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CHAPTER 2 

 

Methodology 

 

 This chapter proposes econometrics models for research problems in health 

behaviors. The literature reviews on the copula theory and the switching regression 

model are discussed in Section 2.1 and Section 2.2 respectively. 

2.1  Copula Modeling 

Econometric estimation and inference for data that are assumed to be multivariate 

normal distributed are highly developed, but general approaches for joint nonlinear 

modeling of nonnormal data are not well developed, and there is a frequent tendency to 

consider modeling issues on a case-by-case basis. 

Interest in copulas arises from several perspectives. First, econometricians often 

possess more information about marginal distributions of related variables than their 

joint distribution. The copula approach is a useful method for deriving joint 

distributions given the marginal distributions, especially when the variables are 

nonnormal. Second, in a bivariate context, copulas can be used to define nonparametric 

measures of dependence for pairs of random variables. When fairly general and/or 

asymmetric modes of dependence are relevant, such as those that go beyond correlation 

or linear association, then copulas play a special role in developing additional concepts 

and measures. Finally, copulas are useful extensions and generalizations of approaches 

for modeling joint distributions and dependence that have appeared in the literature. 

One of the advantages of copula models is their relative mathematical 

simplicity. Another advantage is the possibility to build a variety of dependence 

structures based on existing parametric or non-parametric models of the marginal 

distributions. 
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2.1.1  Copula Function 

We begin with the definition of copula, following Schweizer (1991). The 

theorem underlying of copula was introduced in 1959 by Abe Sklar. The theorem 

succinctly stated that an m-dimension copula (or m -copula) is a function C from the unit 

m-cube [0, 1]m  to the unit interval [0, 1] which satisfies the following conditions 

(Trivedi P.K. and Zimmer D.M., 2005): 

 (1) C (1, . . . , 1, an, 1, . . . , 1) = an   for  every  n ≤ m  and all  an   in [0, 1]; 

 (2) C(a1, . . . ,am) = 0 if an = 0 for any n ≤ m; 

 (3) C is m-increasing. 

Property 1 says that if the realizations of m − 1 variables are known each 

with marginal probability one, then the joint probability of the m outcomes is the same 

as the probability of the remaining uncertain outcome. Property 2 is that the joint 

probability of all outcomes is zero if the marginal probability of any outcome is zero. 

Property 3 says that the C -volume of any m-dimensional interval is non-negative. 

Properties 2 and 3 are general properties of multivariate cdfs that were previously 

mentioned. 

It follows that an m-copula can be defined as an m-dimensional cdf whose 

support is contained in [0,1]m and whose one-dimensional margins are uniform on [0,1]. 

In other words, an m-copula is an m-dimensional distribution function with all m 

univariate margins being U(0,1). To see the relationship between distribution functions 

and copulas, consider a continuous m-variate distribution function F(y1,…,ym) with 

univariate marginal distributions F1(y1),…,Fm(ym) and inverse functions F1
-1,…,Fm

-1. 

Then y1=F1
-1(u1) ~ Fm where u1,… um are uniformly distributed variates. The transforms 

of uniform variates are distributed as Fi (i = 1,…,m). Hence 

𝐹(𝑦1, … , 𝑦𝑚) = 𝐹(𝐹1
−1(𝑢1), … , 𝐹𝑚

−1(𝑢𝑚)) 

= Pr[𝑈1 ≤ 𝑢1, … , 𝑈𝑚 ≤ 𝑢𝑚] 

= 𝐶(𝑢1, … , 𝑢𝑚)                                               (2.1) 

is the unique copula associated with the distribution function. 
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 For an m-variate function F, the copula associated with F is a distribution 

function C: [0,1]m →[0,1] that satisfies 

𝐹(𝑦1, … , 𝑦𝑚) = 𝐶(𝐹1(𝑦1), … , 𝐹𝑚(𝑦𝑚);  )                               (2.2) 

where  is a parameter of the copula called the dependence parameter, which measures 

dependence between the marginals. ),...,( 1 myyy  is the realization of an m-

dimensional random vector ),...,( 1 mYYY . )( jj yF  is the marginal distribution function 

of the thj margin for mj ...,,1  and F is a joint distribution function. 

