REFERENCES

- [1] N.G. Hingorani and L. Gyugyi, *Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems*, John Wiley & Sons, 1999.
- [2] FACTS Terms & Definitions Task Force of the FACTS Working Group of the DC and FACTS Submittee, "Proposed Terms and Definitions for Flexible AC Transmission System (FACTS)," IEEE Transactions on Power Delivery, Vol. 12, no. 4, Oct. 1997.
- [3] H. Ren, D. Watts, Z. Mi, and J. Lu, "A Review of FACTS' Practical Consideration and Economic Evaluation," Power and Energy Engineering Conference (APPEEC 2009), Asia-Pacific, 2009.
- [4] L. L. Lai, Intelligent System Applications in Power Engineering: Evolutionary Programming and Neural Networks, John Wiley & Sons, 1998.
- [5] M. Saravanan, S. Mary Raja Slochanal, P. Venkatesh, and J. Prince Stephen Abraham, "Application of Particle Swarm Optimization Technique for Optimal Location of FACTS Devices Considering Cost of Installation and System Loadability," Electric Power Systems Research, Vol. 77, pp.276-283.
- [6] L. J. Cai and I. Erlich, "Optimal Choice and Allocation of FACTS Devices Using Genetic Algorithms," Twelfth Intelligent Systems Application to Power Systems Conference", 2003, pp. 1-6.
- [7] A. G. Bakirtzis, P. N. Biskas, C. E. Zoumas, and V. Petridis, "Optimal Power Flow by Enhanced Genetic Algorithm", IEEE Transaction Power Systems, 2002, Vol. 17, No. 2, pp. 229–236.
- [8] L. L. Lai and J. T. Ma, "Improved genetic algorithms for optimal power flow under both normal and contingent operation states", International Journal Electric Power Energy System, 1997, Vol.19, No.5, pp. 287–292.

- [9] M. M. E. Metwally, A. A. E. Emary, F. M. E. Bendary, and M. I. Mosaad, "Optimal Allocation of FACTS Device in Power System Using Genetic Algorithm," Power system Conference, 2008, MEPCON 2008, 12th International Middle-East, pp. 1-4.
- [10] W. Ongsakul and P. Jirapong, "Optimal Allocation of FACTS Devices to Enhance Total Transfer Capability Using Evolutionary Programming," International Symposium on Circuits and Systems, Japan, 23-26 May, Vol. 5, pp. 4175-4178.
- [11] S. Panda and N. P. Padhy, "Comparison of Particle Swarm Optimization and Genetic Algorithm for FACTS-Based Controller Design," Applied Soft Computing, Vol. 8, Issue 4, pp. 1418-1427.
- [12] T. Al-Awami, Y. L. Abdel-Magid, and M. A. Abido, "A Particle-Swarm-Based Approach of Power System Stability Enhancement with Unified Power Flow Controller," International Journal of Electrical Power & Energy Systems, Vol. 29, Issue 3, Mar. 2007, pp. 251-259.
- [13] N. W. Oo, "A Comparison Study on Particle Swarm and Evolutionary Particle Swarm Optimization Using Capacitor Placement Problem," 2nd IEEE international Conference on Power and Energy (PECon08), Johor Baharu, Malaysia.
- [14] J. Yuryevich and K. P. Wong, "Evolutionary programming based optimal power flow algorithm", IEEE Transaction Power Systems, Vol. 14, No.4, pp. 1245–1250.
- [15] A. Y. Abdelaziz, F. M. Mohammed, S. F. Mekhamer, and M. A. L. Badr, "Distribution Systems Reconfiguration Using a Modified Particle Swarm Optimization Algorithm," Electric Power System Research, In Press, Jun 2009.
- [16] P. Bhasaputra and W. Ongsakul, "Optimal power flow with Multitype FACTS Devices by Hybrid TS/SA Approach," IEEE ICIT'02, Bangkok, Thailand, pp. 285-290.
- [17] W. Ongsakul and P. Jirapong, "Optimal Placement of Multi-Type FACTS Controllers for Total Transfer Capability Enhancement Using Improved Evolutionary Programming," Proceedings of Energy for Sustainable Development: Prospects and Issues for Asia, Phuket, Thailand, March 2006.

