CONTENTS

Page

Acknowledgement	c
Abstract in Thai	d
Abstract in English	f
List of Tables	j
List of Figures	k
Chapter 1 Introducton	1
1.1 Introduction	1
1.2 Geologic setting	3
1.3 Stratigraphy of the Northern Taranaki Basin	7
1.4 The Giant Foresets Formation	9
1.5 Sequence Stratigraphic Principles	12
1.6 Mass Transport Complex (MTC)	15
CHAPTER 2 Data and Methodology	20
2.1 Seismic data	20
2.2 Well log data	20
2.3 Interpretation workflow	22
2.3.1 Seismic interpretation	24
2.3.2 Seismic attribute extraction	27
CHAPTER 3 Results	31
3.1 Growth Faults	31

3.2 Mass Transport Complex (MTC)	34
3.3 Sequence stratigraphic framework	41
3.3.1 Seismic Facies Analysis	41
3.3.2 Bounding Horizons	42
3.3.3 Sequence Units	53
3.3.4 Systems Tracts Interpretation	62
3.3.4 Delineation of Depositional Elements Using RGBA	69
3.3.5 Mega-Channels	72
3.3.6 Chronostratigraphic Chart	73
3.3.7 Quantitative Analysis of Submarine Channels	76
CHAPTER 4 Discussion	82
4.1 Initiation of growth fault and mass transport complex	82
4.2: Depositional History of the Prograding Sequences	85
CHAPTER 5 Conclusion	92
REFERENCES	94
APPENDIXES Appendix A Appendix B Appendix C	101 101 113 117
Appendix D	119
CURRICULUM VITAE	121

LIST OF TABLES

Page

Table 3.1Seismic facies recognized in the study area and their geological41interpretation

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure 1.1	Distribution of the sedimentary basins in New Zealand, and	5
	the location of the study area (black rectangle) in the Taranaki	
	Basin (GNS Science, 2013).	
Figure 1.2	(A) General structural geology of the study area in the	6
	Northern Taranaki Basin, New Zealand (Modified from New	
	Zealand Petroleum and Minerals, 2013); (B) The study area	
	with the available 3D and 2D data (Source: New Zealand	
	Petroleum and Minerals, 2014 data pack).	
Figure 1.3	Schematic chronostratigraphy of the Taranaki Basin (Source:	9
	Kroeger (2012), modified from King and Thrasher, 1996).	
Figure 1.4	Uninterpreted and interpreted vertical seismic section of 2D	11
	line P95-118 along depositional dip (See. Figure 1.2 for	
	location). a) Uninterpreted seismic section from the Karewa	
	3D seismic, shows well-defined progradational sequnces of	
	the Giant Foresets Formation. b) Same seismic section shows	
	interpreted horizons and two main growth faults, Karewa and	
	Mangaa, named after Morley and Naghadeh (2016).	
Figure 1.5	Evolution of sequence stratigraphic approaches (Catuneanu et	13
0	al., 2011).	
Figure 1.6	Nomenclature of systems tracts, and timing of sequence	14
A	boundaries for the various sequence stratigraphic approaches	
	(Catuneanu et al. 2011).	
Figure 1.7	Stratal stacking patterns related to shoreline trajectories (from	15
	Catuneanu et al. 2010).	
Figure 1.8	Model-independent versus model-dependent aspects of	16
	sequence stratigraphy.	