 For continuous variables, the joint density ),...,( 1 myyf  can be easily 

obtained by taking the derivative of both the sides of equation (2.2), which gives 

)()...())(),...,((),...,( 11111 mmmmm yfyfyFyFcyyf  , 

where f is a joint density function, jf  is a marginal density function corresponding to 

each marginal j , and c  is a copula density function. The copula function is unique for 

the continuous random vector Y . However, the copula function is unique only over the 

Cartesian product of the ranges of the marginal distribution function in a discrete 

random vector (Genest and Neslehova, 2007). For modeling issues, parametric 

modeling of discrete variables by copula acquires dependence properties in the same 

way as in the continuous case. 

 For discrete variables, the probability mass function can be evaluated by 

taking the difference of the copula function. The joint probability mass function (pmf) 

of Y can be obtained as follows: 
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Y                   (2.3) 

 Note that, to compute this pmf, we have to evaluate m2 times of the copula 

functions. However, one can approximate the pmf of Y by building up from the number 

of bivariate copulas. This approach is called pair copula constructions (PCC).  
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2.1.2  Pair Copula Constructions 

 Pair copula constructions (PCC) were initiated by Joe (1996) and developed 

in more detail by Bedford and Cook (2001, 2002), and Kurowicka and Cooke (2006).  

 For continuous Y , a PCC can be derived by factorizing the joint density 

function into the conditional density function and the marginal density function, as 

follows: 

)(...),...,(),...,(),...,( 32,...,3221,...,211 mmmmmmm yfyyyfyyyfyyf                    (2.4) 

 Aas et al. (2009) have shown that the conditional density function on the 

right hand side of equation (2.4) can be decomposed into the product of a bivariate 

copula density and a univariate conditional density by using Sklar’s theorem. This can 

be done recursively to each of the terms on the right hand side of equation (2.4) until 

),...,( 1 myyf is decomposed into the product of m(m-1)/2 bivariate copulas 

(Panagiotelis, 2012).  

 For discrete margins, we can decompose a pmf by using the method 

proposed by Panagiotelis, 2012 as follows: 

)Pr(...),...,Pr(

),...,Pr(),...,Pr(

3322

221111

mmmm

mmmm

yYyYyYyY

yYyYyYyYyY




  (2.5) 

 We can perform the same decomposition as in a continuous case for each 

term on the right hand side of equation (2.5) to get the product of a bivariate copula. 

 For example in the case of m = 3, three-dimensional discrete margin PCC 

can be obtained as follows: 
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where 
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 and the arguments in the copula function are 
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 Since the dominator of equation (2.7) cancels with the second term on the 

right hand side of equation (2.6), the full expression for the pmf of the three-

dimensional discrete margin PCC is 
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 The above model can be used to analyzed the dependence between each 

health behavior considered in this paper and can also determine the factors affecting 

those behaviors as the same time. 

2.1.3  Estimation and Model Selection 

This thesis, we estimate both the copula and marginal parameters jointly by 

the maximum likelihood estimator (MLE) of the model parameters involving 

simultaneous maximization of the log-likelihood over the dependence () and marginal 

parameters. 

We determine the best model after fitting different PCC models to a given 

data set, one can rely on the classical AIC (Akaike Information Criterion) and BIC 

(Bayesian Information Criterion). 
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2.2  Switching Regression Model for Level of Hypertension 

 In the sample used to estimate the effect of alcohol consumption on the level of 

hypertension, the participants are not randomly drawn from the population from which 

we wanted to draw inferences, but participants who self-selected themselves into 

treatment. The approach to self-selection used, is that proposed by Heckman (Heckman, 

1979). The assumption is that the self-select mechanism may be modeled by a binary 

choice model. The switching regression model, was supplemented with copula by using 

copula to model the correlation between the random errors from a decision model and 

outcome models (Heckman, 1979). 

 Consider two decisions, S=0,1 , where 1 is 'drink alcohol' and 0 is not. Let  

S* = Z+ be the latent variable for the decision mechanism. The decision rule is the 

following condition 

𝑆 = {
 1   𝑖𝑓 𝑠∗ > 0
 0   𝑖𝑓 𝑠∗ ≤ 0

 

 where Z is the matrix of the explanatory variables explaining the self-select 

mechanism, and  is the corresponding vector of parameters to be estimated. The 

individuals are observed either in decision S=0 , or in decision S=1, but never in both. 