- P. Jirapong and W. Ongsakul, "Optimal Placement of Multi-Type FACTS Devices for Total Transfer Capability Enhancement Using Hybrid Evolutionary Algorithm," Electric Power Components and Systems, Vol. 35, no. 9, Sept. 2007, pp. 981-1005.
- [19] T. O. Ting, M. V. C. Rao, and C. K. Loo, "A Novel Approach for Unit Commitment Problem via an Effective Hybrid Particle Swarm Optimization," IEEE Transactions on the power system, Vol.21, no.1, Feb. 2006.
- [20] R. Qi, W. Du, Z. Wang, and F. Qian, "Multiobjective Evolutionary Algorithm Based on the Pareto Archive and Individual Migration," Proceeding of the 7th World Congress on Intelligent Control and Automation, Chongqing, China, Jun. 2008.
- [21] M. A. Abido, "Multiobjective Evolutionary Algorithms for Electric Power Dispatch Problem," IEEE Transaction on Evolutionary Computation, Vol.10, no.3, Jun. 2006.
- [22] D. Radu and Y. Besanger, "A Multi-Objective Genetic Algorithm Approach to Optimal Allocation of Multi-type FACTS Devices for Power System Security," IEEE Power Engineering Society General Meeting, Jun. 2006.
- [23] R. Benabid, M. Boudor, and M. A. Abido, "Optimal Location and Setting of SVC and TCSC Devices Using Non-Dominated Sorting Particle Swarm Optimization," Electric Power system Research, Vol.79, Issue 12, pp. 1668-1677.
- [24] Y. H. Song and Y. H. Johns, "Flexible AC Transmission System (FACTS)," IEE Power and Energy Series 30, 1999.
- [25] IEEE Power Engineering Society, "FACTS Overview," Cigre 95 TP108, 1995.
- [26] IEEE Power Engineering Society, "FACTS Applications," Dec 1995.
- [27] O. Alsac and B. Stott, "Optimal Power Flow with Steady-State Security," IEEE Transactions on Power Apparatus and Systems, Vol. PAS-93, Issue 3, May 1974.
- [28] C. A. Canizares, "Power Flow and Transient Stability Models of FACTS Controllers for Voltage and Angle stability Studies", IEEE/PES WM on Modeling, Simulation and Applications of FACTS Controllers in Angle and Voltage Stability Studies, Singapore, Jan 2000.

- [29] H. W. Dommel and W. F. Tinney, "Optimal Power Flow Solutions," IEEE Transactions on Power Apparatus and Systems, Vol. PAS-87, no. 10, pp. 1866-1876.
- [30] M. R. AlRashidi and M. E. El-Hawary, "Applications of Computational Intelligence Techniques for Solving the Revived Optimal Power Flow Problem," Electric Power Systems Research, vol. 79, issue 4, pp. 694-702.
- [31] Y. Xiao, Y. H. Song, C. C. Liu, and Y. Z. Sun, "Available Transfer Capability Enhancement Using FACTS Devices," IEEE Transactions on Power Systems, Vol. 18, Issue 1, pp. 305 312.
- [32] M. A. Abdel-Moamen and N. P. Padhy, "Optimal Power Flow Incorporating FACTS Devices-Bibliography and Survey," IEEE PES Transmission and Distribution Conference and Exposition 2003, Vol. 2, pp. 669-676.
- [33] Y. Xiao, Y. H. Song, and Y. Z. Sun, "Power Flow Control Approach to Power Systems with Embedded FACTS Devices," Power Engineering Review, IEEE, Vol.22, Issue 7, pp.53 54.
- [34] J. Kennedy and R. Eberhart, "Particle Swarm Optimization," IEEE International Conference of Neural Networks, Vol.4, pp. 1942–1948.
- [35] L. J. Fogel, A. J. Owens, and M. J. Walsh, *Artificial Intelligence through Simulated Evolution*, John Wiley, 1966.
- [36] F. Glover and M. Laguna, *Handbook of Applied Optimization*, Chapter Tabu Search, Oxford Academic Press, 1980.
- [37] F. Glover and M. Laguna, *Tabu Search*, Kluwer Academic Publishers, 1997.
- [38] C. Y. Zhang, P. Li, Z. Guan, and Y. Rao, "A Tabu Search Algorithm with a New Neighborhood Structure for the Job Shop Scheduling Problem," Computers & Operations Research, Vol. 34, Issue 11, Nov.2007 pp. 3229 3242.
- [39] I. Zelinka and V. Snásel, *Handbook of Optimization: From Classical to Modern Approach*, Springer Science & Business Media, 2012.
- [40] E. K. P. Chong and S. H. Zak, *An introduction to optimization (Third edition)*, New Jersey, John Wiley&Sons, 2008.

