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CHAPTER 5 

Applications of Fuzzy and Artificial Neural Network to 

Earthquake Loss Estimations 

 For risk assessment and retrofit prioritization of structures in the seismic regions 

of Chiang Rai Municipality, there is an urgent need for a methodology that is rapid, 

realistic, quantitative, and cost effective. Thus, the methodologies to tradeoff between 

accuracy and rapidness may prove to be the optimum solution that results in a rapid and 

reliable seismic risk assessment that is also cost effective. This chapter was to prioritize 

building retrofit based on earthquake risk assessment. The retrofit prioritization 

incorporates qualitative and quantitative data which include site seismic hazard, 

building vulnerability, and importance/exposure factors. Finally, was using an artificial 

neural network approach for identification of building risk score which more priority by 

a learning algorithm from fuzzy data. The results confirm that this method is not only a 

cheaper one but also time saving. Moreover the method is suitable (reliable) when data 

are uncertain and incomplete.  

This chapter provides an overview of the earthquake loss estimations and risk 

mitigation. Three topics will be discussed in this chapter: (1) Fuzzy application in risk 

model, (2) Structural repair prioritization of buildings damaged after earthquake using 

fuzzy logic model and (3) Artificial Neural Network applications in risk model 

5.1 Fuzzy Applications in Risk Model 

Fuzzy logic is a useful tool for expressing the professional judgments. These 

judgments may be a verbal statement with vagueness or fuzziness. The example of 

vagueness in the earthquake risk assessment can be “The building is moderately 

vulnerable” or “The building is very important” or “The peak ground acceleration is 
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high”. The fuzzy sets describing damaged state of the building are then converted to 

damage score/total risk score (a real number) by defuzzification process. Earlier study 

of fuzzy logic application was performed by Zadeh (1965). The study introduced the 

application of fuzzy logic and fuzzy set theory to risk management. Risk analysis 

problems contained a mixture of quantitative and qualitative data. Therefore 

quantitative risk assessment techniques are inadequate for prioritizing risk. Fuzzy logic 

provides a language with semantics to translate qualitative knowledge into numerical 

reasoning, which enables modeling complex systems like buildings risk assessment. 

The strong benefit of fuzzy logic is that it can integrate descriptive or linguistic 

knowledge and numerical data to fuzzy model and use approximate reasoning 

algorithms to propagate the uncertainties throughout the decision process. In this study, 

the risk factors in terms of site seismic hazard, building vulnerability and building 

important contain relative graded membership, as determined by the combination of 

scientific process and the processes of human perception and cognition. Fuzzy logic 

model was hence adopted here taking possibility of incidence and the severity of the 

risk to be accounted 

5.1.1 Building Vulnerability and Final RVS Score 

Seismic building vulnerability assessment can be performed by using various 

approaches depending on the purposes of the evaluation. As it is impossible to perform 

more advance and detail evaluation individually for all building stocks, this study 

adopted the assessment method based on sidewalk screening adopted from FEMA154 

(2002a). The building vulnerability was identified from rapid visual screening survey. 

The method is classified as Tier1 seismic performance evaluation of existing buildings. 

The rapid visual screening firstly considers basic score considering structural type. 

Then, the score is modified for the final score (S) based on other seismic characteristics 

of the building, for example building height, building age, soil condition, plan 

irregularity. The final score (S) obtained implicitly represents seismic performance or 

damage grade. Nanda and Majhi (2014) suggested that the structure damage could be 

categorized in different grades depending on their impacts on the seismic strength of the 

building. Table 5.1 defines the damage grades. A building with higher final score 

performs better seismic performance. Their damage potential is then classified in lower 
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damage grade. From Table 5.2, the damage of reinforced concrete buildings are 

classified from Grade 1 to Grade 5 based on the Final Scores. 

Table 5.1 Structural scores with damage potential (Nanda and Majhi, 2014) 

RVS Final 

Score (S) 

Damage Potential 

S<0.3 High probability of Grade 5 damage; Very high probability of Grade 4 

Damage 

0.3<S<0.7 High probability of Grade 4 damage; Very high probability of Grade 3 

Damage 

0.7<S<2.0 High probability of Grade 3 damage; Very high probability of Grade 2 

Damage 

2.0<S<2.5 High probability of Grade 2 damage; Very high probability of Grade 1 

Damage 

S>2.5 Probability of Grade 1 damage 

 

Table 5.2 Classification of damage to reinforced concrete buildings  

(Nanda and Majhi, 2014) 

Damage Stage Description 

Grade 1: Negligible to slight 

damage 

(No structural damage, slight non-

structural damage) 

Fine cracks in plaster over frame members or in 

walls at the base 

Fine cracks in partitions and infills. 

Grade 2: Moderate damage 

(Slight structural damage, moderate 

non-structural damage) 

Cracks in columns and beams of frames and in 

structural walls. 

Crack in partition and infill walls; fall of brittle 

cladding and plaster. Falling mortar from the 

joints of the wall panels 

Grade 3: Substantial to heavy 

damage  

(Moderate structural damage, heavy 

non-structural damage) 

Cracks in columns and beam-column joints of 

frames at the base and at joints of coupled 

walls. Spalling of concrete cover, bucking of 

reinforced bars. Large cracks in partition and 

infill walls, failure of individual infill panels. 

Grade 4: Very heavy damage  

(Heavy structural damage, very 

heavy non-structural damage) 

Large cracks in structural elements with 

compression failure of concrete and fracture of 

rebars; bond failure of beam reinforcing bars; 

tilting of columns. Collapse of a few columns 

or of a single upper floor. 

Grade 5: Destruction (very heavy 

structure damage) 

Collapse of ground floor parts (e.g. wings) of 

the building. 
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The surveyed final score of buildings in the study area was varied from minimum 

at 0 and possible maximum at 7. According to the relationship between the final score 

and damage potential in Table 5.1, the final score was fuzzified into five fuzzy sets of 

building vulnerability as “Destruction, D”, “very heavy damage, V”, “substantial to 

heavy damage, H”, “moderate damage, M” and “Negligible to slight damage, N”, 

respectively. Triangular and trapezoidal fuzzy models were used to relate the linguistic 

vulnerability levels and the final scores, as shown in Table 5.3. From Table 5.3, the 

triangular membership function (trimf) contains fuzzy numbers displayed as (a, b, c) 

where “a” represents the minimum value, “b” represents the most likely values and “c” 

represents the maximum value. The trapezoidal fuzzy number can be displayed as (a b c 

d) where “a” represents the minimum value, “b” and “c” equally represent the most 

likely values and “d” represents the maximum value. The memberships of all the fuzzy 

sets are drawn in the table. From the figure, the damage potential can be partially 

classified for the final scores other than the most likely values. For example, for the 

final score of 0.5, the damage potential can be classified as the combination of the 

membership degree of “Very heavy damage, V” and “Substantial to heavy damage, H”. 

Table 5.3 Proposed vulnerability fuzzy number 

Linguistic Parameter Transformation 

Destruction, D trimf(0,0,0.3) 

Very heavy damage, V trimf(0,0.3,0.7) 

Substantial to heavy damage, H trimf(0.3,0.7,2) 

Moderate damage, M trimf(0.7,2,2.5) 

Negligible to slight damage, N trapmf(2,2.5,7,7) 

 

 
 

 5.1.2 Peak Ground Acceleration 

 The peak ground acceleration directly vibrates buildings and generates lateral 

deformation of the buildings. The earthquake response of the structure is defined by its 



 

125 

capacity curve adopted from FEMA (2003). The curve relates lateral load capacity of 

building with the corresponding lateral deformation, normally at the roof floor. Under 

the same ground acceleration level, each building responses differently depending on 

structural types. There are eleven different structural types in Chiang Rai Municipality. 

