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CHAPTER 2 

Principles and Theories of the Study 

This chapter delineates the essential basic theories used in this study. First, section 2.1 

describes the definition of K-nearest neighbor. Section 2.2 describes the fuzzy 

membership functions and section 2.3 describes the fuzzy K-nearest neighbor. Section 

2.4 describes the String grammar and section 2.5 describes the fuzzy K-nearest 

neighbor. The last section explains the String Grammar Fuzzy K-nearest neighbor. 

 

2.1  K-Nearest neighbor  

K-nearest neighbor was proposed by Fix, E. and Hodges, J. [1, 18]. It is a method for 

non- parametric estimation solution for data classification. The principle is similar to the 

extended window to find an equal to the number of K value, for example K = 3 as 

shown in figure 2.1, the window will extend until we found the three nearest neighbors. 

After that, the voting scheme is utilized in the classification. 

 

                                                                  

Figure 2.1 An example of a circle where it will be extended indefinitely until the three 

nearest samples are found. 
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             (a) 1-nearest neighbor    (b) 2-nearest neighbors   (c) 3-nearest neighbors 

Figure 2.2 Example of K-nearest neighbor (K-NN) 

Figure 2.2 shows the test data point as “×”. For K = 1, 2, 3, we construct a circle with 

“×” is a center. We extend the circle’s size according to the value of k. We then count 

samples in each class, for example in 1-nearest neighbor, the nearest sample is in class 

“-”, hence, the test data will be in class “-”. In 2-NN case, there is a tie between class 

“+” and class “-”. But, the sample from class “-” is closer than the one from class “+”.  

Hence, the test data will be in class “-”. Again in 3-NN case, the majority in class “+”, 

hence, the test data are in class “+”. 

The algorithm of K-NN [19] is as follows: 

• Compute distance between a test data point to every train data points using 

Euclidean distance method.  

• Sort all distances by increasing order. 

• Select the set of k closest distance. 

• The class label of test data is assigned based on the majority vote of its 

nearest neighbors 
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2.2 Fuzzy membership functions 

 2.2.1 Fuzzy Sets 

Zadeh, L. A. [20] proposed fuzzy sets theory. Given a universe U, crisp set A of 

U is commonly defined by specifying the objects of the universe that are 

members of A. An equivalent way of defining A is to specify the characteristic 

function of A, { }U :  U 0,  1A →  for all Ux∈  where 

1
U ( )

0A

x A
x

x A
∈

=  ∉
           (2.1) 

Nevertheless, fuzzy sets are obtained by generalizing the concept of a 

characteristic function to a membership function   u: U → [0, 1].  

The advantage of the fuzzy sets is that the degree of membership in a set can be 

specified to any number between 0 and 1. This can be especially advantageous 

in pattern recognition and classification method whereas objects are not clearly 

members of one class or another. 

Using crisp techniques, an ambiguous object will be assigned to one class only, 

which a precision of the assignment is not warranted. On the other hand, fuzzy 

techniques will specify to what degree the object belongs to each class.  

For a fuzzy K-nearest neighbor [8]. Let { }1,..., nx x
 

 be a set of sample vectors. 

The c fuzzy partitions of these vectors specify the degrees of membership of 

each vector in each of c classes. It is denoted by the c × n matrix U where, 

( ) ik i ku u x=


 for i = 1,…,c,  and k = 1, …, n, is the degree of membership of kx


 

in class i. The following properties must be true for U to be a fuzzy c partition: 
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2.3  Fuzzy K-Nearest Neighbor 

Keller, J. M. and Hunt, D. J. [9] proposed the formulation of a method for assigning 

fuzzy membership values given a set of labeled sample vectors. The method is to 

transform the crisp partition of the vectors (defined by the labels) into a fuzzy partition. 

The transformation process was designed so that the membership value of a vector for 

the class to which it belongs to. The membership values have several properties as 

follows. 

 1)  It should be 1.0 if the vector is equal to the mean of its class. 

 2)  It should be 0.5 if the vector is equal to the mean of the other class. 

 3)  It should be near 0.5 if the vector is equidistant from the two means. 

 4)  It should never be less than 0.5. 

5)  As a vector gets closer to its mean and farther from the other mean, the 

membership value should approach 1.0 exponentially. 

6)  It should depend on relative distances from the means of the classes 

rather than absolute distances. 

The following method of assigning fuzzy membership values satisfies the above 

conditions. 

For kx


 in class 1: 

2 1
1

exp( ( ) / ) exp( )0.5
2(exp( ) exp( ))k
f d d d fu

f f
− − −

= +
− −

,   (2.3) 

and 

2 11k ku u= −  .      (2.4) 

For kx


 in class 2: 

          1 21k ku u= −   , and               (2.5) 

1 2
2

exp( ( ) / ) exp( )0.5
2(exp( ) exp( ))k
f d d d fu

f f
− − −

= +
− −

           (2.6) 
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where d1 and d2 are the distance from the testing sample vector to the center of class 1 

and class 2, respectively. d is the distance between the two centers of each class and f is 

a parameter used for controlling the rate at which memberships decrease toward 0.5, 

normally f > 0. 

