CONTENTS

Acknowledgements	c
Abstract in Thai	d
Abstract in English	g
List of Tables	n
List of Figures	q
Statement of Originality	W
Chapter 1 Introduction	1
1.1 Overview	1
1.2 Literature Review	3
1.2.1 Tectonic Elements of Thailand and Adjacent Plates	5
1.2.2 Seismic Hazard in Chiang Rai	6
1.2.3 Loss estimation using GIS applications	13
1.2.4 Seismic risk assessment by Fuzzy logic model	
and artificial neural network	14
1.3 Research Objectives	20
1.4 Scope of Research	20
1.5 Research Contribution	22
All rights reserved	22
Chapter 2 Theoretical Background	23
2.1 Rapid Visual Screening of buildings for Potential Seismic Hazards	23
2.1.1 Basic Structural Hazard (BSH) Score	25
2.1.2 Building Type	29
2.1.3 Score Modifiers (SMs)	30
2.1.4 Other Information	32

CONTENTS (CONTINUED)

2.1.5 Interpretation of RVS Score, Analysis and uses	34
2.2 Fuzzy Logic	37
2.3 Multi-Criteria Decision Making (MCDM)	40
2.3.1 Pairwise Comparison Method (AHP)	42
2.4 Artificial Neural Networks (ANN)	46
2.4.1 Simple Neural Network	48
2.4.2 One Layer Feed Forward Neural Network	48
2.4.3 Multi-Layer Feed Forward Neural Networks (MFFNN)	49
Chapter 3 Methodology	51
3.1 Data Preparation Process	54
3.2 Data Collection and Storage	55
3.3 Building Risk Assessment by RVS Method	58
3.4 Building Damage Estimate	65
3.5 Approximation of Number of Deaths	80
3.5.1 Population distribution	81
3.5.2 Human losses	84
3.6 Re-estimation of losses after structural upgrading	88
3.7 Fuzzy Application in Risk Model	91
3.7.1 Risk Assessment Model	92
3.7.2 Fuzzy logic Modeling	94
3.8 Application of Artificial Neural Network for Risk Assessment	95
Chapter 4 Earthquake Loss Estimations	98
4.1 Building Classification	98
4.2 Soil Classification	109

CONTENTS (CONTINUED)

4.3 Attenuation Relationship	111
4.4 Assumed Earthquake event	112
4.5 Peak Ground Acceleration	112
4.6 Building Losses (Complete Level)	113
4.7 Human Losses	115
4.8 Building damage after rehabilitation	116
4.9 Human Losses after rehabilitation	118
Chapter 5 Applications of Fuzzy and Artificial Neural Network to	
Earthquake Loss Estimations	121
5.1 Fuzzy Applications in Risk Model	121
5.1.1 Building Vulnerability and Final RVS Score	122
5.1.2 Peak Ground Acceleration	124
5.1.3 Fuzzy application in building occupancy	133
5.1.4 Fuzzy application in building damageability	135
5.1.5 Fuzzy application for the Total Risk Scores	139
5.1.6 Result of Fuzzy Model	145
5.2 Structural Repair Prioritization of Buildings Damaged	
After Earthquake Using Fuzzy Logic Model	149
5.2.1 Categorization of earthquake damage	150
5.2.2 Methodology	152
5.2.3 Fuzzy inference for the Total Risk Index	155
5.2.4 Application of the Fuzzy logic model	156
5.3 Artificial Neural Network Applications in Risk Model	160

CONTENTS (CONTINUED)

Chapter 6 Conclusions	176
6.1 Seismic losses estimation and reduction after structural rehabilitation	176
6.2 Fuzzy Logic and Artificial Neural Networks approach	
for identification of building risk	177
6.3 Structural repair prioritization of buildings damaged	
after earthquake using the fuzzy logic model	178
References	180
Appendix 28	
Appendix A	189
Appendix B	216
Curriculum Vitae	222
UNIT	
ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่	
Copyright [©] by Chiang Mai University	
All rights reserved	

