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STATEMENTS OF ORIGINALITY

This study proposes spatial seismic assessment in Chiang Rai province by
simulating earthquake scenarios. The study aims to understand the damage
characteristic including properties and human losses. The results provided initial

guidance for a preparedness plan against the future earthquake.

Generally, earthquake preparedness can be done under limited budget, time, and
resources. The analysis contains multi-condition parameters such as an earthquake
intensity, building risk and the importance of building. All the parameters are
subjected to an amount of uncertainty. In addition, the conventional analysis
performing individual unit of building is time consuming. This study hence
adopted the Fuzzy Logic analysis and Artificial neural network method for the
qualitative and quantitative data. The results show that the proposed approach is
an efficient method for identifying critical building in the studied area and
prioritizing their retrofit requirements.

Earthquake recovery plan in repairing the damaged buildings is a major task as
soon as after the hit of a strong earthquake. However, with the limitations of
building experts or engineers, equipment and budget, it is impossible to repair all
buildings in the same time. Therefore, this research proposed a method to identify
critical buildings and prioritize their repairing requirements. Due to the uncertain

input, the analysis adopted the Fuzzy logic.
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