We can assign fuzzy membership value [8] to the labeled samples with each sample x


  

in class i using a K-nearest neighbor rule, and then the membership values in each class 

can be calculated as follows:  

 
0.51 0.49( / ),                     
0.49( / ),                               

j
j

j

n K if j i
u

n K if j i
+ =

=  ≠
  (2.7) 

where jn  is the number of the neighbors found which belong to the class j. 

           K  is K-nearest neighbor value. 

The fuzzy algorithm is similar to the crisp version in the sense that it must also search 

the labeled sample set for the K-nearest neighbors. Beyond obtaining these K samples, 

the procedures differ considerably. 

For a fuzzy K-nearest neighbor [8]. Let { }1 2,  , ,  nx x xW = …
  

be a set of n labeled 

samples. Also, let ( )iu x


 be the assigned membership of the vector x


 (to be computed) 

as  

 ( )

2
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jj
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u x
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∑
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    (2.8) 

where uij is the membership in the ith class of the jth vector of the labeled sample set.  

A fuzzy K-nearest neighbor algorithm is as follows: 

BEGIN 

Input x, of unknown classification. 

Set K, 1 ≤ K ≤ n. 
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Initialize  i = 1 

DO UNTIL (K-nearest neighbors of x


  are found) 

Compute distance from x


 to ix


 

IF (i ≤ K) THEN 

Include ix


 in the set of K-nearest neighbors 

ELSE IF ( ix


 closer to x


 than any previous nearest neighbor) 

THEN 

Delete the farthest of the K-nearest neighbors 

Include ix


 in the set of K-nearest neighbors. 

END IF 

END DO UNTIL 

Initialize i = 1. 

FOR i = 1 to c 

Compute ui( x


) using (2.8). 

Increment i. 

END 

As seen in equation 2.8, the assigned memberships of x


 using the inverse distance 

serves more weight to a vector’s membership if it is closer and less weight if it is further 

from the vector under consideration. The labeled samples can be assigned class 

memberships in several ways. In [8] shows that the variable m determines how heavily 

the distance is weighted when calculating each neighbor’s contribution to the 

membership value. If m is two, then the contribution of each neighboring point is 

weighted by the reciprocal of its distance from the point being classified. As m 
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increases, the neighbors are more evenly weighted, and their relative distances from the 

point being classified have less effect. As m approaches one, the closer neighbors are 

weighted far more heavily than those farther away, which has the effect of reducing the 

number of points that contribute to the membership value of the point being classified.  

2.4 String grammar  

Phrase structure grammar was originally introduced by Chomsky, N. [21]. 

A phrase structure grammar G is a 4-tuple  

G = (VN, VT, P, S)      (2.9) 

where 

VN  is finite set of nonterminal symbols 

VT  is finite set of terminal symbols, N T N TV V =V,V V =λ∪ ∪   

S     is start symbol,  NS V∈   

P     is finite set of productions or rewriting rules of the form α β→  

,  ,  V*  ,  ;α β α λ∈ =   V* is the set of all finite length strings of symbols 

from V, including λ  , the null string, { }*V V λ+ = − . 

V  (alphabet) is a finite (non-empty set of symbols) 

λ    is an empty string 

Let G = (VN, VT, P, S) be a grammar. If every production in P is of the form A→ aB, or 

A →a, A, B ∈VN, a ∈VT, then the grammar G is the finite-state or the regular grammar. 

Phrase structure grammars have been used to describe patterns in syntactic pattern 

recognition [12]. Each pattern is represented by a string of primitives corresponding to a 

sentence in a language (tree or graph in high dimensional grammars). All strings which 

belong to the same class are generated by one grammar. 
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2.5  String Grammar Nearest Neighbor  

String grammar nearest neighbor [22] is the method which is used for computing the 

closely distance between the testing sample string and all training sample strings.  

For string grammar nearest neighbor, the Levenshtein distance [12, 22-28] is used as a 

distance metric.  

We identify a string of object i (sti) to the closest string of object j (stj) as follows, 

 ist  is in jth object if ( ) ( )( )
1

, min ,i j i kk TN
d d

≤ ≤
=st st st st    (2.10) 

where TN is the number of objects in the training dataset. The distance between string i 

and string k is Levenshtein distance. 

2.6 String Grammar K-Nearest Neighbor  

String grammar K-nearest neighbor [22] is the method which is used for computing the 

K closely distance between the testing sample string and all training sample strings. For 

string grammar nearest neighbor, the Levenshtein distance is used as a distance matric.  

