CONTENTS

Acknowledgement Abstract in Thai Abstract in English List of Tables List of Figures List of Abbreviations and Symbols Statement of Originality in Thai Statement of Originality in English Chapter 1 Introduction 1.1 Problem motivation 1.2 Research objective 1.3 Scope of investigation 1.4 Thesis outline Chapter 2 Background 2.1 Mechanical vibratory systems 2.2 General optimal control problem 2.3 Time-optimal control 2.4 Structure/control optimization Chapter 3 A convex optimization approach for solving time optimal control problems 3.1 The reachable set and an illustrative example 3.2 Algorithm		Page
Abstract in Thai Abstract in English List of Tables List of Tables List of Abbreviations and Symbols Statement of Originality in Thai Statement of Originality in English Chapter 1 Introduction 1.1 Problem motivation 1.2 Research objective 1.3 Scope of investigation 1.4 Thesis outline Chapter 2 Background 2.1 Mechanical vibratory systems 2.2 General optimal control problem 2.3 Time-optimal control problem 2.3 Time-optimal control 2.4 Structure/control optimization Chapter 3 A convex optimization approach for solving time optimal control problems 3.1 The reachable set and an illustrative example 3.2 Algorithm	Acknowledgement	c
Abstract in English List of Tables List of Figures List of Abbreviations and Symbols Statement of Originality in Thai Statement of Originality in English Chapter 1 Introduction 1.1 Problem motivation 1.2 Research objective 1.3 Scope of investigation 1.4 Thesis outline Chapter 2 Background 2.1 Mechanical vibratory systems 2.2 General optimal control problem 2.3 Time-optimal control problem 2.3 Time-optimal control 2.4 Structure/control optimization Chapter 3 A convex optimization approach for solving time optimal control problems 3.1 The reachable set and an illustrative example 3.2 Algorithm	Abstract in Thai	d
List of Tables List of Figures List of Abbreviations and Symbols Statement of Originality in Thai Statement of Originality in English Chapter 1 Introduction 1.1 Problem motivation 1.2 Research objective 1.3 Scope of investigation 1.4 Thesis outline Chapter 2 Background 2.1 Mechanical vibratory systems 2.2 General optimal control problem 2.3 Time-optimal control 2.4 Structure/control optimization Chapter 3 A convex optimization approach for solving time optimal control problems 3.1 The reachable set and an illustrative example 3.2 Algorithm	Abstract in English	f
List of Figures List of Abbreviations and Symbols Statement of Originality in Thai Statement of Originality in English Chapter 1 Introduction 1.1 Problem motivation 1.2 Research objective 1.3 Scope of investigation 1.4 Thesis outline Chapter 2 Background 2.1 Mechanical vibratory systems 2.2 General optimal control problem 2.3 Time-optimal control problem 2.3 Time-optimal control 2.4 Structure/control optimization Chapter 3 A convex optimization approach for solving time optimal control problems 3.1 The reachable set and an illustrative example 3.2 Algorithm	List of Tables	j
List of Abbreviations and Symbols Statement of Originality in Thai Statement of Originality in English Chapter 1 Introduction 1.1 Problem motivation 1.2 Research objective 1.3 Scope of investigation 1.4 Thesis outline Chapter 2 Background 2.1 Mechanical vibratory systems 2.2 General optimal control problem 2.3 Time-optimal control 2.4 Structure/control optimization Chapter 3 A convex optimization approach for solving time optimal control problems 3.1 The reachable set and an illustrative example 3.2 Algorithm	List of Figures	k
Statement of Originality in Thai Statement of Originality in English Chapter 1 Introduction 1.1 Problem motivation 1.2 Research objective 1.3 Scope of investigation 1.4 Thesis outline Chapter 2 Background 2.1 Mechanical vibratory systems 2.2 General optimal control problem 2.3 Time-optimal control problem 2.3 Time-optimal control 2.4 Structure/control optimization Chapter 3 A convex optimization approach for solving time optimal control problems 3.1 The reachable set and an illustrative example 3.2 Algorithm	List of Abbreviations and Symbols	m