- [41] P. Ngatchou, A. Zarei, and M. A. El-Sharkawi, "Pareto Multi Objective Optimization," Proceedings of the 13th International Conference on Intelligent Systems Application to Power Systems, 2005.
- [42] K. Deb, Multi-objective optimization using evolutionary algorithms, John Wiley&Sons, 2004.
- [43] J. C. Bezdek, *Pattern recognition with fuzzy objective function algorithms: Plenum*, New York, 1981.
- [44] K. Y. Lee and A. E. Mohamed, *Modern Heuristics Optimization Techniques*, New York, John Wiley & Sons, 2008.
- [45] E. J. Oliveira, J. W. Lima, and K. C. Almeida, "Allocation of FACTS devices in hydrothermal systems," IEEE Transactions on Power Systems, Vol. 15, Issue 1, pp. 276-282.

ลิชสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF PUBLICATION

- 1) S. Chansareewittaya and P. Jirapong, "Power Transfer Capability Enhancement with Multitype FACTS Controller Using Particle Swarm Optimization", Proceedings of the IEEE TENCON 2010 2010 IEEE Region10 Conference, Fukuoka, Japan, November, 2010.
- 2) S. Chansareewittaya and P. Jirapong, "Power Transfer Capability Enhancement with Optimal Maximum Number of FACTS Controllers Using Evolutionary Programming," Proceedings of the 37rd Annual Conference of the IEEE Industrial Electronics Society (IEEE-IECON), Melbourne, Australia, November 2011.
- 3) S. Chansareewittaya and P. Jirapong, "Power Transfer Capability Enhancement with Optimal Number of FACTS Controllers Using Hybrid TSSA," Proceedings of the IEEE SouthEastCon 2012 2012 IEEE Region3 Conference, Orlando, Florida, USA, March 2012.
- 4) S. Chansareewittaya and P. Jirapong, "Total Transfer Capability Enhancement with Optimal Number of UPFC Using Hybrid TSSA," Proceedings of the IEEE ECTI-CON 2012, Cha-am, Phetchaburi, Thailand, May 2012.
- 5) S. Chansareewittaya and P. Jirapong, "Optimal Allocation of Multi-type FACTS Controllers for Total Transfer Capability Enhancement Using Hybrid Particle Swarm Optimization," Proceedings of the IEEE ECTI-CON 2014, NakhonRatchasima, Thailand, May 2014.
- 6) S. Chansareewittaya and P. Jirapong, "Power Transfer Capability Enhancement with Multitype FACTS Controllers Using Hybrid Particle Swarm Optimization," Electrical Engineering, Vol. 97, Issue 2 (2015), pp. 119-127, Springer Publishing.
- 7) S. Chansareewittaya and P. Jirapong, "Optimal Allocation of Multi-type FACTS Controllers by using Hybrid PSO for Total Transfer Capability Enhancement," ECTI Transactions on Computer and Information Technology ECTI-CIT Vol. 9, No. 1 (2015), pp. 55-63.