CONTENTS

Acknowledgment	c
Abstract in Thai	d
Abstract in English	e
List of Tables	h
List of Figures	m
List of Symbols	р
Statements of Originality in Thai	q
Statements of Originality in English	r
Chapter 1 Introduction	1
1.1 Background and motivation	1
1.2 Literature review	3
1.3 Research objective	6
1.4 Research scope and method	7
1.5 Education advantages	7
1.6 Research location	7
1.7 Thesis organization	7
Chapter 2 Principles and Theories of the Study	9
2.1 K-Nearest neighbor	9
2.2 Fuzzy membership functions	11
2.3 Fuzzy K-Nearest Neighbor	12
2.4 String grammar	15
2.5 String Grammar Nearest Neighbor	16
2.6 String Grammar K-Nearest Neighbor	16

2.7 String Grammar Fuzzy K-Nearest Neighbor	17
Chapter 3 Research Designs and Methods	21
3.1 String Grammar Fuzzy K-Nearest Neighbor	21
3.1.1 sgFKNN1	21
3.1.2 sgFKNN2	22
3.1.3 sgFKNN3 - Possibilistic Entropy based Clustering (PEC)	23
3.1.4 sgFKNN4 - Vector Fuzzy C-Means (VFC)	23
3.1.5 sgFKNN5 - New Fuzzy Entropy (NFE)	24
3.1.6 sgFKNN6 - Rule Generation Based (RGB)	24
3.1.7 sgFKNN7-PCMed	25
Chapter 4 Results and Discussion	26
4.1 String generation process	26
4.2 Standard dataset experiment	30
4.3 Face recognition and expression experiment	47
4.3.1 Face recognition experiment result	52
4.3.2 Facial expression recognition experiment result	85
Chapter 5 Conclusion	122
References ลิปสิทธิ์มหาวิทยาลัยเชียงใหม่	125
Appendix Copyright [©] by Chiang Mai University	133
All rights reserved Curriculum Vitae	198

LIST OF TABLES

Table 4.1	Bin orientation	29
Table 4.2	The experimental results from sgFKNN1 for standard datasets	
	when using crisp initialization	32
Table 4.3	The experimental results from sgFKNN2 for standard datasets	
	when using crisp initialization	33
Table 4.4	The experimental results from sgFKNN3 for standard datasets	
	when using crisp initialization	33
Table 4.5	The experimental results from sgFKNN4 for standard datasets	
	when using crisp initialization	34
Table 4.6	The experimental results from sgFKNN5 for standard datasets	
	when using crisp initialization	34
Table 4.7	The experimental results from sgFKNN6 for standard datasets	
	when using crisp initialization	35
Table 4.8	The experimental results from sgFKNN7 for standard datasets	
	when using crisp initialization	35
Table 4.9	The maximum accuracy rates for the standard datasets	
5	on 7 sgFKNNs	36
Table 4.10	The experimental results from sgFKNN1 when	
	using fuzzy initialization Chiang Mai University	37
Table 4.11	The experimental results from sgFKNN2 when	
	using fuzzy initialization	38
Table 4.12	The experimental results from sgFKNN3 when	
	using fuzzy initialization	38
Table 4.13	The experimental results from sgFKNN4 when	
	using fuzzy initialization	39
Table 4.14	The experimental results from sgFKNN5 when	
	using fuzzy initialization	39

Table 4.15	The experimental results from sgFKNN6 when	
	using fuzzy initialization	40
Table 4.16	The experimental results from sgFKNN7 when	
	using fuzzy initialization	40
Table 4.17	The maximum accuracy rates for the standard datasets	
	on 7 sgFKNNs when using fuzzy initialization	41
Table 4.18	The average of accuracy rates for the standard datasets	
	on 7 sgFKNNs when using crisp initialization	41
Table 4.19	The average of accuracy rates for the standard datasets	
	on 7 sgFKNNs when using crisp initialization	42
Table 4.20	The experimental results from sgFKNN4 for standard datasets	
	when using the different number of prototypes	44
Table 4.21	The experimental results from sgFKNN5 for standard datasets	
	when using the different number of prototypes	45
Table 4.22	The experimental results from sgFKNN6 for standard datasets	
	when using the different number of prototypes	46
Table 4.23	The experimental results from sgFKNN1 for face recognition datasets	53
Table 4.24	The experimental results from sgFKNN2 for face recognition datasets	59
Table 4.25	The experimental results from sgFKNN3 for face recognition datasets	61
Table 4.26	The experimental results from sgFKNN4 for face recognition datasets	63
Table 4.27	The experimental results from sgFKNN4 for face recognition datasets	
3	when using the different number of prototypes	65
Table 4.28	The experimental results from sgFKNN5 for face recognition datasets	69
Table 4.29	The experimental results from sgFKNN5 for face recognition datasets	
1	when using the different number of prototypes	71
Table 4.30	The experimental results from sgFKNN6 for face recognition datasets	75
Table 4.31	The experimental results from sgFKNN6 for face recognition datasets	
	when using the different number of prototypes	77
Table 4.32	The experimental results from sgFKNN7 for face recognition datasets	81
Table 4.33	The comparison of accuracy rates between our algorithms of face	
	recognition on 7 sgFKNNs with the other's	84