Using the capacity curve and the ground acceleration level, the building deformation 

was estimated. The estimated deformation ( ed ) implies level of damages. The larger 

the lateral deformation, the more severe of damage is induced. Next, the fragility curves 

were used with the estimated deformation to describe the probability of damage of the 

analyzed buildings. Therefore, the probability of damage states were applied in PGA(g) 

fuzzy model, as shown in Figure 5.1. 

 

Figure 5.1 The PGA(g) Fuzzy Model 
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Figure 5.1 shows the PGA(g) fuzzy model. Step1, cumulative probabilities in the 

fragility curve from each PGA(g) 0.0 to 0.30 transform to the damage state. Step2, 

separates the level of the Peak Ground Acceleration with damage probability according 

to the PGA(g) fuzzy model relying on the expert judgments basis was used 

classification as follows; 

- Very Low (VL) is considered as accumulated damage state in slight – complete 

less than 30% 

- Low (L) is considered as accumulated damage state in slight – complete more 

than 30% 

- Moderate (M) is considered as accumulated damage state in moderate – 

complete more than 50% 

- High (H) is considered as accumulated damage state in extensive – complete 

more than 30% 

- Intensive (I) is considered as accumulated damage state in extensive – complete 

more than 50% 

Final Step, transforming the PGA(g) damage range on each linguistic variables to 

the fuzzy sets. 

In the following section, the PGA(g) fuzzy model separates the level of the Peak 

Ground Acceleration according to the damage level of each structure from cumulative 

probabilities in the fragility curve. For example, for the concrete frame buildings with 

unreinforced masonry infill walls (C3); 

- Peak Ground Acceleration value of 0.0 – 0.05g is considered as „Very Low 

(VL)‟ ground shaking linguistic which causes accumulated damage to the structure in 

none - complete level less than 30%.  

- Peak Ground Acceleration value 0.05 – 0.07g is considered as „Low (L)‟ ground 

shaking linguistic which causes accumulated damage to the structure in slight - 

complete level more than 30%. 

- Peak Ground Acceleration value 0.07 – 0.10g is considered as „Moderate (M)‟ 

ground shaking linguistic which causes accumulated damage to the structure in 

moderate-complete level more than 50%.  
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- Peak Ground Acceleration value 0.10 – 0.16g is considered as „High (H)‟ 

ground shaking linguistic which causes accumulated damage to the structure in 

extensive-complete level more than 30%.  

- Peak Ground Acceleration value more than 0.16g is considered as „Intensive (I)‟ 

ground shaking linguistic which causes accumulated damage to the structure in 

extensive-complete level more than 50% respectively.  

Table 5.4 shows damage classification for each basic structural type in the study 

area. The classification was divided into five damage levels, namely very low (VL), low 

(L), moderate (M), high (H), and intensive (I), and subdivided according to materials 

and structural systems. In general, each material and structural system is differently 

capable to remain their stability during earthquake ground motion. In the same levels of 

deformation, each structural type and material is difference in terms of loading capacity 

or PGA. Therefore, the fuzzy seismic hazard model was created for all buildings as 

shown in Tables 5.5 – 5.16.  

Table 5.4 Damage classifies from the fragility curve and cumulative damage 

probabilities for each structure 

Structure 

Type 

PGA(g) 

VL L M H I 

C1 <0.05 0.05-0.07 0.07-0.10 0.10-0.15 >0.15 

C2 <0.06 0.06-0.08 0.08-0.12 0.12-0.17 >0.17 

C3 <0.05 0.05-0.07 0.07-0.10 0.10-0.16 >0.16 

W1 <0.08 0.08-0.19 0.19-0.24 0.24-0.26 >0.26 

W2 <0.07 0.07-0.09 0.09-0.14 0.14-0.23 >0.23 

S1 <0.05 0.05-0.09 0.09-0.13 0.13-0.16 >0.16 

S2 <0.06 0.06-0.10 0.10-0.14 0.14-0.17 >0.17 

S3 <0.05 0.05-0.06 0.06-0.08 0.08-0.12 >0.12 

URM <0.07 0.07-0.13 0.13-0.15 0.13-0.17 >0.17 

W2C3 <0.07 0.07-0.10 0.10-0.16 0.16-0.23 >0.23 

W1C3 <0.07 0.07-0.14 0.14-0.16 0.16-0.25 >0.25 
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Table 5.5 Transformation of linguistic inputs for seismic hazard, PGA(g) of the 

structural type C1 

Linguistic Parameter Transformation 

Very light, VL trimf (0,0,0.05) 

Light, L trimf (0,0.05,0.07) 

Moderate, M trimf (0.05,0.07,0.10) 

Heavy, H trimf (0.07,0.10,0.15) 

Intensive, I trapmf (0.10,0.15,0.30,0.30) 

 

 
 

Table 5.6 Transformation of linguistic inputs for seismic hazard, PGA(g) of the 

structural type C2 

Linguistic Parameter Transformation 

Very light, VL trimf (0,0,0.06) 

Light, L trimf (0,0.06,0.08) 

Moderate, M trimf (0.06,0.08,0.12) 

Heavy, H trimf (0.08,0.12,0.17) 

Intensive, I trapmf (0.12,0.17,0.30,0.30) 
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Table 5.7 Transformation of linguistic inputs for seismic hazard, PGA(g) of the 

structural type C3 

Linguistic Parameter Transformation 

Very light, VL trimf (0,0,0.05) 

Light, L trimf (0,0.05,0.07) 

Moderate, M trimf (0.05,0.07,0.10) 

Heavy, H trimf (0.07,0.10,0.16) 

Intensive, I trapmf (0.10,0.16,0.30,0.30) 

 

 
 

Table 5.8 Transformation of linguistic inputs for seismic hazard, PGA(g) of the 

structural type W1 

Linguistic Parameter Transformation 

Very light, VL trimf (0,0,0.08) 

Light, L trimf (0,0.08,0.19) 

Moderate, M trimf (0.08,0.19,0.24) 

Heavy, H trimf (0.19,0.24,0.26) 

Intensive, I trapmf (0.24,0.26,0.30,0.30) 
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Table 5.9 Transformation of linguistic inputs for seismic hazard, PGA(g) of the 

structural type W2 

Linguistic Parameter Transformation 

Very light, VL trimf (0,0,0.07) 

Light, L trimf (0,0.07,0.09) 

Moderate, M trimf (0.07,0.09,0.14) 

Heavy, H trimf (0.09,0.14,0.23) 

Intensive, I trapmf (0.14,0.23,0.30,0.30) 

 

 
 

Table 5.10 Transformation of linguistic inputs for seismic hazard, PGA(g) of the 

structural type S1L 

Linguistic Parameter Transformation 

Very light, VL trimf (0,0,0.05) 

Light, L trimf (0,0.05,0.09) 

Moderate, M trimf (0.05,0.09,0.13) 

Heavy, H trimf (0.09,0.13,0.16) 

Intensive, I trapmf (0.13,0.16,0.30,0.30) 
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Table 5.11 Transformation of linguistic inputs for seismic hazard, PGA(g) of the 

structural type S2L 

Linguistic Parameter Transformation 

Very light, VL trimf (0,0,0.06) 

Light, L trimf (0,0.06,0.10) 

Moderate, M trimf (0.06,0.10,0.14) 

Heavy, H trimf (0.10,0.14,0.17) 

Intensive, I trapmf (0.14,0.17,0.30,0.30) 

 

 
 

Table 5.12 Transformation of linguistic inputs for seismic hazard, PGA(g) of the 

structural type S3 

Linguistic Parameter Transformation 

Very light, VL trimf (0,0,0.05) 

Light, L trimf (0,0.05,0.06) 

Moderate, M trimf (0.05,0.06,0.08) 

Heavy, H trimf (0.06,0.08,0.12) 

