
CHAPTER 3

A convex optimization approach for solving
time optimal control problems

Let us recall that, by considering the necessary condition for optimality of the so-

lution for the linear time-optimal control problem, it is seen that the bang-bang solution

(2.34) is uniquely determined by the co-state variable λ(t) whose trajectory is defined by

(2.31). The complete solution of can be easily computed as

λ(t) = e−AT tλ0 (3.1)

which requires knowledge of the initial co-state λ0. Thus u∗(t) is uniquely determined

from λ0. However, in previous researches, the solutions for u(t) are computed beforehand

by assuming a bang-bang form and solving for switching times. This has been done both

numerically and analytically (for linear cases). The solution is then checked afterwards

for optimality by trying to solve (2.37), rather than using (3.1) directly to find the optimal

solution.

In this chapter a mathematical algorithm for finding time-optimal control input by

searching over possible initial values for the co-state vector is proposed. The convergence

of the algorithm depends on the geometric properties of the reachable set, which will be

described in section 3.1, following the approach of Hermes and Lasalle [34]. In section 3.2

the iterative scheme is introduced followed by the explanation and remarks for each steps.

The numerical examples of the linear cases are given in section 3.3. Later in this chapter,

the proposed methods is then shown to be capable of solving adapted problems for system

models with non-linear Coulomb friction. The solutions are then used for simulation with

selected example cases of flexible structures.

3.1 The reachable set and an illustrative example

The general solution of (2.1) is

x(t) = X−1(t)[x0 +

∫ t

0

X(τ)Bu(τ)dτ ] (3.2)
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where x0 is the initial state vectors and, X(t) is the inverse (backwards) state transition

matrix. When A is constant, X(t) = e−At and X(0) = I (identity matrix).

LetA(t) be the set of all possible x(t) that can be reached at time t using all possible

u(t) ∈ U , then A(t) is called the attainable set at time t. Next, define

Y (t) = X(t)B (3.3)

and

ẏ(t) = Y (t)u(t). (3.4)

The reachable set R(t) is the set of all possible y(t) that can be reached within time t.

The relation between x(t) and y(t) is that state x(t) reaching final state xf ∈ A(t) is

equivalent to y(t) reaching w(t) ∈ R(t) where w(t) = X(t)xf − x0.

From the definition of y(t) in (3.3) and (3.4), it can be proved that R(t) has the

following properties [34]

1. R(t) is convex, closed, symmetric and contains the origin.

2. R(t) is continuously expanding so thatR(t1) ⊂ R(t2), t2 > t1 > 0.

3. A point w∗ = y(t∗;u∗) in the boundary of the reachable set is reached by a unique

optimal control u∗, and t∗ is the minimum time for transfer.

From this set of properties, an alternate way to define the objective of the optimal

control problem is for y(t) to hit the target point w(t) in minimum time. Equivalently,

this corresponds to the situation where t is increased from zero so thatR(t) expands until

the boundary of R(t) first contains the point w(t). Thus, u∗(t) is optimal if and only if

w(t∗) ∈ R(t∗) and w(t) /∈ R(t) for t < t∗; then t∗ is the minimum time.

The optimal control u∗ also has the property that it maximizes the rate of change of

y (as defined by (3.4)) in some fixed direction η, where η is a nonzero vector inRn. Thus,

u∗ maximizes the value

ηT ẏ = ηTY (t)u(t)

at all time and also has the bang-bang form

u∗(t) = sgn
[
ηTY (t)

]
. (3.5)

Note that, for multi-input systems, equation (3.5) means that for each i = 1, 2, ...,m we

have u∗i (t) = sgn
[
ηTY (t)

]
i
when

[
ηTY (t)

]
i
̸= 0.
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It follows from (2.31), (2.34), (3.4) and (3.5), that η must be equivalent to the initial

value of the co-state vector λ0. Since η maximizes the rate of change of y at any point

w∗ in the boundary (surface) of R(t∗), then there will be a supporting hyperplane π(η)

passing through w∗ with η as an outward normal direction of this plane. Therefore for

any fixed t∗, any point w∗ can be reached by an optimal control input u∗. The calculation

of w∗ may be performed by integrating (3.4) subject to (3.5). This could be written as a

single-valued mapping from η to the point w∗ as

w∗ = f (η, t∗) . (3.6)

The mapping (3.6) implies that w∗ is uniquely determined by, and can be directly calcu-

lated from, η.