LIST OF TABLES

Table 1.1	Summary of the buildings damaged level	10
Table 2.1	Hazard Intensity based on Spectral Acceleration	29
Table 2.2	Building Types commonly found in Chiang Rai Municipality	29
Table 2.3	Buildings damage classification (EMS - 98)	35
Table 2.4	Structural score with damage potential	35
Table 2.5	Calculated probability of collapse versus final score, S	36
Table 2.6	The fundamental scale of absolute numbers	44
Table 2.7	Random Inconsistency Indices	45
Table 3.1	Occupancy Class of HAZUS	60
Table 3.2	Model building types of HAZUS	62
Table 3.3	Final Score (S) with damage potential	64
Table 3.4	Capacity Curve for Pre-Code Seismic Design Level	66
Table 3.5	Site amplification factors as given in IBC-2006	71
Table 3.6	Degradation factor for Pre-code design, HAZUS (1999)	74
Table 3.7	Injury classification scale according to HAZUS	80
Table 3.8	Relationship to estimate the population distribution in the building	81
Table 3.9	Percentage of building collapsed in complete level	
(C	for each structural type	85
Table 3.10	Capacity Curve for Moderate-Code Seismic Design Level	88
Table 3.11	Degradation factor for Moderate-code design	90
Table 4.1	Summary of final score (S) score in the study area	103
Table 4.2	Structural type of buildings in the study area	103
Table 4.3	Site classification according to the NEHRP provisions	109
Table 4.4	Summary of soil investigated data	110
Table 4.5	Multiplication factor for the mechanism of the earthquake	112
Table 4.6	Number of people and deaths before and after rehabilitation	118
Table 5.1	Structural scores with damage potential	123

LIST OF TABLES (CONTINUED)

Table 5.2	Classification of damage to reinforced concrete buildings	123
Table 5.3	Proposed vulnerability fuzzy number	124
Table 5.4	Damage classifies from the fragility curve	
	and cumulative damage probabilities for each structure	127
Table 5.5	Transformation of linguistic inputs for seismic hazard,	
	PGA(g) of the structural type C1	128
Table 5.6	Transformation of linguistic inputs for seismic hazard,	
	PGA(g) of the structural type C2	128
Table 5.7	Transformation of linguistic inputs for seismic hazard,	
	PGA(g) of the structural type C3	129
Table 5.8	Transformation of linguistic inputs for seismic hazard,	
	PGA(g) of the structural type W1	129
Table 5.9	Transformation of linguistic inputs for seismic hazard,	
	PGA(g) of the structural type W2	130
Table 5.10	Transformation of linguistic inputs for seismic hazard,	
	PGA(g) of the structural type S1L	130
Table 5.11	Transformation of linguistic inputs for seismic hazard,	
Ç	PGA(g) of the structural type S2L	131
Table 5.12	Transformation of linguistic inputs for seismic hazard,	
A	PGA(g) of the structural type S3	131
Table 5.13	Transformation of linguistic inputs for seismic hazard,	
	PGA(g) of the structural type URM	132
Table 5.14	Transformation of linguistic inputs for seismic hazard,	
	PGA(g) of the structural type W2C3	132
Table 5.15	Transformation of linguistic inputs for seismic hazard,	
	PGA(g) of the structural type W1C3	133
Table 5.16	Ranking of the building occupancy	134

LIST OF TABLES (CONTINUED)

Page

Table 5.17	Fuzzy associative memory (FAM) for building damage	136
Table 5.18	Correlation between damage type and damage score	139
Table 5.19	Fuzzy associative memory (FAM) for total risk score	140
Table 5.20	Example buildings with Total Risk Score from fuzzy model	146
Table 5.21	Summary of the buildings damaged level	149
Table 5.22	Check lists for categorization of earthquake damage	151
Table 5.23	Example buildings with Total Risk Index	159
Table 5.24	Training algorithm	165
Table 5.25	Root mean square error (RMSE) result from loops test	169
Table 5.26	Root mean square error (RMSE) result from loops test	170