Table 4.34	The experimental results from sgFKNN1 for facial expression	
	recognition datasets	90
Table 4.35	Indirect comparison of the results from the JAFFE Database	91
Table 4.36	Confusion matrix of six expression classes of our method in the	
	YALE Database	92
Table 4.37	Indirect comparison of the results from the Yale Database	92
Table 4.38	Confusion matrix of six expression classes of sgFKNN1	
	in the CMU AMP Database	93
Table 4.39	Indirect comparison of the results from the CMU AMP Database	93
Table 4.40	Confusion matrix in 8 facial expressions of CK database when	
	using 1600 symbols using sgFKNN1 and K=1	94
Table 4.41	Confusion matrix percentage of 8 expression classes of	
	sgFKNN1 in CK Database	95
Table 4.42	Confusion matrix in 5 facial expressions of UNBC database	
	when using 100 symbols and K=1	96
Table 4.43	Confusion matrix percentage of 5 expression classes of sgFKNN1	
	in UNBC database	96
Table 4.44	Confusion matrix of seven expression classes of sgFKNN1	
	in the JAFFE Database	97
Table 4.45	The experimental results from sgFKNN2 for facial expression	
	recognition datasets	101
Table 4.46	The experimental results from sgFKNN3 for facial expression	
	recognition datasets	103
Table 4.47	The experimental results from sgFKNN4 for facial expression	
	recognition datasets	105
Table 4.48	The experimental results from sgFKNN4 for facial expression	
	datasets when using the different number of prototypes	107
Table 4.49	The experimental results from sgFKNN5 for facial expression	
	recognition datasets	109
Table 4.50	The experimental results from sgFKNN5 for facial expression	
	datasets when using the different number of prototypes	111

Table 4.51	The experimental results from sgFKNN6 for facial expression	
	recognition datasets	113
Table 4.52	The experimental results from sgFKNN6 for facial expression	
	datasets when using the different number of prototypes	115
Table 4.53	The experimental results from sgFKNN7 for facial expression	
	recognition datasets	117
Table 4.54	The comparison of accuracy rates between our algorithm	
	of facial expression recognition on 7 sgFKNNs	119
Table 4.55	The accuracy rate of Yale Database in facial expression recognition	120
Table 4.56	The differences between the original and the cropped images	121

LIST OF FIGURES

Figure 2.1	An example of a circle where it will be extended indefinitely until the	
	three nearest samples are found	9
Figure 2.2	Example of K-nearest neighbor (K-NN)	10
Figure 4.1	Examples of original images in the training dataset	27
Figure 4.2	Ave_f from the training dataset	27
Figure 4.3	Dif_f_i between original images in figure 4.1 and Ave_f in figure 4.2	28
Figure 4.4	An example of self-quotient normalization	28
Figure 4.5	String generation process	29
Figure 4.6	Example of each class in Kimia-216 Database	30
Figure 4.7	Example of each class in Image Hjpg Database	31
Figure 4.8	Example of class zero in USPS Dataset	31
Figure 4.9	The misclassification in data 119 th for sgFKNN4 algorithm in USPS	
	database	37
Figure 4.10	The average of accuracy rates of every K when using	
	crisp initialization (a) and fuzzy initialization (b)	42
Figure 4.11	The membership values of USPS dataset when using	
	crisp initialization (a) and fuzzy initialization (b)	43
Figure 4.12	Example of 1 st class from ORL dataset	47
Figure 4.13	Example of all 40 classes from ORL dataset	48
Figure 4.14	Example of FEI dataset in class 1	48
Figure 4.15	Example of YALE dataset	49
Figure 4.16	Example of JAFFE dataset	49
Figure 4.17	Example of Pain expressions dataset	50
Figure 4.18	Example of Senthilkumar dataset	50
Figure 4.19	Example of PICS dataset	50
Figure 4.20	Example of MIT original dataset	51
Figure 4.21	Example of CMU AMP dataset	51