Intensive, I trapmf (0.08,0.12,0.30,0.30) 
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Table 5.13 Transformation of linguistic inputs for seismic hazard, PGA(g) of the 

structural type URM 

Linguistic Parameter Transformation 

Very light, VL trimf (0,0,0.07) 

Light, L trimf (0,0.07,0.13) 

Moderate, M trimf (0.07,0.13,0.15) 

Heavy, H trimf (0.13,0.15,0.17) 

Intensive, I trapmf (0.15,0.17,0.30,0.30) 

 

 
 

Table 5.14 Transformation of linguistic inputs for seismic hazard, PGA(g) of the 

structural type W2C3 

Linguistic Parameter Transformation 

Very light, VL trimf (0,0,0.07) 

Light, L trimf (0,0.07,0.10) 

Moderate, M trimf (0.07,0.10,0.16) 

Heavy, H trimf (0.10,0.16,0.23) 

Intensive, I trapmf (0.16,0.23,0.30,0.30) 
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Table 5.15 Transformation of linguistic inputs for seismic hazard, PGA(g) of the 

structural type W1C3 

Linguistic Parameter Transformation 

Very light, VL trimf (0,0,0.07) 

Light, L trimf (0,0.07,0.14) 

Moderate, M trimf (0.07,0.14,0.16) 

Heavy, H trimf (0.14,0.16,0.25) 

Intensive, I trapmf (0.16,0.25,0.30,0.30) 

 

 
 

5.1.3 Fuzzy application in building occupancy 

Building occupancy implicitly represents important level of the building. 

However, the important level is a site dependent and qualitative aspects of human 

knowledge. There are eleven types of building occupancies in Chiang Rai Municipality. 

Hence, it needs reasoning process to quantify the important level. It was previously 

evaluated and weighted by using Analytical Hierarchy Process (AHP) which is a 

measurement procedure through pairwise comparisons relying on the judgments basis 

(Saicheur et al., 2013; Saicheur and Hansapinyo, 2016). Questionnaires were 

distributed to experts for ranking different building occupancies. Figure 5.2 shows the 

criteria for pairwise comparisons of building exposures computed by integrating 

building occupancy, likelihood of human casualty, economic importance and the value 

of property. Table 5.17 shows the ranked buildings occupancy based on the AHP result. 

The most important building is hospital buildings and the commercial buildings are 

classified as the least important. The ranked order was applied for fuzzy membership as 

shown in Figure 5.3. According to the AHP priority result shown in Table 5.16, the 
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triangular type membership function was used to transform the relative important of the 

nine occupancies into fuzzy variables, as shown in Table 5.16 and Figure 5.3. 

 

 

 
 

Figure 5.2 AHP hierarchy diagram for ranking of building occupancy 

Table 5.16 Ranking of the building occupancy 

No. Building Occupancy Weight
1
,% 

Crisp 

Ranking 

Fuzzy 

Ranking 

Membership 

value 

1 Hospital Building 30.43 1 (1,1,2) (0.875,1,1) 

2 School Building 21.11 2 (1,2,3) (0.75,0.875,1) 

3 Historic Building 11.63 3 (2,3,4) (0.625,0.75,0.875) 

4 Government office 9.14 4 (3,4,5) (0.5,0.625,0.75) 

5 Assembly Building 8.46 5 (4,5,6) (0.375,0.5,0.625) 

6 Industrial Building 5.66 6 (5,6,7) (0.25,0.375,0.5) 

7 
Residential & Hotel 
Building 

5.29 7 (6,7,8) (0.125,0.25,0.375) 

8 Office Building 4.72 8 (7,8,9) (0,0.125,0.25) 

9 
Commercial & Other 
Building 

5.57 9 (8,9,9) (0,0,0.125) 

1
Saicheur and Hansapinyo, (2016) 
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Figure 5.3 Membership function of building occupancy 

5.1.4 Fuzzy application in building damageability 

Building damageability was determined by integrating the Peak Ground 

Acceleration value and the building vulnerability score obtained from rapid visual 

screening method as show in Figure 5.4. The fuzzy rules for decision making relying on 

the expert judgments basis was used to estimate the building damage, as shown in Table 

5.17. 

 

Figure 5.4 Flowchart of the building damageability 
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Table 5.17 Fuzzy associative memory (FAM) for building damage 

PGA(g) 

Building vulnerability 
VL L M H I 

Negligible to slight damage, N N N L M H 

Moderate damage, M N L M M H 

Substantial to heavy damage, H L M M H H 

Very heavy damage, V M M H H S 

Destruction, D M H H S S 

From Table 5.17, the buildings damage classification are expressed as “N: none 

damage”, “L: light damage”, “M: moderate damage”, “H: heavy damage” and “S: 

severe damage” categories. The fuzzy logic model includes combined rules process. 

This section shown each structure type has total 25 rules are framed for building 

damage score and presents as follows. 

Example: Linguistic Rulei for Building Type C3 

Rule 1:  IF Building type C3 damage opportunity level is Negligible AND  

PGA level is Very Low  

THEN Damage score is None; 

Rule 2:  IF Building type C3 damage opportunity level is Negligible AND  

PGA level is Low  

THEN Damage score is None; 

Rule 3:  IF Building type C3 damage opportunity level is Negligible AND  

PGA level is Moderate  

THEN Damage score is Light; 

Rule 4:  IF Building type C3 damage opportunity level is Negligible AND  

PGA level is Heavy  

THEN Damage score is Moderate; 

Rule 5:  IF Building type C3 damage opportunity level is Negligible AND  

PGA level is Intensive  

THEN Damage score is Heavy; 
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Rule 6:  IF Building type C3 damage opportunity level is Moderate AND  

PGA level is Very Low  

THEN Damage score is None; 

Rule 7:  IF Building type C3 damage opportunity level is Moderate AND  

PGA level is Low  

THEN Damage score is Light; 

Rule 8:  IF Building type C3 damage opportunity level is Moderate AND  

PGA level is Moderate  

THEN Damage score is Moderate; 

Rule 9:  IF Building type C3 damage opportunity level is Moderate AND  

PGA level is Heavy  

THEN Damage score is Moderate; 

Rule 10: IF Building type C3 damage opportunity level is Moderate AND  

PGA level is Intensive  

THEN Damage score is Heavy; 

Rule 11: IF Building type C3 damage opportunity level is Heavy AND  

PGA level is Very Low  

THEN Damage score is Light; 

Rule 12: IF Building type C3 damage opportunity level is Heavy AND  

PGA level is Low  

THEN Damage score is Moderate; 

Rule 13: IF Building type C3 damage opportunity level is Heavy AND  

PGA level is Moderate  

THEN Damage score is Moderate; 

Rule 14: IF Building type C3 damage opportunity level is Heavy AND  

PGA level is Heavy  

THEN Damage score is Heavy; 

Rule 15: IF Building type C3 damage opportunity level is Heavy AND  

PGA level is Intensive  

THEN Damage score is Heavy; 

Rule 16: IF Building type C3 damage opportunity level is Very Heavy AND  

PGA level is Very Low  
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THEN Damage score is Moderate; 

Rule 17: IF Building type C3 damage opportunity level is Very Heavy AND  

PGA level is Low  

THEN Damage score is Moderate; 

Rule 18: IF Building type C3 damage opportunity level is Very Heavy AND  

PGA level is Moderate  

THEN Damage score is Heavy; 

Rule 19: IF Building type C3 damage opportunity level is Very Heavy AND  

PGA level is Heavy  

THEN Damage score is Heavy; 

Rule 20: IF Building type C3 damage opportunity level is Very Heavy AND  

PGA level is Intensive  

THEN Damage score is Severe; 

Rule 21: IF Building type C3 damage opportunity level is Destruction AND  

PGA level is Very Low  

THEN Damage score is Moderate; 

Rule 22: IF Building type C3 damage opportunity level is Destruction AND  

PGA level is Low  

THEN Damage score is Heavy; 

Rule 23: IF Building type C3 damage opportunity level is Destruction AND  

PGA level is Moderate  

THEN Damage score is Heavy; 

Rule 24: IF Building type C3 damage opportunity level is Destruction AND  

PGA level is Heavy  

THEN Damage score is Severe; 

Rule 25: IF Building type C3 damage opportunity level is Destruction AND  

PGA level is Intensive  

THEN Damage score is Severe; 

An example of defuzzification in building Type C3 is shown here. With the peak 

ground acceleration value of 0.15g and the RVS-score of 0.5, the vulnerability level of 

the building is very heavy damage. 
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Therefore, gives a single crisp value from weighted average method as an output 

after defuzzifying the aggregate fuzzy set, that leads to damage type is collapse with 

damage score 0.817. 