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure 1.1	Mainshock and aftershock characteristics	
	within 24 hours on May 5 th 2014	2
Figure 1.2	Types of faulting and focal mechanisms	4
Figure 1.3	Types of faulting in Southeast Asia for the period $1964 - 2005$	5
Figure 1.4	Seismic zone boundary with Adjacent plates	6
Figure 1.5	Active fault map in Thailand	7
Figure 1.6	Thailand hazard map for PGA corresponding	
	to a probability of exceedance of 10% in 50 years	8
Figure 1.7	Thailand hazard map for PGA corresponding	
	to a probability of exceedance of 2% in 50 years	9
Figure 1.8	Epicenter and surrounding areas	11
Figure 1.9	Building damage Levels	12
Figure 1.10	(a) An elevated one-story reinforced concrete house in	
	Dong-Mada sub-district (b) eccentrically placed Unreinforced	
	Masonry Bearing Walls (URM) fills and failure	12
Figure 1.11	Maelaowittayakom school in Lae Lao district, Chiang Rai Province	12
Figure 1.12	Complete damage (collapse) of the buildings	
(in Chiang Mai Municipal	13
Figure 1.13	Complete damage (collapse) of the buildings	
	in Mae Chan Municipal	14
Figure 1.14	Fuzzy logic model components for external inspection	15
Figure 1.15	Fuzzy membership functions for input and output variables	15
Figure 1.16	Fuzzy logic model components for an interior inspection	16
Figure 1.17	The structures for seismic risk system	17
Figure 1.18	Research methodology for identification of road hazardous zones	18
Figure 1.19	Fuzzy inference system for identification of road hazardous zones	19

Page

Figure 1.20	Proposed Antificial Neural Fussy Inference System (ANFIS)	
	structure for road hazardous zone identification	19
Figure 1.21	Study area, Chiang Rai Municipality	21
Figure 2.1	Data Collection Form for Low Seismicity	26
Figure 2.2	Data Collection Form for Moderate Seismicity	27
Figure 2.3	Data Collection Form for High Seismicity	28
Figure 2.4	Basic structural scores	30
Figure 2.5	Elevation views showing vertical irregularities,	
	with arrows indicating locations of particular concern	31
Figure 2.6	Plan views of various building configurations showing plan	
	irregularities; arrows indicate possible areas of damage	31
Figure 2.7	Example for triangular membership function	38
Figure 2.8	Example for trapezoidal membership function	39
Figure 2.9	A general scheme of a fuzzy logic decision system	39
Figure 2.10	Framework for multi-criteria decision analysis	41
Figure 2.11	Essential components of neuron	46
Figure 2.12	Simple neuron network	48
Figure 2.13	One layer neuron network with abbreviated notation	49
Figure 2.14	Multi-Layered Perceptron, MLP	50
Figure 3.1	Research Methodology	53
Figure 3.2	The study area showing the 1,379 Census tracts	54
Figure 3.3	Key Maps and Collection Form	56
Figure 3.4	Example for aerial rooftops	57
Figure 3.5	Resized and Straightened aerial photography	57
Figure 3.6	Evaluation Process	59

Page

Figure 3.7	The ground-motion response spectral ordinates of spectral	
	acceleration versus spectral displacement	67
Figure 3.8	Principle of the building specific capacity curve intersected	
	by the load curve representing the seismic demand	68
Figure 3.9	Example of fragility curve showing the probability P(ds Sd)	
	of being in or exceeding the different damage state, d_s	68
Figure 3.10	Standard shape of the response spectrum	69
Figure 3.11	Capacity-spectrum curves	78
Figure 3.12	Cumulative damage probabilities	79
Figure 3.13	Discrete damage probabilities derived from the cumulative	
	damage probabilities	79
Figure 3.14	Population distributions in Chiang Rai Municipality,	
	daytime 2:00 PM	83
Figure 3.15	Population distributions in Chiang Rai Municipality,	
	nighttime 2:00 AM	84
Figure 3.16	Casualty event tree model	87
Figure 3.17	Capacity-spectrum curves after rehabilitation	88
Figure 3.18	Venn diagram for earthquake risk assessment	92
Figure 3.19	Hierarchical building risk assessments from earthquake hazard	93
Figure 3.20	Fuzzy inference system for risk assessment	95
Figure 3.21	Proposed neuro structure of total risk index of building	96
Figure 4.1	Concrete moment resisting frame (C1)	98
Figure 4.2	Concrete shear Wall (C2)	99
Figure 4.3	Concrete frames with unreinforced masonry infill (C3)	99
Figure 4.4	Steel moment – resisting frame (S1)	99
Figure 4.5	Steel braced frame (S2)	100
Figure 4.6	Light metal frame (S3)	100