Suppose the ith component of the optimal input u∗ involves li switches at times

ti1, t
i
2, ..., t

i
l. According to (3.5), at these instances the value of sgn

[(
ηTX(tj)B

)
i

]
must

switch between −1 and 1. Thus, a further property of the optimal solution is that

ηTVi = [0 0 · · · 0] . (3.7)

where Vi =
[
X(ti1)B X(ti2)B · · · X(tili)B

]
.

3.1.1 Illustrative example

Let us consider the three-states linear system representing motion of a flexible struc-

ture whose states x1, x2 and x3 correspond to an overall motion and the vibratory states

respectively. The characteristic parameters given are ωn = 1 rad/sec and ζ = 0.03 with

the constraint on the control input following (2.22). The state-space model of the system

following (2.1) and (2.3) is

ẋ(t) =


0 0 0

0 0 1

0 −1 −0.06

x(t) +


1

0

1

 u(t). (3.8)

With the proper transformation matrix (2.6), and by scaling the states with damped natural

frequency ωd, the scaled modal form of the system is

˙̃x(t) =


0 0 0

0 −0.03 1

0 −1 −0.03

 x̃(t) +


1

0.03

1

u(t). (3.9)
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Assuming the final state values x(tf ) = xf are an equilibrium, the shifted y(t) =

x̃(t) − xf following (2.14), (2.15) and (2.16) can also be made. So that the state-space

equation has become

ẏ(t) =


0 0 0

0 −0.03 1

0 −1 −0.03

 y(t) +


1

0.03

1

u(t). (3.10)

Figure 3.1 shows an illustration of the reachable set for (3.10) for a final time tf of 5

seconds. The sketch only consists of points on the surface ofR(t) which have been gen-

erated by using a set of randomly selected η and computing w∗ according to the mapping

(3.6). The set consists of all points in the state-space from which y = 0 can be reached in

5 seconds by using any admissible u(t).

Figure 3.1: Example of 3D reachable set for motion of a flexible structure

Each w∗ on the surface represents the point w∗ = [y1 y2 y3 ]
T = −x̃0 (assuming

xf = 0) and η is an outward normal direction vector at this specific point. For rest-to-rest

motion, it is required that x2 and x3 at initial and final time are equal to zero (no residual

vibration). This corresponds to w∗ lying on the first primary axis for y1 where y2 and y3
equal zero.
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3.2 Algorithm

For computation of the control solution it will be assumed that the initial state value

x0 and the final state value xf are known and that xf corresponds to an equilibrium. With

this assumption, the corresponding target point in the surface of the reachable set is given

by w(t) = −x0 which may be expressed by x0 = γd where −d is the required direction

for state transfer and γ is the distance to be traveled.

The algorithm proposed here is based on a construction of the reachable set for fixed

final time tf . The algorithm iterates over η ∈ Rn such that y(tf ) approaches a target point

on the boundary of the reachable set given by w∗ = γ∗d. This provides a solution to the

fixed final-time optimal control problem defined by:

Fixed final-time optimal control problem. For given values of tf and d ∈ Rn,

obtain value of η such that y(tf ) = γ∗d for some value of γ∗, where y(tf ) is obtained by

the integration (3.4) subject to (3.5).

3.2.1 Procedure

The algorithm is defined by the following steps:

Initialization Set the iteration index: k = 0. Determine a set of linearly independent

vectors Yk = {y1, y2, . . . , yn} such that Yk ⊂ R(tf ) and d ∈ cone (Yk).

Iteration

1. Compute the coefficients αi for d as a (positive) combination of the elements of Yk:

d =
n∑

i=1

αiyi, αi ≥ 0, (3.11)

2. Compute a lower bound for γ∗ as

γ
k
=

1∑
i αi

(3.12)

3. Compute the outward normal direction for the hyperplane containing Yk. i.e. com-

pute a vector nk satisfying

nT
k y1 = nT

k y2 = · · · = nT
k yn = κ ≥ 0. (3.13)
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4. Compute a new point on the surface of the reachable set by using nk as the initial

value of the co-state vector by using mapping (3.6):

wk = f (η, tf ) , η = nk.