 Consider the outcome of interest, the level of hypertension Ys = 0,...,J, can be 

modeled using the latent variable framework and can be determined by the following 

condition: 

𝑌𝑠 = 𝑗   𝑖𝑓𝑓  𝑘𝑠,𝑗−1 <  𝑌𝑠
∗ ≤ 𝑘𝑠,𝑗, 𝑆 = 0,1, 𝑗 = 0, … , 𝑗                    (1) 

where s,j are the threshold values, which form a partition of the real line, i.e.,s,0 = -, 

s,J =  , and s,j > s,j-1 for all j.  

 Let Y0
* = X0+0 be the latent variable for the individual decision not to drink  

S = 0 , and Y1
* = X1+1 be the latent variable for the individual to consume alcohol S 

= 1, where, X is the vector of all the explanatory variables, 0 and 1 are the vector of 

the parameters to be estimated. 
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 As previously discussed, there might be some unobserved factors affecting both 

the self-selected mechanism and the response outcome, therefore the probability of 

observing Ys = j depends on the self-selected variable S. Given that S and Ys are not 

necessarily independent. We have 

),(),0,Pr( 0,0001,00  ZXXPZXSjY jj    

               ),(),( 01,000,00  ZXPZXP jj    

),(),1,Pr( 1,1111,11  ZXXPZXSjY jj    

                      )()( 11,111,11  XPXP jj    

                     ),(),( 11,111,11  ZXPZXP jj    

To model the above probability, we have to specify the appropriate joint 

distribution functions. In this chapter, we suggest combining the marginal distributions 

(s and ) by using copula. 

 For a bivariate joint distribution H with marginal distributions F1 and F2, the 

copula C : [0,1]2 →[0,1] , which combines these two marginal distributions, can be 

expressed as follows: 

 )(),(),( 2211 xFxFCyxH  , 2),( Ryx   

 The copula function is uniquely determined for the continuous random vector 

(F1,F2). For a discrete random vector, the copula function is unique only over the 

Cartesian product of the range of the marginal distribution function (Genest and 

Neslehova 2007). Thus, in discrete cases the mapping from two marginal distributions 

and copula to a bivariate joint distribution is not one-to-one. However, the region 

outside the Cartesian product of the range of the marginal distribution function is not of 

interest (Nelsen 2006). Moreover, Genest, C. and Neslehova, J. demonstrated that 

parametric modeling of discrete random vector by copula acquires dependence 

properties in a way that is similar to the continuous case (Genest and Neslehova 2007). 
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 For any copula, the marginal distribution implied by bivariate copula are C(u,v) ≤ 

C(u,1) = u and C(u,v) ≤ C(1,v) = v, for all 0 ≤ u,v < 1 , and so W(u,v) = max(u+v-1, 0) 

≤ C(u,v) ≤ min(u,v)=M(u,v). The copula M(u,v) and W(u,v) are called the Frechet 

upper bound and Frechet lower bound, respectively. We can interpret the Frechet lower 

bound as the copula with the maximum negative dependence and Frechet upper bound 

as the copula with the maximum positive dependence. In modeling switching 

regression, it is essential that the copula should allow for both positive and negative 

dependence, since the direction of the selection bias can be in both directions. We 

should not restrict the direction of selection bias a priori. The selection pattern should be 

explained by the data itself. 

 Copula has had limited use in the endogenous switching regression models. Some, 

but not all examples, are (Sirisrisakulchai & Sriboonchitta, 2014a) and (Ophem, 2000) 

for modeling endogenous switching regression in count outcomes, (Smith, 2005) for 

modeling endogenous switching regression of continuous variables and (Luechinger et. 

al, 2010) for modeling endogenous switching regression in ordered outcomes. 

 For any given copula, the two required joint distribution, Pr(Y0 = j, S = 0 |X, Z) 

and Pr(Y1 = j, S=1 |X, Z) are fully determined. Therefore, 

));(),(());(),((),0,Pr( 0201,010020,0100  ZFXFCZFXFCZXSjY jj  

and 

);1),(();1),((),1,Pr( 111,11111,1111  XFCXFCZXSjY jj    

));(),(());(),(( 1211,111121,111  ZFXFCZFXFC jj  

where C0(u,v) and C1(u,v) are copula functions and F1 and F2 are marginal functions 

which can be either normal or logistic distribution which correspond to the Probit and 

Logit models, respectively. 

 

 