Figure 4.7	Light wood frame building, Area \leq 464.5 sq.m. (W1)	100
Figure 4.8	Wood frame building, Area $>$ 464.5 sq.m. (W2)	101
Figure 4.9	Concrete frames with unreinforced masonry infill	
	with light metal frame (S3C3)	101
Figure 4.10	Concrete frames with unreinforced masonry infill	
	with light wood frame building, Area \leq 464.5 sq.m. (W1C3)	101
Figure 4.11	Concrete frames with unreinforced masonry infill	
	with wood frame building, Area > 464.5 sq.m. (W2C3)	102
Figure 4.12	Final score from Rapid-Visual Screening Method	102
Figure 4.13	Proportion of the buildings in the study area	105
Figure 4.14	Classification of buildings in the study area	105
Figure 4.15	Distribution of building type	106
Figure 4.16	Distribution of structural type of buildings	107
Figure 4.17	Distribution density of buildings (sq.km.)	108
Figure 4.18	Epicenter of the assumed earthquake with magnitude of 5	112
Figure 4.19	Peak ground acceleration contour	113
Figure 4.20	The complete damage (collapse) of the buildings	114
Figure 4.21	Distribution of human casualties in night time (2:00 AM)	115
Figure 4.22	Distribution of human casualties in day time (2:00 PM)	116
Figure 4.23	The complete damage after rehabilitation	117
Figure 4.24	Distribution of human casualties after rehabilitation of existing	
	structures in night time 2:00 AM	119
Figure 4.25	Distribution of human casualties after rehabilitation of existing	
	structures in day time 2:00 PM	120
Figure 5.1	The PGA(g) Fuzzy Model	125
Figure 5.2	AHP hierarchy diagram for ranking of building occupancy	134
Figure 5.3	Membership function of building occupancy	135

Figure 5.4	Flowchart of the building damageability	135
Figure 5.5	Flowchart of the Total Risk Index	140
Figure 5.6	Distribution of Damage Score of buildings	147
Figure 5.7	Distribution of Total Risk Score of buildings	148
Figure 5.8	Building damage levels (Green, Yellow, Red with paint-sign),	
	categorize by Department of Public Works and Town & Country	
	Planning, Thailand	149
Figure 5.9	Total Risk Index assessment model	152
Figure 5.10	Membership function of damage level	153
Figure 5.11	Membership function of indirect impact	154
Figure 5.12	Membership function of building occupancy	155
Figure 5.13	Fuzzy inference of Total Risk Index	155
Figure 5.14	Membership function of Total Risk Index	156
Figure 5.15	Defuzzification process to crisp values	157
Figure 5.16	Applications of distinctive damage based method	
	and proposed fuzzy method	159
Figure 5.17	Structure of Multilayer Perceptron with one hidden layer	161
Figure 5.18	Example of data records for neural network Damage Risk Score	162
Figure 5.19	Example of data records for neural network Total Risk Score	162
Figure 5.20	Proposed neuro structure of the Damage Score of building	163
Figure 5.21	Proposed neuro structure of the Total risk score of building	164
Figure 5.22	Research methodologies for identification	
	of Damage Score and Total Risk Score	166
Figure 5.23	Result of neural network analysis of hidden nodes in Training data	
	for damage score, Trial from 1 till (2n+1) nodes	167
Figure 5.24	Result of neural network analysis of hidden nodes in Testing data	
	for damage score, Trial from 1 till (2n+1) nodes	167

Page

Figure 5.25	Result of neural network analysis of hidden nodes in Training data	
	for Total Risk score, Trial from 1 till (2n+1) nodes	168
Figure 5.26	Result of neural network analysis of hidden nodes in Testing data	
	for Total Risk score, Trial from 1 till (2n+1) nodes	168
Figure 5.27	Loops test for damage score	169
Figure 5.28	Loops test for Total Risk Score	170
Figure 5.29	Spatial records of Damage Score for data training in neural network	171
Figure 5.30	Spatial records of Total Risk Score for data training in neural network	172
Figure 5.31	Spatial results of Damage Score from neural network testing model	173
Figure 5.32	Spatial results of Total Risk Score from neural network testing model	174

