## CONTENTS

| Acknowledgement                  |                                         |
|----------------------------------|-----------------------------------------|
| Abstract in Thai                 |                                         |
| Abstract in English              | ามยนติ                                  |
| List of Tables                   | 2002 2                                  |
| List of Figures                  |                                         |
| List of Abbreviations            | 20/31                                   |
| List of Symbols                  | ( S S S S S S S S S S S S S S S S S S S |
| Statement of Originality in Thai |                                         |
| Statement of Originality in Engl | lish                                    |
| Chapter 1 Introduction           |                                         |
| 1.1 Principle and Backgro        | und                                     |
| 1.2 Objectives                   | AI UNIVER                               |
| 1.3 Scopes of this study         | ······································  |
| Chapter 2 Theory                 | หาวิทยาลัยเชียงไหม                      |
| 2.1 Lignocellulose               | by Chiang Mai University                |
| 2.2 Purpose of lignocellul       | ose material preparation                |
| 2.3 Lignocellulose pretrea       | tment                                   |
| 2.4 Inhibitor                    |                                         |
| 2.5 Lignin elimination fro       | m lignocellulose materials              |

| Chapter 3 Literature Review                                       |     |
|-------------------------------------------------------------------|-----|
| Chapter 4 Delignification of Bana Grass Using Alkaline and Ozone  | 42  |
| 4.1 Materials and methods                                         | 42  |
| 4.2 Condition for alkali pretreatment                             | 43  |
| 4.3 Condition for ozone pretreatment                              | 43  |
| 4.4 Results and Discussion                                        | 44  |
| 4.4.1 NaOH and Ozone Pretreatment                                 | 44  |
| 4.4.2 NH <sub>3</sub> and Ozone Pretreatment                      | 55  |
| 4.4.3 Ca(OH) <sub>2</sub> and Ozone Pretreatment                  | 64  |
| 4.5 Inhibitor examination                                         | 73  |
| 4.6 Mass flow diagram of ozonolysis                               | 74  |
| 4.7 Conclusion                                                    | 76  |
| Chapter 5 Delignification of Corn Stover Using Alkaline and Ozone | 77  |
| 5.1 Materials and methods                                         | 77  |
| 5.2 Condition for alkali pretreatment                             | 78  |
| 5.3 Condition for ozone pretreatment                              | 78  |
| 5.4 Results and Discussion                                        | 79  |
| 5.4.1 NaOH and Ozone Pretreatment                                 | 79  |
| 5.4.2 NH <sub>3</sub> and Ozone Pretreatment                      | 89  |
| 5.4.3 Ca(OH) <sub>2</sub> and Ozone Pretreatment                  | 97  |
| 5.5 Inhibitor examination                                         | 105 |
| 5.6 Conclusion                                                    | 106 |
| Chapter 6 Conclusions and Further works                           | 107 |
| 6.1 Conclusions                                                   | 107 |
| 6.2 Further works                                                 | 110 |

References

Appendix

- Appendix A 116
- Appendix B 130
- Appendix C 146
- Appendix D 153

Curriculum Vitae

155

111



#### LIST OF TABLES

| Table 2.1 Comparison strengths/weaknesses of any pretreatments process      | 20 |
|-----------------------------------------------------------------------------|----|
| Table 2.2 Results of pretreatment for structure in Lignocellulose materials | 21 |
| Table 2.3 Origin of inhibited substances and the highest concentration that | 24 |
| was accepted in Ethanol fermented conditions                                |    |
| Table 2.4 compared any process of Lignocellulose materials pretreatment     | 25 |
| that effect to inhibited substances                                         |    |
| Table 2.5 Lignocellulose materials pretreatment by alkaline method          | 27 |
| effects to lignin number reduction                                          |    |
| Table 2.6 Lignocellulose materials pretreatment by ozone method effects     | 27 |
| lignin number reducing                                                      |    |
| Table 2.7 Shows lignocellulose materials pretreatment by organic solvent    | 28 |
| method effects lignin number reduction                                      |    |
| Table 4.1 Characterization of untreated and pretreated materials with       | 47 |
| NaOH solutions pretreatment                                                 |    |
| Table 4.2 Major compositions of untreated and pretreated materials          | 52 |
| with ozonolysis process                                                     |    |
| Table 4.3 Characterization of NaOH solution pretreated materials with       | 53 |
| ozonolysis process                                                          |    |
| Table 4.4 Characterization of untreated and pretreated materials with       | 58 |
| NH <sub>3</sub> solution pretreatment                                       |    |
| Table 4.5 Characterization of $NH_3$ solution pretreated materials with     | 62 |
| ozonolysis process                                                          |    |
| Table 4.6 Characterization of untreated and pretreated materials with       | 67 |
| Ca(OH)2 solution pretreatment                                               |    |
| Table 4.7 Characterization of Ca(OH)2 solution pretreated materials with    | 71 |
| ozonolysis process                                                          |    |
| Table 4.8 Result of Acetaldehyde analysis                                   | 73 |