5.1.5 Fuzzy application for the Total Risk Scores 

Finally, the total risk score was computed by integrating the building important 

(Section 5.1.3) and the building damaged scores (Section 5.1.4). The result of damage 

score in section 5.1.4 is transfer to fuzzy input of Total Risk score as show in Fig. 5.5. 

The result of damage score is based on the damage type descriptions provided FEMA 

(2000). In addition, the numerical values that represent the damage factor of ATC 

(1985) were related to the damage type descriptions as shown in Table 5.18. 

Table 5.19 presents the resulting correlation between building occupancy and 

damage score. The triangular membership function have fuzzy numbers can be 

displayed as (a b c) where “a” represents the minimum score, “b” represent the most 

likely score, and “c” represents the maximum score.  

Table 5.18 Correlation between damage type and damage score 

Damage Type Damage Score Transformation 

Very Light, VL 0.0 - 0.1 trimf(0,0,0.01) 

Light, L 0.1 - 10 trimf(0,0.01,0.1) 

Moderate, M 10 - 30 trimf(0.01,0.1,0.3) 

Severe, S 30 - 60 trimf(0.1,0.3,0.6) 

Collapse, C 60 - 100 trapmf(0.3,0.6,1,1) 
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Figure 5.5 Flowchart of the Total Risk Index 

Table 5.19 Fuzzy associative memory (FAM) for total risk score 

Damage 

Type 
VL L M S C 

Commercial VVL VVL VL L LM 

Office VVL VL L LM M 

House, Residential VL L LM M M 

Factory L LM M M HM 

Assembly LM M M HM HM 

Gov. office M M HM HM H 

Temple M HM HM H VH 

School HM HM H VH CR 

Hospital HM H VH CR CR 

 Especially for the total risk score was computed by integrating the building 

importance and the building damaged that has total 45 rules are presents in Table 5.19. 

The Total Risk Score are expressed in term of fuzzy words in proper sentences 

(statement) such as “Very Very Low, VVL ”, “Very light, VL”, “Light, L”, “Light-

moderate, LM”, “Moderate, M”, “High-moderate, HM”, “High, H”, “Very-high” and 

“Critical, CR” , respectively.. 



 

141 

Example: Linguistic Rulei for Building Type i 

Rule 1:  IF Building Occupancy type is Commercial AND  

Building Damage is Very Low  

THEN Total Risk Score is Very-Very Low; 

Rule 2:  IF Building Occupancy type is Commercial AND  

Building Damage is Low  

THEN Total Risk Score is Very-Very Low; 

Rule 3:  IF Building Occupancy type is Commercial AND  

Building Damage is Moderate 

THEN Total Risk Score is Very Low; 

Rule 4:  IF Building Occupancy type is Commercial AND  

Building Damage is Severe 

THEN Total Risk Score is Low; 

Rule 5:  IF Building Occupancy type is Commercial AND  

Building Damage is Collapse 

THEN Total Risk Score is Low-Moderate; 

Rule 6:  IF Building Occupancy type is Office AND  

Building Damage is Very Low  

THEN Total Risk Score is Very-Very Low; 

Rule 7:  IF Building Occupancy type is Office AND  

Building Damage is Low  

THEN Total Risk Score is Very Low; 

Rule 8:  IF Building Occupancy type is Office AND  

Building Damage is Moderate 

THEN Total Risk Score is Low; 

Rule 9:  IF Building Occupancy type is Office AND  

Building Damage is Severe 

THEN Total Risk Score is Low-Moderate; 

Rule 10: IF Building Occupancy type is Office AND  

Building Damage is Collapse 

THEN Total Risk Score is Moderate; 

Rule 11: IF Building Occupancy type is Residential AND  
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Building Damage is Very Low  

THEN Total Risk Score is Very Low; 

Rule 12: IF Building Occupancy type is Residential AND  

Building Damage is Low  

THEN Total Risk Score is Low; 

Rule 13: IF Building Occupancy type is Residential AND  

Building Damage is Moderate 

THEN Total Risk Score is Low-Moderate; 

Rule 14: IF Building Occupancy type is Residential AND  

Building Damage is Severe 

THEN Total Risk Score is Moderate; 

Rule 15: IF Building Occupancy type is Residential AND  

Building Damage is Collapse 

THEN Total Risk Score is Moderate; 

Rule 16: IF Building Occupancy type is Factory AND  

Building Damage is Very Low  

THEN Total Risk Score is Low; 

Rule 17: IF Building Occupancy type is Factory AND  

Building Damage is Low  

THEN Total Risk Score is Low-Moderate; 

Rule 18: IF Building Occupancy type is Factory AND  

Building Damage is Moderate 

THEN Total Risk Score is Moderate; 

Rule 19: IF Building Occupancy type is Factory AND  

Building Damage is Severe 

THEN Total Risk Score is Moderate; 

Rule 20: IF Building Occupancy type is Factory AND  

Building Damage is Collapse 

THEN Total Risk Score is High-Moderate; 

Rule 21: IF Building Occupancy type is Assembly AND  

Building Damage is Very Low  

THEN Total Risk Score is Low-Moderate; 
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Rule 22: IF Building Occupancy type is Assembly AND  

Building Damage is Low  

THEN Total Risk Score is Moderate; 

Rule 23: IF Building Occupancy type is Assembly AND  

Building Damage is Moderate 

THEN Total Risk Score is Moderate; 

Rule 24: IF Building Occupancy type is Assembly AND  

Building Damage is Severe 

THEN Total Risk Score is High-Moderate; 

Rule 25: IF Building Occupancy type is Assembly AND  

Building Damage is Collapse 

THEN Total Risk Score is High-Moderate; 

Rule 26: IF Building Occupancy type is Government Office AND  

Building Damage is Very Low  

THEN Total Risk Score is Moderate; 

Rule 27: IF Building Occupancy type is Government Office AND  

Building Damage is Low  

THEN Total Risk Score is Moderate; 

Rule 28: IF Building Occupancy type is Government Office AND  

Building Damage is Moderate 

THEN Total Risk Score is High-Moderate; 

Rule 29: IF Building Occupancy type is Government Office AND  

Building Damage is Severe 

THEN Total Risk Score is High-Moderate; 

Rule 30: IF Building Occupancy type is Government Office AND  

Building Damage is Collapse 

THEN Total Risk Score is High; 

Rule 31: IF Building Occupancy type is Temple AND  

Building Damage is Very Low  

THEN Total Risk Score is Moderate; 

Rule 32: IF Building Occupancy type is Temple AND  

Building Damage is Low  
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THEN Total Risk Score is High-Moderate; 

Rule 33: IF Building Occupancy type is Temple AND  

Building Damage is Moderate 

THEN Total Risk Score is High-Moderate; 

Rule 34: IF Building Occupancy type is Temple AND  

Building Damage is Severe 

THEN Total Risk Score is High; 

Rule 35: IF Building Occupancy type is Temple AND  

Building Damage is Collapse 

THEN Total Risk Score is Very-High; 