Levenshtein distance [12, 22-28] is the distance used for measuring the difference 

between two string metric sequences. Informally, the Levenshtein distance between two 

words is equal to the number of single-characters which requires to change one word 

into others.  

The Levenshtein distance between two strings is defined as the minimum number of 

edits needed to transform one string into the other, with the allowable editing operations 

being insertion, deletion, or substitution of a single character. It is named after Vladimir 

Levenshtein, who considered this distance in 1965. It is closely related to pairwise 

string alignments. 

The algorithm of Levenshtein distance between two strings a and b : 

( )

( ) ( )
( )
( )

( )

,
,

,

,

max ,                                    , min , 0

1, 1
,

min , 1 1 ,                

1, 1

a b
a b

a b

a b i j

i j if i j

Lev i j
Lev i j

Lev i j otherwise

Lev i j a b

 =


 − +
=   − +
  − − + ≠  

 (2.11) 
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where i is a character index of string a and j is a character index of string b. 

Note that the first, second, and third elements in the minimum corresponds to deletion 

(from a to b), insertion, and substitution, respectively.  

We identify a string of the object as follows : 

 1 Compute the distance between the test string with every train string using 

Levenshtein distance. 

 2 Sort all distances in an increasing order.  

 3  Select the set of K closet distances. 

 4 The class label of the test string is assigned based on a majority vote of its 

nearest neighbor 

2.7 String Grammar Fuzzy K-Nearest Neighbor 

Let a training dataset, which consists of the strings of objects in all classes, be 

{ }1 2

1 1 2 2
1 1 1,..., , ,..., ,..., ,..., ,

C

C C
N N N=X x x x x x x  where j

ix  is a training string of object i in class 

j, and Nj is the number of training strings of objects in class j. Each string ( j
ix ) is a 

sequence of symbols (primitives). For example, ( )1 2...j j j j
i i i ilx x x=x  is a string with length 

l where each j
irx  is a member of a set ∑ defined symbols or primitives 

(  for 1, ..., , 1,..., ,  and 1,...,j
ir jx i N j C r lΣ =∈ = = ). Please be noted that the number of the 

strings of all training objects is still N. For a test string of object i, the Levenshtein 

distances between strings x and j
ix , ( ), j

iLev x x , for 1 ≤ j ≤ C and 1 ≤ i ≤ Nj are 

calculated.  

Next, the Levenshtein distance will be using on the equation of membership function, 

i.e., equation 3.1. 

The original algorithms of each equation for our modified algorithms as follows: 

1. New possibilistic clustering 

 From new possibilistic clustering algorithm [24] the membership function as 
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  where  i   = 1,…,C  , j=1,…,n 
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2. Fuzzy K-nearest neighbor 

From a fuzzy K-nearest neighbor [8]. Let { }1 2,  , ,  nx x xW = …
  

be a set of n      

labeled samples. Also, let ( )iu x


 be the assigned membership of the vector x


 (to   

be computed) as  

 ( )

2
1

1

2
1

1

1

1

mK
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jj
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x x

u x
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    (2.13) 

where uij is the membership in the ith class of the jth vector of the labeled sample  

set.  

 

3. Possibilistic entropy based clustering 

From possibilistic entropy based clustering algorithm [29] the membership 

function as 

 
2

i ijd
iju eβ=       (2.14) 

where iβ  is computed 
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( )

( )

2

1
4

1

(1 )      

N

ij ij
j

i N

ij ij
j

u d

u d
β α =

=

= +
∑

∑
 

where 0.5α ≥   and ijd  is Euclidean distance between the ith data point and the jth 

cluster centers 

4. Fuzzy C-Means clustering 

From vector fuzzy C-Means clustering algorithm [30] the membership function as 

1

1
ij C

ij

p ip

u d
d=

=

∑
       (2.15) 

where ijd  is Euclidean distance between the ith data point and the jth cluster 

centers 

5. New fuzzy entropy clustering 

 From new fuzzy entropy clustering algorithm [31] the membership function as 

 
( )2 21

1

j p j i
C x v x v

ij
p

u e γ
− − − −

=

=∑     (2.16) 

 where 1γ =   and  1

1

N
m
ji j

j
i N

m
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j

u x
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=
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=
∑

∑
  

6. Rule generation based clustering 

 From rule generation based clustering algorithm [32] the membership function as 

 
( )2

2exp
2( )
j i

ij

x a
u

σ

 − = −
 
 

     (2.17) 

 where  
i

a  is a set of C cluster center 

   σ  is the standard deviation 
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7. Possibilistic clustering 

 From possibilistic clustering algorithm [33] the membership function as 

 1
2 1

1

1

ij
m

ij

i

u
d
η

−

=
 

+   
 

      (2.18) 
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