| Table 4.9 Result of Total phenolic analysis                                      |     |
|----------------------------------------------------------------------------------|-----|
| Table 4.10 Mass flow data ozonolysis                                             | 75  |
|                                                                                  |     |
| Table 5.1 Characterization of untreated and pretreated materials with            |     |
| NaOH solutions pretreatment                                                      | 82  |
| Table 5.2 Major compositions of untreated and pretreated materials               | 86  |
| with ozonolysis process                                                          |     |
| Table 5.3 Characterization of NaOH solution pretreated materials with            | 87  |
| ozonolysis process                                                               |     |
| Table 5.4 Characterization of untreated and pretreated materials with            | 91  |
| NH <sub>3</sub> solution pretreatment                                            |     |
| Table 5.5 Characterization of NH <sub>3</sub> solution pretreated materials with | 95  |
| ozonolysis process                                                               |     |
| Table 5.6 Characterization of untreated and pretreated materials with            | 99  |
| Ca(OH) <sub>2</sub> solution pretreatment                                        |     |
| Table 5.7 Characterization of Ca(OH)2 solution pretreated materials              | 103 |
| with ozonolysis process                                                          |     |
| Table 5.8 Result of Acetaldehyde analysis                                        | 105 |
| Table 5.9 Result of Total phenolic analysis                                      | 105 |
| AI UNIVERS                                                                       |     |
| UITE                                                                             |     |

#### LIST OF FIGURES

| Figure 2.1 Structure of cellulose                                                                                                                                                                               | 7  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 2.2 Hemicellulose structure                                                                                                                                                                              | 8  |
| Figure 2.3 Lignin structure                                                                                                                                                                                     | 9  |
| Figure 2.4 Lignocellulose materials pretreatment                                                                                                                                                                | 9  |
| Figure 2.5 Forming between ozone and lignin molecule                                                                                                                                                            | 17 |
| Figure 2.4 Lignocellulose materials pretreatment<br>Figure 2.5 Forming between ozone and lignin molecule<br>Figure 2.6 Inhibitor types and chemical structures<br>Figure 4.1 The ozonolysis treatment apparatus | 22 |
| Figure 4.1 The ozonolysis treatment apparatus                                                                                                                                                                   | 44 |
| Figure 4.2 ECONOWATT model OZG                                                                                                                                                                                  | 44 |
| Figure 4.3 Remaining composition in NaOH solution with 1 hr pretreatment                                                                                                                                        | 48 |
| Figure 4.4 Remaining composition in NaOH solution with 2 hrs pretreatment                                                                                                                                       | 49 |
| Figure 4.5 Remaining composition in NaOH solution with 3 hrs pretreatment                                                                                                                                       | 49 |
| Figure 4.6 Effect of pretreatment time of NaOH solution                                                                                                                                                         | 50 |
| Figure 4.7 shows weight percent of remaining cellulose and lignin removal                                                                                                                                       | 50 |
| based on untreated material                                                                                                                                                                                     |    |
| Figure 4.8 presents the ratio of cellulose and lignin for NaOH solution pretreatment                                                                                                                            | 51 |
| Figure 4.9 shows the composition of NaOH solution pretreatment matter with ozone                                                                                                                                | 54 |
| Figure 4.10 compares the ratio of cellulose to lignin of material with ozone                                                                                                                                    | 54 |
| pretreatment of untreated and NaOH solution pretreatment                                                                                                                                                        |    |
| Figure 4.11 Remaining composition in NH <sub>3</sub> solution with 12 hrs pretreated material.                                                                                                                  | 59 |
| Figure 4.12 Remaining composition in NH <sub>3</sub> solution with 24 hrs pretreated material                                                                                                                   | 59 |
| Figure 4.13 Remaining composition in NH <sub>3</sub> solution with 36 hrs. pretreated material                                                                                                                  | 60 |
| Figure 4.14 Effect of pretreatment time of NH <sub>3</sub> solution                                                                                                                                             | 60 |
| Figure 4.15 shows weight percent of cellulose remaining and lignin removal                                                                                                                                      | 61 |
| based on an untreated material                                                                                                                                                                                  |    |