Rule 36: IF Building Occupancy type is School AND  

Building Damage is Very Low  

THEN Total Risk Score is High-Moderate; 

Rule 37: IF Building Occupancy type is School AND  

Building Damage is Low  

THEN Total Risk Score is High-Moderate; 

Rule 38: IF Building Occupancy type is School AND  

Building Damage is Moderate 

THEN Total Risk Score is High; 

Rule 39: IF Building Occupancy type is School AND  

Building Damage is Severe 

THEN Total Risk Score is Very-High; 

Rule 40: IF Building Occupancy type is School AND  

Building Damage is Collapse 

THEN Total Risk Score is Critical; 

Rule 41: IF Building Occupancy type is Hospital AND  

Building Damage is Very Low  

THEN Total Risk Score is High-Moderate; 

Rule 42: IF Building Occupancy type is Hospital AND  

Building Damage is Low  

THEN Total Risk Score is High; 

Rule 43: IF Building Occupancy type is Hospital AND  
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Building Damage is Moderate 

THEN Total Risk Score is Very-High; 

Rule 44: IF Building Occupancy type is Hospital AND  

Building Damage is Severe 

THEN Total Risk Score is Critical; 

Rule 45: IF Building Occupancy type is Hospital AND  

Building Damage is Collapse 

THEN Total Risk Score is Critical; 

Therefore, an example of defuzzification result in building occupancy type 

Hospital (9), and Damage score equal 0.4 leads to the Total Risk Score is 0.957 , 

whereas the building which less important e.g. housing (3) has damage score equal 0.9 

that leads to the Total Risk Score is  0.500 only. Figures 5.7 show the spatial distribution 

of building‟s Total Risk Score. 

5.1.6 Result of Fuzzy Model 

From the analytical result in the fuzzy model, the Damage Score and Total Risk 

Score of buildings in the study area are present in Figures 5.6 – 5.7, respectively. Figure 

5.6 shows the distribution of the damage score of the buildings in Chiang Rai 

Municipality when subjected to the earthquake scenario. It illustrates that the maximum 

damage mostly occurred at the epicenter. In the following section, the total risk score 

which are integrating from the building importance and the building damaged in 

previous results. Overall, it illustrates that the buildings which are critical after assumed 

earthquake event that can presents in Figure 5.7. 

However, with a limitation on budget and time, incremental upgrading focusing 

on important buildings has been generally considered. Table 5.20, shows the example 

of six buildings were selected and evaluated for the total risk score. That showed which 

buildings are critical for decision maker select to retrofits. From the application of the 

proposed fuzzy model, the hospital building is the first priority needed to retrofits with 

damage score of 0.808 and the total risk score of 0.962. The factory has damage score 

of 0.986 due to the higher damage score compared to the school building (0.222), 

temple (0.581) and government building (0.657), respectively. However, the factory, 
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due to lower total risk score (0.625) compared to the school building, temple and 

government building, have the total risk score of 0.823, 0.864 and 0.750, respectively. 

The building with less damage score and low important; such as housing has the total 

risk score of 0.408 which is identified as non-urgent to retrofits. 

Table 5.20 Example buildings with Total Risk Score from fuzzy model 

Building Name Type Occupancy 
RVS, 
Final 
Score 

PGA(g) 
Damage 

Score 

Total 
Risk 
Score 

Hospital, id. 
49785 

C3 Hospital 3.6 0.169 0.808 0.962 

Local School, 
id. 38959 

W1C3 School 4.6 0.143 0.222 0.823 

Temple, id. 664 W2C3 Historic 2.7 0.182 0.581 0.864 

Government, 
id.38906 

C3 Gov. Office 2.6 0.133 0.657 0.750 

Factory, id. 
25972 

C3 Industrial 2.1 0.178 0.808 0.625 

House, id. 
11883 

W1 Residential 6.6 0.114 0.145 0.408 
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Figure 5.6 Distribution of Damage Score of buildings 
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Figure 5.7 Distribution of Total Risk Score of buildings 
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5.2 Structural Repair Prioritization of Buildings Damaged After Earthquake 

Using Fuzzy Logic Model 

This section show how using fuzzy logic was applied in another application for 

prioritization of building damaged. After, Mae Lao earthquake with a magnitude of 6.3 

occurred on May 5, 2014. It was the strongest earthquake ever recorded in Thailand, 

according to National Disaster Warning Center. The building damage can be 

summarized according to the buildings damage investigation leveled by green, yellow 

and red paint-sign ranged from low to high damage as seen in Table 5.21 and Figure 

5.8, respectively. 

Table 5.21 Summary of the buildings damaged level (Ornthammarath, 2014) 

District 
 

(Red) 

Heavy damage 

 
(Yellow) 

Moderate damage 

 
(Green) 

Slight damage 

Mae Lao 378 1,631 2,892 

Mae Suai 34 39 1,224 

Mueang Chaing Rai 34 89 639 

Phan 152 578 3,022 

Total 598 2,337 7,777 

 

Figure 5.8 Building damage levels (Green, Yellow, Red with paint-sign), categorize by 

Department of Public Works and Town & Country Planning, Thailand 
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The color labeled during the site investigation after the earthquake was performed 

suddenly to classified and recommended for the utilization. The utilization, according to 

the damage level can be classified as red and yellow painted buildings were unable to 

use and green buildings were useable. It can be seen from Table 5.21 that 2,935 

buildings could not be used and needed to be repaired (red and yellow). 

Generally, the building repair is a major task as soon as after the hit of a strong 

earthquake. However, with limitations of engineers, equipment and budget, it is 

impossible to repair all buildings in the same time. The procedure to identify critical 

buildings and prioritize their repairing requirements is then an important process. 

Nevertheless, the damage identification for the utilization was performed with limited 

time. In addition, with high variation of engineering judgments of the investigators 

(Tanaka, 2008), the result of the damage investigation was very subjective. 

Furthermore, there are other factors that need to be used for the prioritization 

assessment than the building damaged level such as indirect impact and building 

occupancy. The considered factors can then be said as the vague information and not 

easy to make decision. With the trend of seismic risk assessment considering the 

subjective inputs, there have been a number of researchers concerned with fuzzy loss 

estimation. Deb and Kumar (2004), Sen (2010), Sen (2011), and Haoxiang  et al. (2013) 

and Shirashi et al. (2005) showed the applicability of fuzzy methodology to seismic 

damage assessment in reinforced concrete buildings, which converts the fuzzy linguistic 

variable to index number that corresponding to damage state. Therefore, the fuzzy logic 

developed for managing the uncertain data was adopted here to approximate the vague 

information of the repair prioritization factors to the numerical data. Using the IF-

THEN rule based forms, an important index considering the vague information of each 

building leading to decision making were proposed. 

5.2.1 Categorization of earthquake damage 

After the Mae Lao Earthquake occurred in Chiang Rai Province, buildings in the 

area were damaged and urgent building investigation was needed. Department of Public 

Works and Town & Country Planning of Thailand produced a procedure and document 

to collect buildings data for management and repair (as Table 5.22). Based on the crack 
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damage pattern and severity, the inspection records were categorized as slight, 

moderate and heavy damages. Visually represented by color label, the three damage 

levels were referred as green, yellow and red, respectively. However, the damage level 

defined in the three categories was vague information. The same damage level can be 

defined in different categories. Likewise, different damage level can be defined in the 

same category. In other words, the level covers very wide range of damage level. 

Although the damage severity is unable to be clearly defined, the identified level is 

distinctive. Hereinafter, the method is called distinctive damage based method or DDB. 

In addition, the information was not enough to help the government officer/building 

owners to identify which building was more critical and need a repair priority. Finally, 

the categorization contains the following drawbacks; 

• Only damage level was considered ignoring other factors, including the 

building occupancy and consequence. 