5. Compute an upper bound for γ∗ as

γ̄k =
nT
kwk

nT
k d

. (3.14)

6. If the point wk satisfies a suitable stopping criterion then stop, otherwise proceed to

step 7.

7. Consider the set of cones j = 1, ..., n generated by {wk} ∪ {yi} ; i ̸= j where, for

each cone, the element yj in Yk is replaced withwk. Determine which of these cones

contains d and use the corresponding set of vectors to form Yk+1. The algorithm then

repeats from step 1 with k incremented by 1.

3.2.2 Explanation and remarks

The following gives further explanation and analysis, numbered in correspondence

with the steps given previously:

1. As d ∈ cone (Yk) then, by definition, αi ≥ 0, i = 1, 2, . . . , n (see [11]).

2. The point γ
k
d can be expressed as a convex combination of the elements of Yk:

γ
k
d =

1∑
i αi

n∑
i=1

αiyi, αi ≥ 0 (3.15)

Thus, we have γ
k
d ∈ conv(Yk) ⊂ R(tf ) and so (3.12) gives a lower bound for γ∗.

3. Note that nk is an outward normal to the surface of the reachable set at wk. As

R(tf ) is convex, we have

nT
kwk ≥ nT

k x, ∀x ∈ R(tf ). (3.16)

4. To calculate wk, a time-optimal u is obtained from (3.5) with η = nk. Thus, ac-

cording to (3.7) switch-times for ui must be computed as the zeros of
[
ηTX(t)B

]
i

over (0, tf ). Herein lies one of the main technical issues for the routine: ensuring
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that all the zeros are found, and with sufficient accuracy. With this achieved, wk

can be evaluated by an analytical integration of (3.4) where the state transition ma-

trix X−1(t) is usually expressed as the exponential matrix eAt. Thus, from (3.3)

and (3.4), suppose that the single optimal control input contains l switches with

u(t) = 1; t > t1, we then have

y(tf ) =

∫ t

0

X(τ)Bu(τ)dτ

=
l∑

i=0

(−1)i
∫ ti+1

ti

X(t)Bdt (3.17)

where t0 = 0 and tl+1 = tf . With
∫ ti+1

ti
X(τ)dτ = (−1)iA−1(e−Ati+1 − e−Ati), this

series of integrations is reduced to the sum:

y(t) = −A−1[(e−A(t1) − e−A(0))− (e−A(t2) − e−At1) + ...

+(−1)l+1(e−A(tf ) − e−Atl)]B

= A−1

[
I +

l∑
i=1

(−1)i+12e−Ati + (−1)ie−Atf

]
B (3.18)

Please note that, for the rigid body mode,A0 is a singular matrix and thus,A−1 does

not exist. However, the calculation involving the first and second states (displace-

ment and velocity) can then be done by a simple integration and double integration

respectively.

5. Considering wk as a linear combination of the elements of Yk:

wk =
n∑

i=1

βiyi, (3.19)

then
n∑

i=1

βi =
nT
kwk

nT
k yi

. (3.20)

Equations (3.16) and (3.20) imply that
∑

i βi ≥ 1. Also, considering (3.16) with

x = γ∗d we obtain the upper bound for γ∗ stated in step 5:

γ∗ ≤ γ̄k = γ
k

n∑
i=1

βi =
nT
kwk

nT
k d

. (3.21)

Because of the normal property of system (2.1),R(tf ) is strictly convex and so wk

is an exposed point on the boundary of R(tf ). Consequently,
∑

i βi → 1 implies

wk → γ∗d.
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6. A stopping criterion could take one of various forms according to the type of error

that is important. The lower and upper bound for γ∗ obtained in each iteration

provide a useful indication of convergence. However, it is the error in the system

states that may be more important from a practical point of view. It is important

here to recognize that an error in y(tf ) corresponds to an error in the initial state

x0. In practice, however, the solution for u is likely to be implemented with the

initial state being an exact rest state. Thus, any error in this solution actually leads

to residual motion after time tf caused by a non-zero value for x(tf ). In this case,

it is sensible to calculate x(tf ) and use this in the stopping criterion, for example,

e = ∥x(tf )∥ < ϵ (3.22)

where x(tf ) = X(tf )(x0 + y(tf )) with x0 = −γd.