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

STATEMENTS OF ORIGINALITY

- This study proposes spatial seismic assessment in Chiang Rai province by simulating earthquake scenarios. The study aims to understand the damage characteristic including properties and human losses. The results provided initial guidance for a preparedness plan against the future earthquake.
- 2. Generally, earthquake preparedness can be done under limited budget, time, and resources. The analysis contains multi-condition parameters such as an earthquake intensity, building risk and the importance of building. All the parameters are subjected to an amount of uncertainty. In addition, the conventional analysis performing individual unit of building is time consuming. This study hence adopted the Fuzzy Logic analysis and Artificial neural network method for the qualitative and quantitative data. The results show that the proposed approach is an efficient method for identifying critical building in the studied area and prioritizing their retrofit requirements.
- 3. Earthquake recovery plan in repairing the damaged buildings is a major task as soon as after the hit of a strong earthquake. However, with the limitations of building experts or engineers, equipment and budget, it is impossible to repair all buildings in the same time. Therefore, this research proposed a method to identify critical buildings and prioritize their repairing requirements. Due to the uncertain input, the analysis adopted the Fuzzy logic.

ข้อความแห่งการริเริ่ม

- วิทยานิพนธ์นี้ได้นำเสนอการประเมินความเสียหายเชิงพื้นที่ในจังหวัดเชียงรายโดยจำลอง สถานการณ์แผ่นดินไหว ทำให้ทราบลักษณะความเสียหายของเมืองทั้งชีวิตและทรัพย์สิน เพื่อ เป็นแนวทางเริ่มต้นในการเตรียมพร้อมป้องกันภัยแผ่นดินไหวที่อาจเกิดขึ้นในอนาคต
- 2) โดยทั่วไปการเตรียมพร้อมรับมือภัยแผ่นดินไหวภายใด้งบประมาณ เวลา และทรัพยากรที่มี อย่างจำกัด จำเป็นที่จะต้องวิเคราะห์ข้อมูลภายใต้เงื่อนไขที่หลากหลาย เช่น ระดับความรุนแรง ของแผ่นดินไหว ความเสี่ยงของอาการ และความสำคัญของอาการ ซึ่งเป็นข้อมูลที่มีความไม่ แน่นอนอยู่ รวมทั้งการวิเคราะห์ด้วยวิธีโดยตรงที่วิเคราะห์อาการแต่ละหลังจะใช้เวลานาน ดังนั้น งานศึกษานี้จึงนำวิธีการวิเคราะห์แบบฟัซซี่และโครงข่ายประสาทเทียม ในการวิเคราะห์ ข้อมูลเชิงปริมาณและข้อมูลเชิงคุณภาพ ผลการศึกษาแสดงให้เห็นว่า วิธีการที่เสนอนี้เป็น วิธีการที่มีประสิทธิภาพทำให้ทราบอาการที่มีความวิกฤตในพื้นที่ศึกษาที่ต้องพิจารณาเสริม กำลังก่อนหลังตามความจำเป็น
- 3) แผนการฟื้นฟูสภาพ โดยเฉพาะการซ่อมแซมอาการเป็นสิ่งจำเป็นเร่งด่วนภายหลังเกิด แผ่นดินไหว แต่ภายใต้เงื่อนไขที่จำกัดทั้งวิศวกร เครื่องมือ และงบประมาณไม่สามารถ ดำเนินการได้พร้อมกันทุกอาการ ดังนั้นงานวิจัยนี้จึงได้นำเสนอวิธีพิจารณาอาการที่มีความ วิกฤตเพื่อเลือกซ่อมแซมตามลำดับ เนื่องจากกวามไม่แน่นอนของข้อมูลเข้า การวิเกราะห์ได้ ใช้วิธีพืชซี่ลอจิก

องการ์ Adanร์บหาวิทยาลัยเชียงไหบ Copyright[©] by Chiang Mai University All rights reserved