• Color identification is not clear. 

Therefore, fuzzy logic is essentially a system for dealing with uncertainly data 

and approximate information to solving this problem. 

Table 5.22 Check lists for categorization of earthquake damage 

Inspector Information: 

Building 

Information 

Structure Type Occupancy Physical Information 

Building 

Irregularity 
Yes/No 

Damage Information 

Damage 

Level 
Slight Moderate Heavy 

Beam 

   

Column 

   
Wall 
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Table 5.22 Check lists for categorization of earthquake damage (continued) 

Damage Information 

Damage 

Level 
Slight Moderate Heavy 

Joint 

   
Other 

Damaged 

 

Photo  

 

Summary 

   

 

 

Figure 5.9 Total Risk Index assessment model 

5.2.2 Methodology 

This section adopted mathematical fuzzy logic model to analyze total risk index 

identifying building priority to repair.  The fuzzy risk index was computed by 

integrating the painted-sign that reflects the building damaged level, indirect impact and 

building occupancy, as shown in Figure 5.9. The crisp result was computed by fuzzy 

inferences system. 

1) Fuzzy application in building damaged level 

Building damaged models were identified from visual screening survey and 

then painted-sign was made on each building that reflects building damage level, such 

as green painted-sign (slight damage), yellow painted-sign (moderate damage) and red 

paint-sign (heavy damage or collapse). Figure 5.10 shows the membership functions for 

crisp sets. A building with a damage level of 0.0 belongs to the set of slight damage 
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level (Green painted-sign). Likewise, a building where damage level of 0.5 belongs to 

the set of moderate damage level (Yellow painted-sign) and 1.0 belongs to the set of 

heavy damage level (Red painted-sign), respectively. 

 

Figure 5.10 Membership function of damage level 

However, actually there are many occasions to judge in trouble for painted-

sign or represents accuracy damaged level. Therefore, fuzzy logic is essentially a 

system for approximate building damage level. In fuzzy logic, an objective may have 

participation in more than one set at same time. Hence, damage level between green and 

yellow, or light yellow such as 0.2, may participate in both sets for slight damage and 

moderate damage. As this case damage level of 0.2, the participation in set of slight 

damage (green) decreases and the participation in the set of moderate damage increases. 

Thus, the membership of the fuzzy building damage level are trimf(0,0,0.5) for slight 

damage, trimf(0,0.5,1) for moderate damage and trimf(0.5,1,1) for heavy damage or 

collapse. 

2) Fuzzy application in direct impact 

The indirect impact is the consequence loss from the building damage 

(direct impact). It can be exampled as the damage of school buildings leading to the 

shutting down of education activities or stopping of medical services from the collapse 

of hospital buildings. The indirect impact was evaluated by expert engineers or those 

involved in management level to assess the urgent need for repair. It might have an 

impact on the community, such as hospitals, which are vital in helping victims and 

other government buildings. The fuzzy indirect impact based on the triangular 

distribution is shown in Figure 5.11.  
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Figure 5.11 Membership function of indirect impact 

For example, indirect impact is between moderate and high such as 0.8, 

may participate in both sets for moderate and high impact. As this case, the 

participation in set of moderate impact decreases and the participation in the set of high 

impact increases. The corresponding fuzzy number are trimf(0,0,0.5) for low impact, 

trimf(0,0.5,1) for moderate impact and trimf(0.5,1,1) for high impact. 

3) Fuzzy application in building occupancy or building importance 

Risk analysis problems contain a mixture of quantitative and qualitative 

data; therefore quantitative risk assessment techniques are inadequate for prioritizing 

risk (Nieto-Morote and Ruz-Vila, 2011). Building occupancy represents important level 

for each building. However, the important level cannot be clearly defined and it is site 

dependent. The level of 9 building occupancies was first evaluated qualitatively and 

weighted by Analytic Hierarchy Process (AHP). The Analytic Hierarchy Process 

(Saaty,1980; Saaty, 2008) is a measurement procedure through pairwise comparisons 

relying on the judgments of experts. In order to carry out the weighted building 

importance, 10 questionnaires were distributed to expert engineers for ranking different 

building occupancy according to the Analytic Hierarchy Process. The criterion for 

pairwise comparisons in building exposure and result of ranked buildings occupancy 

was shown in Chapter 5. The most important building is hospital buildings and the 

commercial buildings are classified as the less important. The ranked order was then 

equally applied for fuzzy membership as shown in Figure 5.12, based on the triangular 

relationship. 
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Figure 5.12 Membership function of building occupancy 

5.2.3 Fuzzy inference for the Total Risk Index 

The total risk index is the output from the fuzzy rules inference that was 

computed by integrating the building damage level (Figure 5.10), indirect impact 

(Figure 5.11) and the building importance (Figure 5.12), as shown in Figure 5.13, using 

IF_THEN rule base. An example can be expressed below. The analysis totally consists 

of 81 statements (3 (building damage) x 3(indirect impact) x 9(building occupancy)). 

Rule1 : IF (Building Damage is Red) AND (Indirect is Low)

   AND (Occupancy is School)   

THEN Risk is Moderate-High 

 

Figure 5.13 Fuzzy inference of Total Risk Index 
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Figure 5.14 Membership function of Total Risk Index 

The total risk index is classified into 9 levels expressed as “Very-Very Low, VVL 

”, “Very Low, VL”, “Low, L”, “Low-Moderate, LM”, “Moderate, M”, “High-

Moderate, HM”, “High, H”, “Very-High, VH” and “Critical, CR” (Figure 5.14). 

Finally, transform the total risk index to crisp values through defuzzification using 

weighted average method. 

5.2.4 Application of the Fuzzy logic model 

The fuzzy model established in Section 5.2.3 considering the vague inputs was 

used for decision making on prioritization of the damaged buildings to be repaired.  To 

show the applicability of the fuzzy logic model, for an example, Figure 5.15 shows 

determination of the total risk index using the fuzzy model of a house.  
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Figure 5.15 Defuzzification process to crisp values 

The damage level was evaluated as 0.1 containing vague decision between 

damage levels colored as green (80%) and yellow color (20%). The important level of 

the building was clearly defined as 3.0, without vague information, for the house. The 

indirect impact level was 0.4 having vague decision between low (20%) and moderate 

(80%) impact level. With the total 81 rule statements, however, only some statements 

were related. Then, transformation of the fuzzy inference to the total crisp risk index 

using weighted average method as seen in Chapter 5 were performed. The execution of 

the fuzzy inference mechanism consists of three connectives, (1) aggregation of the 

antecedents in each rule i.e. use AND connectives, (2) implication i.e. use IF-THEN 

connectives, and (3) aggregation of the rules i.e. ALSO connectives. However, at 
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present (House damaged level 0.1, occupancy type 3 and indirect impact equal 0.4), 

only 4 statements were related such as;  

Rule no 3. If (Damage is Green) and (Occupancy is Residential) and 

(Indirect is Low) then output is Very-Very Low 

Rule no 12. If (Damage is Green) and (Occupancy is Residential) and 

(Indirect is Moderate) then output is Very-Very Low 

Rule no 30. If (Damage is Yellow) and (Occupancy is Residential) and 

(Indirect is Low) then output is Very Low 

Rule no 39. If (Damage is Yellow) and (Occupancy is Residential) and 

(Indirect is Moderate) then output is Low.  

Result of the analysis was found that the total risk index equals to 0.127. For 

considering damaged buildings in the affected area, the total risk index of the buildings 

can be ranked and decision making on repair need can be then made. 