7. The hyperplane containing the elements of Yk, as defined by (3.13), separates the y-

space such that one half-space contains the originwhile the other half-space contains

wk and the optimal point γ∗d. That this is the case follows from the convexity

property nT
kwk > nT

k yi and the property γ∗nT
k d > γ

k
nT
k d = nT

k yi. It then follows

that including wk in the basis set Yk+1 allows an increase in the lower bound for γ∗.

One element of Yk is also eliminated such that d ∈ cone(Yk+1) and the algorithm

continues by iteration.

3.2.3 Discussion

The first issue to be discussed is how to choose elements for the initial basis Y0. It

should be noted that the elements of Y0 do not necessarily have to be on the boundary

of the reachable set and this allows a practical solution which is to generate a set of n

linearly independent vectors, denoted Y 0 such that, d ∈ cone(Y 0). We can then choose

Y0 = κY 0 with the scalar κ > 0 sufficiently small to ensure Y0 ∈ R(tf ). As the algorithm

progresses, the elements of Y0 are successively replaced until, at some iteration, all the

elements of Yk are on the surface ofR(tf ).

The overall process can be considered as a construction of the interior of the reach-

able set by polyhedrons. At each iteration, one facet of the polyhedron is extended by

adding n more facets. The approximation becomes more refined as we get closer to the

target point in the boundary of the reachable set, as illustrated in Fig. 3.2. The example
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here is for a system with three states. For this case, a selection of points on the surface of

the reachable set have also been generated by evaluation of f(η, tf ) for a complete range

of η values. This allows an appreciation of the convex form of the reachable set, which

in this case is rather like a rugby ball/football (see Fig. 3.2b).

43

21
d

d

d

d

o o

o o

(a) Refinement of facets at each iteration

(b) Reachable set with polyhedral approximation

Figure 3.2: Illustration of algorithm in R3. At each iteration one facet is replaced by
three more refined facets such that one facet always contains the desired direction of state
transfer.

According to step 3, the basis sets Yk formed at each iteration define a series of

hyperplanes that intersect the line extending from the origin in the direction of d. By using

a normal to the hyperplane as the initial co-state vector to generate the next point for the
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basis, the intersection points move increasingly further from the origin and converge to

w∗. For each iteration, the lower bound γ
k
will increase as long as d is contained in the

interior of cone(Yk). It also possible, though less likely, that d is contained in the boundary

of cone(Yk). In this case, αi = 0 for some index i. If the new point wk replaces yi for

which αi = 0, the lower bound remains the same. However, it can be shown that the

upper bound will then always decrease. Thus convergence continues in this manner until

the lower bound starts increasing again. In conclusion, the bounds converge such that

γ/γ =
∑

i βi → 1 and γ → γ∗.

Since the proposed algorithm is based on fixed tf , to acquire any desired values of

γ∗, a simple iteration over tf can be used, for example, with a bisection algorithm. This

guarantees that the optimal control can be found because the reachable set is persistently

expanding. Note that the algorithm can also be used directly to calculate a set of optimal

control solutions for a range of final time tf .

3.3 Numerical examples

To demonstrate the use of the proposed algorithm, example cases for a single input

flexible structure model will be considered. The algorithm is then applied to solve for

the time-optimal control input. The calculations for these numerical examples are per-

formed using MATLAB and Simulink toolbox [57]. To find all possible zeros (switching

times) as mentioned in the remarks for step 4, the time interval [0, tf ] is discretized into

small intervals then the sign of
[
ηTX(t)B

]
at each specific time t is inspected. When-

ever there is a change of sign between two consecutive inspections, the algorithm ap-

plies the MATLAB root-finding command ‘fzero’ in order to find the switching time ti
where

[
ηTX(ti)B

]
= 0. However, there could be a very short interval for a sign change

where switches lies between each inspection point and without the successful detection

and calculation of all zeroes the algorithm may fail to converge to the desired direction

(d). Thus, the discretization interval for t has to be small enough to make sure that all

possible switches are detected. This is particularly important as the ‘fzero’ command only

finds one zero within a specified interval.

