

structure for these eight returns is more appropriate than the C-Vine one because the 

sum values of AIC and BIC are the smallest for D-vine. Thus, in this study, we choose 
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D-vine to analyze the co-movement and dependency between these eight returns. Table 

5.4 present the estimated result from D-vine copula and the result show that most of the 

estimated parameters are significant at 5% level. We, then consider in the Kendall ’s 

tau  values and found that the Rotate Gumbel copula (180 degrees) of (3,7|4,5,6) pair 

has the highest correlation, followed by Rotate copula BB8 (180 degrees) of (5,7|6) pair 

and Frank copula 4,5 pair, respectively. The relations of each pairs mostly jointed by 

Frank family, consisting (2,3) ,( 3,4) , (4,5) ,(4,6|5) ,(6,8|7) , (2,5|3,4) and (1,7|2,3,4,5,6) 

pairs. Consider the tail dependence, it is evident that there is significant co-movement 

and tail dependence for (5,6), (6,7), (3,5|4), (1,4|2,3), (3,6|4,5), (2,6|3,4,5), (3,7|4,5,6), 

(1,6|2,3,4,5), (2,7|3,4,5,6) and (3,8|4,5,6,7) pairs. 

 

Next, we used values of the D-vine copula to estimate the CVAR and efficient portfolio 

with the maximum expected return for a minimum loss. 

We applied the Monte Carlo simulation to generate a set of 1,000,000 simulated returns 

in order to compute the Value at risk (VaR) and Expected Shortfall (CVaR) of this 

portfolio. 

 

Table 5.5 Expected shortfall of equally weights portfolios 

 Expected Returns VaR CVaR 

10% 0.9405 -0.7537 -1.4289 

5 % 0.9405 -1.2657 -1.8687 

1 % 0.9405 -2.2458 -2.7599 

 

Table 5.5 shows VaR and CVaR at levels of 1%, 5% and 10% with equally weighted. 

We notice that the estimated CVaR converges to -1.4289, -1.8687 and -2.7599 at 10%, 

5% and 1% levels in period  𝑡 + 1 , respectively. In the case of VaR, we can indicates 

that it might be 1%, 5%, and 10% sure that this portfolios will fall more than 7.537%, 

1.2657%, and 2.2452%. If we take ES into account, it might be 1%, 5%, and 10% sure 

that this portfolios will fall more than 1.4289%, 1.8687%, and 2.7599%.  

 



 

58 
 

Furthermore, given significant level of 5%, we optimize the portfolio by using the 

mean-CVaR model and obtained the efficient frontier of the portfolio under various 

expected returns. Figure 5.1 illustrates the efficiency frontier which are represented by 

10 portfolios in the table 5.6. In this section, we also provide the optimal weight 

investment for these eight stock returns in SET market. The results seem to have a 

financial interpretation. For example, in portfolios 1, the investors who are risk adverse 

and want to minimize their risk of portfolio, they can allocate there investment in  

BANPU 10.86%, BAY 10.24%, BBL 27.25% CPN 11.79% LH 7.59% PS 1.54% 

TCAP 12.29% and TOP 18.45%. In contrast the investors who are risk lover and want 

to maximize the return, they can invest only in CPN. 

 

 

Figure 5.1 The efficient frontiers of CVaR under mean 
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Table 5.6 Optimal weighted portfolios for CVAR at 5 % 

Portfolios 𝐵𝐴𝑁𝑃𝑈𝑤1
 𝐵𝐴𝑌𝑤2

 𝐵𝐵𝐿𝑤3
 𝐶𝑃𝑁𝑤4

 𝐿𝐻𝑤5
 𝑃𝑆𝑤6

 𝑇𝐶𝐴𝑃𝑤7
 𝑇𝑂𝑃𝑤8

 Returns 

1 0.1086 0.1024 0.2725 0.1179 0.0759 0.0154 0.1229 0.1845 0.9129 

2 0.0604 0.1152 0.2866 0.1415 0.0715 0.0246 0.1187 0.1814 0.9522 

3 0.0130 0.1259 0.2979 0.1662 0.0695 0.0339 0.1153 0.1782 0.9916 

4 0.0000 0.1449 0.2857 0.2270 0.0695 0.0467 0.0873 0.1391 1.0320 

5 0.0000 0.1676 0.2652 0.3020 0.0667 0.0618 0.0500 0.0867 1.0727 

6 0.0000 0.1872 0.2512 0.3798 0.0626 0.0729 0.0143 0.0320 1.1133 

7 0.0000 0.1985 0.1801 0.4810 0.0530 0.0874 0.0000 0.0000 1.1539 

8 0.0000 0.1961 0.0530 0.6114 0.0329 0.1065 0.0000 0.0000 1.1942 

9 0.0000 0.1164 0.0000 0.7714 0.0000 0.1123 0.0000 0.0000 1.2340 

10 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 1.2736 

 

5.4 Conclusions 

 

In this paper, we have determined the risk in portfolio management by employingVaR 

and used the mean-CVaR model to optimize portfolios. We used the C-vine and D-vine 

copula to measured dependence structure between capital asset pricing model (CAPM) 

affects the returns of portfolios. We carried our analysis in two steps. First, we 

examined the dependence structure of stock returns obtained from CAPM equations. 

Second, we investigated how the dependence structure of the asset pricing model 

influences portfolio optimization. We used an optimization procedure to allocate risk in 

the portfolios. It is feasible to reason that vine copulas can be explained dependency 

structure of the asset in the portfolio management. 