As seen in Table 5.23, six buildings were evaluated for the total risk showing 

building priority need to repair. Figure 5.16 shows building damaged assessment 

comparing the distinctive damage based method (DDB) and the proposed fuzzy method 

(PFM). The proposed fuzzy method clearly defines the repair prioritization, but not for 

the DDB method, using the total risk factor number. As shown in the figure, home and 

hospital buildings are at the same damage level in the DDB method (red painted-sign 

reflecting the heavy damage level). With use of the proposed fuzzy method, building 

damage of the two buildings is defined at 0.7 and the building occupancy type factors 

are 3 and 9 for home and hospital, respectively. Then, the indirect impact consequence 

factors are inputted at 0.0 and 1.0. Hence, the results of total risk score are 0.287 and 

0.718 for home and hospital, respectively. For the garage and school buildings in which 

the school building contains higher damage but they are classified as the same yellow 

painted-sign or moderate damage. However, PFM can identify the damage levels of the 

two buildings with different damage scale as 0.3 for the garage and 0.5 for the school 

building. 
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Table 5.23 Example buildings with Total Risk Index 

Building 

D
is

ti
n
ct

iv
e 

d
am

ag
e 

b
as

ed
 

Fuzzy Application 

Input data 
Total Risk 

Index 
Damaged 

level 

Indirect 

impact 

Building 

Occ. 

Garage  0.30 0.0 Res(3) 0.114 

Government 

Office  0.30 0.7 Gov(6) 0.309 

Power Plant  0.50 1.0 Gov )6(  0.500 

School  0.50 0.5 School(8) 0.375 

Home  0.70 0.0 Res(3) 0.2.0 

Hospital  0.70 1.0 Hos(9) 0.718 

 

 

Figure 5.16 Applications of distinctive damage based method and proposed fuzzy 

method 

From the application of the proposed fuzzy model (see in Table 5.23 and Figure 

5.16), the hospital building is the first priority needed to repair with the total index of 

0.718. The power plant building has damage level as severe as the school building. 

However, the power plant building, due to the higher indirect effect compared to the 

school building, has the total risk index of 0.500 which is higher than 0.375 of the 

school building. The building with less damage and low indirect impact; such as garage 

building has the total risk index of 0.114 which is identified as non-urgent to repair. 
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5.3 Artificial Neural Network Applications in Risk Model 

Artificial neural networks (ANNs) are man-made systems that can perform some 

intelligent activities, similar to those of the human‟s brain. They can learn and acquire 

the knowledge about phenomenon and can also be trained to response to that 

phenomenon appropriately. Their quality of response improves, as they learn more and 

more. This characteristic of the artificial neural networks puts them in place between 

the conventional computational devices and human brain. This is reason that why, 

although, the fuzzy logic can encode expert knowledge using linguistic labels. But, it 

usually takes a lot of time to input the membership functions for every variable in each. 

Moreover, applications of fuzzy systems are restricted to the fields where expert 

knowledge is available and the number of input variables is small. With neural network 

learning technique, it can automate this process and reduce development time and cost 

while improve performance and extracting fuzzy rules from numerical data 

automatically (overcoming the fuzzy problem of knowledge acquisition), Effati et al 

(2014).  

It has been found that the ANNs, specifically Multilayer Perceptron (MLP) 

model, has several advantages for this study. For example, it has the ability to handle 

imprecise and fuzzy information and the capability to analyze complex data patterns. 

Ability of learning is one of the most important characteristics of ANNs. This network 

consists of a number of interconnected nodes from all layers as shown in Figure 5.17.  

In the MLP structure, the neurons are grouped in three layers. The first and last 

layers are called input and output layers respectively, because they represent inputs and 

outputs of the overall network. The remaining layers are called hidden layers. The 

number of the input nodes is equal to the number of the data sources. The number of 

output nodes is constrained by the application and the number of outputs. The number 

of hidden layers and the number of neurons in each layer depends on the architecture of 

the network. It is usually determined by trial and error. The network weights are 

modified in the training process by a number of learning algorithms based on back 

propagation learning, Vahidnia et al (2009). 
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Figure 5.17 Structure of Multilayer Perceptron with one hidden layer 

This section briefly explains the implementation steps of using the artificial neural 

network for the earthquake loss estimation. The basic procedures have six primary steps 

as: 

1) Collection data  

2) Create the network 

3) Configure the network 

4) Train the network 

5) Validate the network 

6) Use network 

The collection data in step 1, the study area is located in the Chiang Rai 

Municipality Northern of Thailand. The area under investigated has total 79.3 km
2 

with 

46,775 buildings. Thus, the number of data sources is equal to 46,775 records including 

building information. In this research, the use of data was divided into the proportion of 

70 to 30 for training data and testing respectively, as shown in Figures 5.18 – 5.19. 

Figure 5.19 shows the example data of Damage Risk Score was dividing into the 

proportion of 70 to 30 for training data and testing data. Figure 5.19 shows the example 

data of Total Risk Score was dividing into the proportion of 70 to 30 for training data 

and testing data, respectively. 
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Figure 5.18 Example of data records for neural network Damage Risk Score 

 

Figure 5.19 Example of data records for neural network Total Risk Score 
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Create the network in step 2, the architecture of neural network is based on 

multilayer back propagation neural network. Figure 5.20 shows the architecture of the 

neural network of Damage Risk Score that containing 3 layers. The input layer has total 

3 nodes that consist of the building type, PGA(g) and RVS score. In the hidden layer 

that consist of the synaptic weight, hidden nodes and bias. The output layer has a single 

node as the Damage Score. Figure 5.21 shows the architecture of the neural network of 

Total Risk Score that containing 3 layers. The input layer has total 2 nodes that consist 

of the Damage Score and building occupancy. In the hidden layer that consist of the 

synaptic weight, hidden nodes and bias. The output layer has a single node as the Total 

Risk Score. 

In this study, the sigmoid transfer function was used in the hidden layers, while 

purelin was used for function fitting problems in the output layer. 

 

Figure 5.20 Proposed neuro structure of the Damage Score of building 



 

164 

 

Figure 5.21 Proposed neuro structure of the Total risk score of building 

Training process of this adaptive network is carried out in two steps, forward and 

backward. In the forward pass of the learning algorithm the process up to hidden layers. 

In the hidden layer, the consequent parameters are adjusted and the network output in 

final layer. In the backward pass, the error rates propagate backward and the premise 

parameters in hidden layer are updated.  

Configure the Neural Networks in Steps 3, after the data has collected, the next 

step in training a network is to create the network object. This study contains a 

predefined set of input and target vectors. The input vectors define data regarding 

building information and hazard score. Target values define relative values of the 

Damage Score and Total Risk Score. The next step is to create the network with define 

testing of the number of cells in the hidden layers from 1 – (2n+1) and learning rate 

which produces excellent results.  

Train and Apply Multilayer Neural Networks in Step 4, the process of training a 

neural network involves tuning the values of the weights and biases of the network to 

optimize network performance. The performance function for feedforward networks is 

Root Mean Square Error (RMSE) between the network outputs ( ia ) and the target 

outputs ( it ).  
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RMSE    (5.1)   

Where; 

N  = Total number of records 

It is very difficult to know which training algorithm will be the fastest for a given 

problem as shown in Table 5.24.  

Table 5.24 Training algorithm 

Acronym Algorithm Description 

LM Trainlm Levenberg-Marquardt 

BFG trainbfg BFGS Quasi-Newton 

RP trainrp Resilient Backpropagation  

SCG trainscg Scaled Conjugate Gradient 

CGB traincgb Conjugate Gradient with Powell/Beale Restarts 

CGF traincgf Fletcher-Powell Conjugate Gradient 

CGP traincgp Polak-Ribiere Conjugate Gradient 

OSS trainoss One step secant 

GDX traingdx Variable Learning Rate Gradient Descent 

This depends on many factors, including the complexity of the problem, the 

number of data points in the training set, the number of weights and biases in the 

network, the error goal, and whether the network is being used for pattern recognition 

(discriminant analysis) or function approximation (regression). It is a variety of 

different architectures and complexities are used, and the networks are trained to a 

variety of different accuracy levels. In this study focus on trainlm performs better on 

function fitting problems also fastest training function. In many case, trainlm is able to 

obtain lower mean square errors than any of the other algorithms.  
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Validate the network in Step 5, when the training is completed its want to check 

the network performance and determine if any changes need to be made to the training 

process, the network architecture or the data sets. For validating the network is to create 

a regression plot, which shows the relationship between the outputs of the network and 

the targets. If the training were perfect, the network outputs and the targets would be 

exactly equal, but the relationship is rarely perfect in practice or indicates that there is 

an exact linear relationship between outputs and targets (R =1). If R is close to zero, 

then there is no linear relationship between output and targets. 