The model in state space form (2.1) for a flexible structure derived in chapter 2 is

considered further in this section. According to (2.2) The states x1 and x2 correspond to

the position and velocity of the body center-of-mass respectively. The other state vari-
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ables are associated with vibratory deformation of the structure with dynamic behavior

described by (2.3). The number of vibratory states depends on the number of consid-

ered flexible modes. In this section, the overall control task is to achieve a rest-to-rest

motion in the sense that no excitation of vibration occurs at either initial or final time.

This implies that the desired direction d for state transfer is along the first primary axis:

d = [1, 0, . . . , 0]T .
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Figure 3.3: Optimal Control solution for example case of a single-flexible mode structure

Single-mode case This first example involves the time-optimal motion of a single-mode

flexible structure without friction (c = Fc = 0). The assigned parameters are ω1 = 8π,

ζ = 0.05 and B0 = 1 with tf = 2 sec. The solution shown in Fig. 3.3 was obtained using

the algorithm. In most cases the solution for a single-mode system will involve only 3

switches. However, for this example case 5 switches in control input value are required
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which shows that the algorithm is capable of finding this more complicated solution. To

verify the true optimality of the solution the co-state variable has been calculated following

(3.1) by using the final value of η as λ0. The evolution of λ(t) is shown in Fig. 3.3b. Fig.

3.4 shows the value of ηTX(t)B whose sign determines u∗.
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Figure 3.4: Value of ηTX(t)B which determines the optimal input u∗

Figure 3.5: Convergence of lower and upper bound for γ∗ in example case

The convergence of the lower bound (3.12) and upper bound (3.14) are shown in Fig.

3.5 for this example case. Note that although the lower bound increases every iteration,

the upper bound does not. Therefore, Fig. 3.5 also shows the lowest upper bound obtained

over all previous iteration. Figure 3.6a shows the measure of error in the solution at each

iteration. This measure relates to the error in x(tf ) under application of the solution u and

with the nominal initial state (as given in (3.22)). Clearly, it cannot be expected that this
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error will decrease every iteration. However, the trend is clearly decreasing and confirms

the suitability of using this type of error measure in a stopping criterion. An alternative

error measure is the difference between the final point on the surface of reachable set y(tf )

and the desired direction d. This measure is shown in Fig. 3.6b. Physically, it seems to

make more sense to use the error in the final value of the state vector since this provides

a measure of undesired residual vibration.
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Figure 3.6: Error in final state under application of the solution from each iteration
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Figure 3.7: Example solution for motion-to-rest task

For this single-mode system, an addition case involving a motion-to-rest task has

also been considered. The time-optimal objective of this task is to completely stop motion

as fast as possible. A similar task would be to accelerate the system from rest to constant

speed without vibration in minimum-time (constant residual deflection is allowed). The

boundary condition of this situation corresponds to (2.13):

x(t0) = [0 ν 0 ... 0]T

Hence, for this case the first state of the systemmodel (2.2) can be discarded and therefore

the first state x1 represents the overall velocity. This means the total number of states is

reduced to three. This 3-statemodelmay also be used for rest-to-rest motionswith velocity

as a (constrained) input. In this case, the first state represents overall position which is

the direct integration of the input. This model may be used to represent a hydraulic servo
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system in the real world. The optimal control solution for the non-friction system with

ω1 = 4π rad/sec, ζ = 0.05 and tf = 1 sec together with the corresponding co-state are

shown in Fig. 3.7.

Multi-mode cases The general applicability of the proposed algorithm has been con-

firmed by treating cases involving higher order models with more flexible modes. Ex-

ample solutions for systems with two and three flexible modes are shown in Fig. 3.8.
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Figure 3.8: Example solution for multi-mode cases

In these cases the natural frequencies are ω1 = 1, ω2 = 10 and ω3 = 20. Damping ratios

are ζi = 0.1, (i = 1, 2, 3) and the final time for both cases is tf = 5 sec. The state-space
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model of three flexible modes system in this example is:

ẋ(t) =



0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 12 −0.2 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 102 −2 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 202 −4



x(t) +



0

1

0

1

0

1 0

1


u(t),

−1 ≤ u(t) ≤ 1 (3.23)

For clarity, only the first (displacement) state is shown. The number of iterations

used to obtain the solution in each case are 154 and 480 respectively. The required number

of iterations is generally found to increase with the number of system states (number of

flexible modes). This trend relates to the average rate of convergence, as shown in Fig.