Figure 4.22	Example of Georgia Tech dataset	52
Figure 4.23	The example of 10 images for the two classes in ORL dataset	54
Figure 4.24	The example of the images for each class in JAFFE dataset	54
Figure 4.25	The example of the images for each class in Yale dataset	55
Figure 4.26	The example of the images for each class in Senthilkumar dataset	55
Figure 4.27	The misclassification in person 28 th for sgFKNN1 algorithm in ORL	
	database	56
Figure 4.28	The misclassification in person 16 th for sgFKNN1 algorithm in ORL	
	database	56
Figure 4.29	The misclassification in person 36 th for sgFKNN1 algorithm in ORL	
	database	57
Figure 4.30	Examples from Georgia Tech dataset	57
Figure 4.31	The misclassification in person 11 th and 12 th for sgFKNN1	
	algorithm in Senthilkumar database when using $K=2$	58
Figure 4.32	The accuracy rate of sgFKNN2 on 10 standard datasets	60
Figure 4.33	The accuracy rate of sgFKNN3 on 10 standard datasets	62
Figure 4.34	The accuracy rate of sgFKNN4 on 10 standard datasets	64
Figure 4.35	The accuracy rate of sgFKNN5 on 10 standard datasets	70
Figure 4.36	The accuracy rate of sgFKNN6 on 10 standard datasets	76
Figure 4.37	The accuracy rate of sgFKNN7 on 10 standard datasets	82
Figure 4.38	Examples of each class in JAFFE Database	86
Figure 4.39	Examples of each class in Yale Database	87
Figure 4.40	Examples of each class in CMU AMP Database	87
Figure 4.41	Examples of each class in CK+ Database	88
Figure 4.42	Example of each class in UNBC Database	90
Figure 4.43	Graph of the experimental results from sgFKNN1 for	
	facial expression recognition datasets	90
Figure 4.44	Subject number 6 who is misclassified into disgust class	98
Figure 4.45	28-nearest neighbor of face expression in figure 4.44	98
Figure 4.46	The membership values when using K=28 on JAFFE database	98
Figure 4.47	Original image of a person in happy class with its string	99

Figure 4.48	Cropped image of (Figure 4.47) with its string	99
Figure 4.49	(a) subject 85 in happy face and (b) 5-nearest neighbor	100
Figure 4.50	The accuracy rate of sgFKNN2 on 5 standard datasets	102
Figure 4.51	The accuracy rate of sgFKNN3 on 5 standard datasets	104
Figure 4.52	The accuracy rate of sgFKNN4 on 5 standard datasets	106
Figure 4.53	The accuracy rate of sgFKNN5 on 5 standard datasets	110
Figure 4.54	The accuracy rate of sgFKNN6 on 5 standard datasets	114
Figure 4.55	The accuracy rate of sgFKNN7 on 5 standard datasets	118
Figure 4.56	The accuracy rate from table 4.55	120

LIST OF SYMBOLS

С	The number of classes
$lev_{a,b}$	Levenshtein distance between two strings <i>a</i> , <i>b</i>
TN	The number of person in the training dataset
\mathbf{X}_{i}^{j}	A training string of image <i>i</i> in class <i>j</i>
Nj	The number of training strings of images in class j
Κ	The number of nearest neighbors used
$u_i(\mathbf{x})$	Membership value of string \mathbf{x} in class i
u_{ia}	The membership value of training string of image \mathbf{x}_a^q in class <i>i</i>
m	The fuzzifier
X _{med}	The median in a set of strings X
V_N	Finite set of nonterminal symbols
VT	Finite set of terminal symbols
S	Start symbol, $S \in V_N$
	MAI UNIVERSIT

ข้อความแห่งการริเริ่ม

วิทยานิพนธ์นี้นำเสนออัลกอริทึมใหม่ที่เป็นการผสมผสานความไม่แน่นอนเข้ากับ สตริงแกรมมาเคเนียเรสเนเบอร์ เพื่อเป็นอัลกอริทึมในการรู้จำข้อมูลที่มีลักษณะเป็น โครงสร้าง ไม่ใช่ข้อมูลที่มีลักษณะเป็นตัวเลข

STATEMENTS OF ORIGINALITY

This thesis presents new algorithms by incorporating uncertainty into string grammar K-nearest neighbor. This algorithm is a structural dataset recognition algorithm not a numerical dataset recognition algorithm.

Copyright[©] by Chiang Mai University All rights reserved