Use network in step 6, after the network is trained and validated, the network 

object can be used to calculate the network response to any input. However, each time a 

neural network is trained, can result in different solution due to different initial weight 

and bias value and different divisions of data in to training, validation, and test sets. As 

a result, different neural networks trained on the same problem can give different 

outputs for the same input between output and targets. As explained in the previous 

sections (step 1-6). The methodology can presents in Figure 5.22.  

 

Figure 5.22 Research methodologies for identification of Damage Score and Total 

Risk Score 
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Figure 5.22 shows the research methodologies. It is proposed for identification of 

building Damage Score and Total Risk Score. This section identifies number of nodes 

in the hidden layers from 1 till (2n+1) where (n) is number of input factors. Example, in 

Figures 5.20 – 5.21 there were 3 and 2 input factors, respectively. Therefore, trial 

hidden node from 1 – 7 nodes and 1 – 5 nodes for more efficiency in damage score and 

total risk score, respectively. The neural network analysis of hidden node with training 

and testing data can be expressed in Figures 5.23 – 5.26. 

 

Figure 5.23 Result of neural network analysis of hidden nodes in Training data for 

damage score, Trial from 1 till (2n+1) nodes 

 

Figure 5.24 Result of neural network analysis of hidden nodes in Testing data for 

damage score, Trial from 1 till (2n+1) nodes 
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With training data and testing data of damage score, it was found that the 6 

hidden nodes (or 2n nodes) minimize RMSE number equal to 0.0117 and 0.0153, 

respectively.  

 

Figure 5.25 Result of neural network analysis of hidden nodes in Training data for Total 

Risk score, Trial from 1 till (2n+1) nodes 

 

Figure 5.26 Result of neural network analysis of hidden nodes in Testing data for Total 

Risk score, Trial from 1 till (2n+1) nodes 

From Figure 5.25 and 5.26, the training data and testing data of Total risk score, it 

was found that the 5 hidden nodes (or 2n+1 nodes) minimize RMSE number equal to 

0.0015 and 0.0019, respectively. 
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The results of comparison learning process showed that 6 hidden nodes is 

effective for the prototype of Damage Score, and 5 hidden nodes is effective for the 

prototype of Total Risk Score. Moreover, number of loop also affects the performance 

of the model. Therefore, to finding a suitable number of loops the trial test results can 

express in Table 5.25 and Figure 5.27. 

Table 5.25 Root mean square error (RMSE) result from loops test 

Number 

of 

hidden 
node 

Number of Run (loop) 

1-5 1-10 1-15 1-20 1-25 1-30 1-35 1-40 1-45 1-50 

1 0.0505 0.0504 0.0504 0.0504 0.0504 0.0504 0.0504 0.0504 0.0504 0.0504 

2 0.0480 0.0404 0.0305 0.0269 0.0295 0.0269 0.0339 0.0269 0.0339 0.0269 

3 0.0442 0.0330 0.0241 0.0226 0.0211 0.0218 0.0211 0.0149 0.0149 0.0149 

4 0.0404 0.0177 0.0153 0.0200 0.0169 0.0146 0.0146 0.0192 0.0146 0.0146 

5 0.0455 0.0191 0.0173 0.0159 0.0128 0.0202 0.0154 0.0128 0.0128 0.0128 

6 0.0293 0.0189 0.0097 0.0184 0.0125 0.0135 0.0099 0.0097 0.0131 0.0131 

7 0.0292 0.0177 0.0152 0.0140 0.0134 0.0131 0.0120 0.0115 0.0114 0.0240 

Average 0.0410 0.0282 0.0232 0.0240 0.0224 0.0229 0.0225 0.0208 0.0216 0.0224 

 

Figure 5.27 Loops test for damage score 

The experiment in hidden node from 1 till 2n+1 nodes showed that the suitable 

loops number for Damage Score model is 40. It minimizes average RMSE values equal 

to 0.0208. In the following sections, suitable numbers of loops for total risk score can 

express in Table 5.26 and Figure 5.28. 
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Table 5.26 Root mean square error (RMSE) result from loops test 

Number 

of 
hidden 

node 

Number of Run 

1-5 1-10 1-15 1-20 1-25 1-30 1-35 1-40 1-45 1-50 

1 0.0161 0.0096 0.0096 0.0096 0.0096 0.0096 0.0096 0.0096 0.0096 0.0096 

2 0.0402 0.0094 0.0091 0.0089 0.0007 0.0086 0.0084 0.0083 0.0094 0.0083 

3 0.0101 0.0090 0.0081 0.0078 0.0037 0.0072 0.0051 0.0045 0.0064 0.0068 

4 0.0093 0.0089 0.0022 0.0087 0.0087 0.0078 0.0081 0.0081 0.0091 0.0076 

5 0.0091 0.0078 0.0075 0.0061 0.0086 0.0089 0.0078 0.0039 0.0089 0.0083 

Average 0.0170 0.0089 0.0073 0.0082 0.0062 0.0084 0.0078 0.0069 0.0087 0.0081 

 

Figure 5.28 Loops test for Total Risk Score 

The experiment in hidden node from 1 till 2n+1 nodes showed that the suitable 

loops number for Total Risk Score model is 25. It minimizes average RMSE values 

equal to 0.0062. 

In the previous sections the results of comparison learning model. The results use 

in the model to predict Damage Score and Total Risk Score. Figures 5.29 – 5.33 show 

the spatial data from damage score and total risk score with 70% of total records used in 

learning neural network. 
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Figure 5.29 Spatial records of Damage Score for data training in neural network  
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Figure 5.30 Spatial records of Total Risk Score for data training in neural network 

Figures 5.31 – 5.32 show the spatial results. They are the 70% neural network 

training data and 30% predicted buildings (or 30% of total records) for damage score 

and total risk score. The RMSE values are 0.0145 and 0.0083, respectively. 
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Figure 5.31 Spatial results of Damage Score from neural network testing model 
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Figure 5.32 Spatial results of Total Risk Score from neural network testing model 

The earthquake is natural disasters which damage to life and property of the 

people highly, and Thailand has many seismic risk areas, therefore the study about 

methodology to prediction hazard area with risk mitigation by prioritize building to 

retrofit so needed. The study has objectives to apply Geo-Informatics Technology and 
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Artificial Neural network in predicting the seismic hazard area and building retrofit in 

Chiang Rai Municipality. The research methodology included development of the 

fundamental Artificial Neural Network learning procedure of Levenberg – Marquardt 

method (LM) with neural network architecture is based on a multilayer feed-forward 

back-propagation learning algorithm that has single output. With number of cells  in the 

hidden layers from 1 till (2n+1) were used from the best results in testing model to 

predictions damage score and total risk score in Chiang Rai Municipality. Figures 5.31 -

5.32 depict the output of applying neural network to forecast on the study area for 

identification of building with high risk to damage and which buildings that need to be 

extremely concentration. The study found that gave an accurate forecast which gave the 

RMSE values of damage score and total risk score equal to 0.0145 and 0.0083, the 

standard accepted value are nearly 0.0 and so show that the forecast accuracy is highly 

reliable. 