3.9 for models of different order. Note, however, that the final time tf has no obvious

influence on the rate of convergence.
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3.4 Cases with Coulomb friction

The model of mechanical system can be made more general by including friction,

since mechanical systems are mostly under the effects of friction forces. In this research

Coulomb friction arising between surfaces and acting in the opposite direction to velocity,

as described by (2.9), is considered. Including Coulomb friction in the model makes the

system dynamics discontinuous with a non-linear term included in the model.

In order to adapt the proposed algorithm for solving cases involving Coulomb fric-

tion, it can be noted that if switching times for the friction force Tc are considered fixed,

the reachable set retains the convexity property: the effect of the friction force is simply

a fixed translation ofR(tf ). In this case, it is possible to calculate state trajectories using

the convex optimization algorithm. The calculated trajectories may then be used to cor-

rect the switching times Tc and this process repeated iteratively until switching times are

consistent with the state-trajectories. It is difficult to prove convergence of this process,

although it has been shown successful for simple cases. For the cases of motion consid-

ered in this section, it is assumed that there is no change in the direction of friction forces

during motion, i.e. the direction of motion does not change. With this as an assumption,

the convex optimization algorithm can be applied without modification

By letting the system model with Coulomb friction take the form of (2.11), the

construction of the reachable set can be done by considering y(t) from (3.4) together with

(3.3) and so, the resulting form of y(t) is

y(t) =

∫ t

0

X(τ) (Bu(τ) +Bcsgn (Cx(t))) dτ (3.24)

Assuming that the non-linear signum function does not change value, we have

yF (t) = ±
∫ t

0

Bcdτ (3.25)

with the sign depending on motion direction. This can be evaluated by analytical inte-

gration similar to (3.18) but does not require the knowledge of the input u(t). Equation

(3.25) gives the translational displacement of the reachable set. Figure 3.10 shows the

reachable set for rigid body motion where,

A = A0 =

 0 1

0 −1

 , B = B0 =

 0

3

 , Bc =

 0

1
3


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and the direction of friction is assumed to be unchanged. The reachable set is shown for

both positive (black dot) and negative (blue x) values of friction.
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Figure 3.10: Reachable set of rigid body mode with fixed direction of coulomb friction.

Given this constant translation of the reachable set, it is possible that the reachable

set will not contain the origin which could cause the convex optimization algorithm to

fail. Therefore, in order for the origin to lie within the reachable set, it is required that

(3.24) can be made equal to zero with admissible u(t) and hence, it can be implied that

Bu(t) +Bc = 0

BTBu(t) +BTBc = 0

u(t) = −(BTB)−1BTBc.

u(t), however, must be within the limit of the input. Thus

ui(t) =
[
−(BTB)−1BTBc

]
i
≤ Ui (3.26)

This provides a sufficient condition for the origin to be inside the reachable set. Substi-

tuting u(t) from (3.26) back into (3.24), it is easy to show that B(BTB)−1BT = I for

any matrix B with non-singular BTB.

To show that the proposed algorithm can be usefully applied to cases with Coulomb

friction, the simulation has been perform based on the parameters for an experimental rig,

to be describe in detail in Chapter 6. The simulation results for a solution where the final
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time is tf = 0.4 sec and the final distance is 6.7 centimeters are shown in Fig. 3.11. The

vibratory state which can be measured by the sensor is x3. The complete model of this

system is:

ẋ(t) =


0 1 0 0

0 −1.21 0 0

0 0 0 1

0 0 −901.80 −2.70

x(t) +


0

1

0

1

u(t) +


0

−0.34

0

−0.34

 sgn(x2)

(3.27)

and

−1 ≤ u(t) ≤ 1
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(a) State variables

(b) Time-optimal control solution

Figure 3.11: Simulation results for time-optimal solution based on system with Coulomb
friction.
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