Statement of Originality in English Chapter 1 Introduction 1.1 Problem motivation 1.2 Research objective 1.3 Scope of investigation 1.4 Thesis outline Chapter 2 Background 2.1 Mechanical vibratory systems 2.2 General optimal control problem 2.3 Time-optimal control problem 2.3 Time-optimal control 2.4 Structure/control optimization Chapter 3 A convex optimization approach for solving time optimal control problems 3.1 The reachable set and an illustrative example 3.2 Algorithm	Statement of Originality in Thai	0
Chapter 1 Introduction 1.1 Problem motivation 1.2 Research objective 1.3 Scope of investigation 1.4 Thesis outline Chapter 2 Background 2.1 Mechanical vibratory systems 2.2 General optimal control problem 2.3 Time-optimal control 2.4 Structure/control optimization Chapter 3 A convex optimization approach for solving time optimal control problems 3.1 The reachable set and an illustrative example 3.2 Algorithm	Statement of Originality in English	р
 1.1 Problem motivation 1.2 Research objective 1.3 Scope of investigation 1.4 Thesis outline Chapter 2 Background 2.1 Mechanical vibratory systems 2.2 General optimal control problem 2.3 Time-optimal control 2.4 Structure/control optimization Chapter 3 A convex optimization approach for solving time optimal control problems 3.1 The reachable set and an illustrative example 3.2 Algorithm 	Chapter 1 Introduction	1
 1.2 Research objective 1.3 Scope of investigation 1.4 Thesis outline Chapter 2 Background 2.1 Mechanical vibratory systems 2.2 General optimal control problem 2.3 Time-optimal control 2.4 Structure/control optimization Chapter 3 A convex optimization approach for solving time optimal control problems 3.1 The reachable set and an illustrative example 3.2 Algorithm 	1.1 Problem motivation	2
 1.3 Scope of investigation 1.4 Thesis outline Chapter 2 Background 2.1 Mechanical vibratory systems 2.2 General optimal control problem 2.3 Time-optimal control 2.4 Structure/control optimization Chapter 3 A convex optimization approach for solving time optimal control problems 3.1 The reachable set and an illustrative example 3.2 Algorithm 	1.2 Research objective	4
 1.4 Thesis outline Chapter 2 Background 2.1 Mechanical vibratory systems 2.2 General optimal control problem 2.3 Time-optimal control 2.4 Structure/control optimization Chapter 3 A convex optimization approach for solving time optimal control problems 3.1 The reachable set and an illustrative example 3.2 Algorithm 	1.3 Scope of investigation	4
 Chapter 2 Background 2.1 Mechanical vibratory systems 2.2 General optimal control problem 2.3 Time-optimal control 2.4 Structure/control optimization Chapter 3 A convex optimization approach for solving time optimal control problems 3.1 The reachable set and an illustrative example 3.2 Algorithm 	1.4 Thesis outline	5
 2.1 Mechanical vibratory systems 2.2 General optimal control problem 2.3 Time-optimal control 2.4 Structure/control optimization Chapter 3 A convex optimization approach for solving time optimal control problems 3.1 The reachable set and an illustrative example 3.2 Algorithm	Chapter 2 Background	7
 2.2 General optimal control problem 2.3 Time-optimal control 2.4 Structure/control optimization Chapter 3 A convex optimization approach for solving time optimal control problems 3.1 The reachable set and an illustrative example 3.2 Algorithm 	2.1 Mechanical vibratory systems	7
 2.3 Time-optimal control 2.4 Structure/control optimization Chapter 3 A convex optimization approach for solving time optimal control problems 3.1 The reachable set and an illustrative example 3.2 Algorithm 	2.2 General optimal control problem	15
 2.4 Structure/control optimization Chapter 3 A convex optimization approach for solving time optimal control problems 3.1 The reachable set and an illustrative example 3.2 Algorithm 	2.3 Time-optimal control	16
 Chapter 3 A convex optimization approach for solving time optimal control problems 3.1 The reachable set and an illustrative example 3.2 Algorithm 	2.4 Structure/control optimization	22
problems 3.1 The reachable set and an illustrative example 3.2 Algorithm	Chapter 3 A convex optimization approach for solving time optimal control	
3.1 The reachable set and an illustrative example3.2 Algorithm	problems	25
3.2 Algorithm	3.1 The reachable set and an illustrative example	25
	3.2 Algorithm	29