| Figure 4.16 presents the ratio of cellulose to lignin for NH <sub>3</sub> solution pretreatment | 61     |
|-------------------------------------------------------------------------------------------------|--------|
| Figure 4.17 shows the composition of $NH_3$ solution pretreatment matter with ozo               | one 63 |
| Figure 4.18 compare the ratio of cellulose to lignin of material with ozone                     | 63     |
| pretreatment of untreated and NH <sub>3</sub> solution pretreatment                             |        |
| Figure 4.19 Remaining composition in Ca(OH) <sub>2</sub> solution with 12 hrs                   | 68     |
| pretreated material                                                                             |        |
| Figure 4.20 Remaining composition in Ca(OH) <sub>2</sub> solution with 24 hr                    | 68     |
| pretreated material                                                                             |        |
| Figure 4.21 Remaining composition in Ca(OH) <sub>2</sub> solution with 36 hrs.                  | 69     |
| pretreated material                                                                             |        |
| Figure 4.22 Effect of pretreatment time of Ca(OH) <sub>2</sub> solution                         | 69     |
| Figure 4.23 shows weight percent of cellulose remaining and lignin removal                      | 70     |
| based on an untreated material                                                                  |        |
| Figure 4.24 presents the ratio of cellulose to lignin for Ca(OH) <sub>2</sub> solution          | 70     |
| pretreatment                                                                                    |        |
| Figure 4.25 shows the composition of Ca(OH) <sub>2</sub> solution pretreatment matter           | 72     |
| with ozone                                                                                      |        |
| Figure 4.26 compare the ratio of cellulose to lignin of material with ozone                     | 72     |
| pretreatment of untreated and Ca(OH)2 solution pretreatment                                     |        |
| Figure 4.27 The ozonolysis treatment and ozone analysis apparatus                               | 75     |
| Figure 4.28Mass flow diagram ozonolysis of 10 min.                                              | 75     |
| Figure 4.29 Mass flow diagram ozonolysis of 20 min.                                             | 75     |
| Figure 4.30 Mass flow diagram ozonolysis of 30 min.                                             | 76     |
| Figure 5.1 The ozonolysis treatment apparatus                                                   | 79     |
| Figure 5.2 ECONOWATT model OZG                                                                  | 79     |
| Figure 5.3 Remaining composition in NaOH solution with 1 hr pretreatment                        | 83     |
| Figure 5.4 Remaining composition in NaOH solution with 2 hrs pretreatment                       | 83     |
| Figure 5.5 Remaining composition in NaOH solution with 3 hrs pretreatment                       | 84     |
| Figure 5.6 Effect of pretreatment time of NaOH solution                                         | 84     |
| Figure 5.7 shows weight percent of remaining cellulose and lignin removal                       | 85     |
| based on untreated material                                                                     |        |

| Figure 5.8 presents the ratio of cellulose and lignin for NaOH solution                               | 85  |
|-------------------------------------------------------------------------------------------------------|-----|
| pretreatment                                                                                          |     |
| Figure 5.9 shows the composition of NaOH solution pretreatment matter                                 | 88  |
| with ozone                                                                                            |     |
| Figure 5.10 compares the ratio of cellulose to lignin of material with ozone                          | 88  |
| pretreatment of untreated and NaOH solution pretreatment                                              |     |
| Figure 5.11 Remaining composition in NH <sub>3</sub> solution with 12 hrs pretreated material.        | 92  |
| Figure 5.12 Remaining composition in NH <sub>3</sub> solution with 24 hrs pretreated material         | 92  |
| Figure 5.13 Remaining composition in NH <sub>3</sub> solution with 36 hrs. pretreated material        | 93  |
| Figure 5.14 Effect of pretreatment time of NH <sub>3</sub> solution                                   | 93  |
| Figure 5.15 shows weight percent of cellulose remaining and lignin removal                            | 94  |
| based on an untreated material                                                                        |     |
| Figure 5.16 presents the ratio of cellulose to lignin for NH <sub>3</sub> solution pretreatment       | 94  |
| Figure 5.17 shows the composition of NH <sub>3</sub> solution pretreatment matter                     | 96  |
| with ozone                                                                                            |     |
| Figure 5.18 compare the ratio of cellulose to lignin of material with ozone                           | 96  |
| pretreatment of untreated and NH <sub>3</sub> solution pretreatment                                   |     |
| Figure 5.19 Remaining composition in Ca(OH) <sub>2</sub> solution with 12 hrs pretreated              | 100 |
| material                                                                                              |     |
| Figure 5.20 Remaining composition in Ca(OH) <sub>2</sub> solution with 24 hr pretreated material      | 100 |
| Figure 5.21 Remaining composition in Ca(OH) <sub>2</sub> solution with 36 hrs.<br>pretreated material | 101 |
| Figure 5.22 Effect of pretreatment time of Ca(OH) <sub>2</sub> solution                               | 101 |
| Figure 5.23 shows weight percent of cellulose remaining and lignin removal                            | 102 |
| based on an untreated material                                                                        |     |
| Figure 5.24 presents the ratio of cellulose to lignin for Ca(OH) <sub>2</sub> solution                | 102 |
| Pretreatment                                                                                          |     |