3.3 Numerical examples	34
3.4 Cases with Coulomb friction	41
Chapter 4 Limits of Performance for time-optimal motion of flexible structures	44
4.1 Rigid-body motion	44
4.2 Comparison of solutions	46
4.3 Performance metrics for actuation capacity and speed of motion	48
Chapter 5 Structural Tuning	52
5.1 Problem formulation	52
5.2 Continuity-based optimization	53
5.3 Flexible structure tuning	58
5.4 Numerical examples	58
Chapter 6 Experiments	61
6.1 Experimental motion system	61
6.2 Feedback implementation	64
6.3 Results	65
Chapter 7 Conclusions	69
7.1 Conclusion	69
7.2 Comments and future work	71
Bibliography	73
List of Publications	85
Curriculum Vitae ight [©] by Chiang Mai University	86
All rights reserved	

LIST OF TABLES

Page

63

Table 6.1 Parameters of the experimental rig

Copyright[©] by Chiang Mai University All rights reserved

j

LIST OF FIGURES

Figure 1.1	Machines with automatic control of motion	2
Figure 2.1	Two-mass spring damper model	9
Figure 2.2	Vibration suppression using input shaping technique	13
Figure 3.1	Example of 3D reachable set for motion of a flexible structure	28
Figure 3.2	Illustration of algorithm in \mathbb{R}^3 . At each iteration one facet is replaced by	
	three more refined facets such that one facet always contains the desired	
	direction of state transfer.	33
Figure 3.3	Optimal Control solution for example case of a single-flexible mode	
	structure	35
Figure 3.4	Value of $\eta^T X(t) B$ which determines the optimal input u^*	36
Figure 3.5	Convergence of lower and upper bound for γ^* in example case	36
Figure 3.6	Error in final state under application of the solution from each iteration	37
Figure 3.7	Example solution for motion-to-rest task	38
Figure 3.8	Example solution for multi-mode cases	39
Figure 3.9	Mean rate of decrease of $log(e)$ (per iteration) for a range of cases with	
	different t_f	40
Figure 3.10) Reachable set of rigid body mode with fixed direction of coulomb fric-	
C	^{tion} right [©] by Chiang Mai University	42
Figure 3.11	lomb friction.	43
D . 4.1		16
Figure 4.1	Time-optimal motion of undamped flexible structure	46
Figure 4.2	Solution sets of time-optimal motion task involving the single mode struc-	
	tures with various natural frequencies	47
Figure 4.3	Increasing of the overall speed of motion with larger relative actuation	
	capacity	49
Figure 4.4	Speed as fraction of the rigid-body case	50

Figure 5.1	Flowchart of structure and control optimization procedures	57
Figure 5.2	Cost surface for a two-mode tunable structure. Optimization paths are	
	shown for two cases: 1) single mode optimization 2) two-mode optimi-	
	zation.	59
Figure 6.1	Experimental rig	62
Figure 6.2	Variable stiffness flexible beam	64
Figure 6.3	Experimental results showing correlation between real and imaginary	
	parts of system poles under structural tuning	64
Figure 6.4	Block diagram of the controlled system with feedback loop	66
Figure 6.5	Experimental results for rest-to-rest motions with un-optimized and op-	
	timized beam structures	67
Figure 6.6	Convergence and cost function of the experiment	68
	CHILL AN AI UNIVERSIT	

LIST OF ABBREVIATIONS AND SYMBOLS

\mathcal{A}	attainable set
\mathcal{J}	cost function
${\cal H}$	Hamiltonian
\mathcal{P}	set of tunable system parameters
\mathcal{R}	reachable set
\mathcal{T}_{c}	set of switching times
\mathcal{U}	set of admissible control input
C_U	relative actuation capacity
с	viscous friction coefficient
d	required direction for state transfer
F_c	Coulomb friction coefficient
Ι	overall mass moment inertia of the system
J	Jacobian matrix due of changing of y due to change in tunable
	parameters
K_T	torque constant of the motor
k	number of tunable parameters
m	number of input component
N	number of the flexible mode presenting in model
n a a	order of the system
n_k	outward normal direction for the hyperplane at k th iteration
p	tunable system parameters
S^{-}	overall speed of motion
T_F	Coulomb friction coefficient arises collocate at motor
T_M	torque produced by motor
t	time variable
$\underline{U},\overline{U}$	lower and upper bound of control input
u	input vector
W	sensitivity matrix of y due to change in tunable parameters
w	point within reachable set

X(t)	inverse of state transition matrix
x	state variables vector
x_0	initial state
x_f	final state
Y_k	set of linearly independent vectors of y at k th iteration
y	state variable in y-space
Ζ	sensitivity matrix due to change in tunable parameters
α, β	linear combination of y forming d and w_k repectively
δ	step size
ϵ	arbitrarily small number used as stopping criterion
γ	distance to be traveled
λ	co-state variables vector
λ_0	vector of initial co-state variable
η	an outward normal direction for boundary of reachable set
ν	initial velocity
θ	angular displacement
	AL UNIVERSIT

ข้อความแห่งการริเริ่ม

- วิทยานิพนธ์นี้ได้นำเสนอวิธีการแก้ปัญหาการหาค่าเหมาะสมที่สุดเชิงเวลา โดยมีพื้นฐานอยู่บน ความคอนเวกซ์ของเซตที่เข้าถึงได้
- แนวกิดการหาก่าเหมาะสมที่สุดของโกรงสร้างและการกวบกุมกวบกู่กันได้ถูกนำเสนอขึ้น และ สามารถที่จะลดเวลาที่น้อยที่สุดในการเกลื่อนที่ของระบบสั่นเชิงกลได้

STATEMENT OF ORIGINALITY

- 1) This thesis propose the method for solving time-optimal control problem based on the convexity of the reachable set.
- The simultaneous optimization of structure and time-optimal control has been developed which provides further reduction in minimum-time of motion for vibratory mechanical system.