| Figure 5.25 shows the composition of Ca(OH) <sub>2</sub> solution pretreatment matter | 104 |
|---------------------------------------------------------------------------------------|-----|
| with ozone                                                                            |     |
| Figure 5.26 compare the ratio of cellulose to lignin of material with ozone           | 104 |
| pretreatment of untreated and Ca(OH) <sub>2</sub> solution pretreatment               |     |

All rights reserved

q

### LIST OF ABBREVIATIONS

| mg             | Milligram                                            |
|----------------|------------------------------------------------------|
| g              | Gram                                                 |
| kg             | Kilogram                                             |
| nm             | Nanometer                                            |
| mm             | Millimeter                                           |
| cm             | Centimeter                                           |
| m              | Meter                                                |
| m <sup>2</sup> | Square meter                                         |
| m <sup>3</sup> | Cubic meter                                          |
| o.d.           | Outside diameter                                     |
| ml             | Milliliter                                           |
| 1              | Liter                                                |
| μl             | Microliter                                           |
| µl/g           | Microliter per gram                                  |
| g/l            | Gram per liter                                       |
| w/w            | Weight by weight                                     |
| w/v            | Weight by volume                                     |
| min            | Minute<br>Hour                                       |
| hr CIOC        |                                                      |
| MPa CODY       | Megapascal                                           |
| psi A          | Pounds per square inch                               |
| FPU            | Filter paper unit                                    |
| rpm            | Revolutions per minute                               |
| NGV            | Natural Gas for Vehicle                              |
| TAPPI          | Technical Association of the Pulp and Paper Industry |
| AFEX           | Ammonia fibre explosion                              |
| NMR            | Nuclear Magnetic Resonance Spectroscopy              |
|                |                                                      |

#### LIST OF SYMBOLS

| α                   | Alpha                           |
|---------------------|---------------------------------|
| β                   | Beta                            |
| α                   | Gamma                           |
| μ                   | Micro                           |
| %                   | Percentile                      |
| °C                  | Degree Celsius                  |
| pН                  | Potential of Hydrogen ion       |
| N                   | Normality                       |
| М                   | Molarity                        |
| CO <sub>2</sub>     | Carbon dioxide                  |
| NaOH                | Sodium hydroxide                |
| NH <sub>3</sub>     | Ammonia                         |
| NH4OH               | Ammonium hydroxide              |
| Ca(OH) <sub>2</sub> | Calcium hydroxide               |
| HC1                 | Hydrochloric acid               |
| $H_2SO_4$           | Sulfuric acid                   |
| КОН                 | Potassium hydroxide             |
| Li(OH) <sub>2</sub> | Lithium hydroxide               |
| O <sub>3</sub>      | Ozone                           |
| OH <sup>o</sup>     | Hydroxyl radical                |
| OH-                 | Hydroxide ion                   |
| O2 <sup>-</sup>     | Super oxide                     |
| $M_{\rm w}$         | Weight-average molecular weight |
| $M_z$               | Z-average molecular weight      |
| $M_n$               | Number-average molecular weight |

# ข้อความแห่งการริเริ่ม

ดุษฎีนิพนธ์นี้ได้ศึกษาการปรับสภาพวัสดุลิกโนเซลลูโลสจากหญ้าบาน่า เพื่อการขจัคลิกนินโดยการ ใช้อัลคาไลน์ร่วมกับโอโซน นอกจากนี้ได้ทำการเปรียบเทียบกับชีวมวลที่มีปริมาณลิกนินสูง ข้อมูลที่ได้จะเป็นข้อมูลพื้นฐานในการวิจัยสำหรับการผลิตพลังงานทดแทนของประเทศต่อไป



#### STATEMENT OF ORIGINALITY

The thesis proposes the method to pretreat lignocellulose from Bana grass. The propose method is a combination of alkaline and ozone for delignification. This study also compares results with others high lignin biomass. The result makes advantage to any research that improves renewable energy production.