Figure 1.9	Schematic representation of a MTC and the likely occurrence	18
	and associations of kinematic indicators relative to the various	
	domains.	
Figure 1.10	Schematic depiction of the two main types of submarine	19
	landslides according to their frontal emplacement: (a)	
	Frontally emergent landslide. (b) Frontally confined landslide	
	(Source: Frey-Martinez et al. (2006))	
Figure 2.1	Base map shows 3D and 2D seismic data available from the	21
	New Zealand Petroleum and Minerals 2014 data pack. The	
	majority of the 2D lines trend NNE-SSW and WNW-ESE,	
	with average line spacing around 750-1000 m.	
Figure 2.2	3D seismic line (IL 1171) with gamma ray log showing	22
	interpreted horizons and key stratigraphic markers	
Figure 2.3	Summary of research workflow	24
Figure 2.4	Type of stratal terminations (Catuneanu, 2006, modified from	26
	Emery and Myers, 1996)	
Figure 2.5	Example of the variance attribute showing fault highlighted by	26
	red arrow. (Pigott et al. 2013)	
Figure 2.6	Internal reflection patterns (modified from AAPG Memoir 26)	28
	and some examples of seismic descriptions (modified from	
a	Hart, 2011).	
Figure 2.7	The effect of thin bed tuning in different frequencies	29
Δ	(Laughlin et al., 2002)	
Figure 2.8	An example of frequency decomposition and RGB colour	29
	blending workflow (McArdle and Ackers, 2012).	
Figure 2.9	RGB frequencies are selected within the seismic bandwidth;	30
	minimum (red), middle (green), and maximum (blue) of the	
	amplitude spectrum.	

Figure 3.1	An interpreted dip section (Inline 1171) shows a small closure	32
	of the pre-kinematic sequence (H1) formed by reactivation of	
	deep seated fault.	
Figure 3.2	Time structure map of two horizons affected by the Karewa	33
	fault. A) Pre-kinematic sequence B) Base of the syn-kinematic	
	sequence of the Karewa Fault	
Figure 3.3	A) Amplitude time slice at 1269ms (TWT) through the	37
	interval of MTC B) Time slice at 1269ms (TWT) through	
	variance cube.	
Figure 3.4	Time structure map of the base of the MTC (horizon 4) within	38
	3D seismic showing the general geometry of the MTC.	
Figure 3.5	Seismic section of IL 1171 showing the general geometry and	39
	elements of kinematic indicators identified in the study area.	
Figure 3.6	Vertical seismic section of IL 1231 show compressional	40
	structures of mass transport complexes deposit.	
Figure 3.7	Seismic section of P95-118 at the southern part of the study	46
	area showing bold stacked succession of the GFF. A) 13	
	interpreted bounding horizons including seafloor. B) 14	
	sequence units were identified in the Pliocene-Recent	
	prograding facies.	
Figure 3.8	Seismic section of CNL 95B-038 in the middle of the study	47
ຨ	area A) 13 interpreted bounding horizons including seafloor	
0	B) 14 sequence units identified in the Pliocene-Recent	
А	prograding facies.	
Figure 3.9	Time structure maps of mass transport complex (MTC): A)	48
	Horizon 4 (base surface of the MTC), B) horizon 5 (top	
	surface of the MTC).	
Figure 3.10	A) Time structure maps of horizon 6 (H6), B) an RGB	49
	spectral decomposition of 14-, 32-, and 54-Hz and similarity	
	opacity blended.	

Figure 3.11	A) Time structure maps of horizon 7 (H7), B) an RGB	50
	spectral decomposition of 14-, 32-, and 54-Hz and similarity	
	opacity blended.	
Figure 3.12	A) Time structure maps of horizon 9 (H9), B) an RGB	51
	spectral decomposition of 14-, 32-, and 54-Hz and similarity	
	opacity blended.	
Figure 3.13	A) Time structure maps of horizon 10 (H10), B) sweetness	52
	attribute map showing bright spot in high sweetness value.	
Figure 3.14	Wireline characteristics of Karewa-1well intersect with	54
	IL1171	
Figure 3.15	Seismic section showing reflection characteristics of unit 1	55
	(SU1) and the shelf edge trajectories.	
Figure 3.16	Seismic section showing reflection characteristics of unit 2	56
	(SU2) and aggradational shelf edge trajectory.	
Figure 3.17	Seismic section showing reflection characteristics of unit 3	56
	(SU3) and ascending shelf edge trajectory.	
Figure 3.18	Seismic section showing reflection characteristics of unit 4	57
	(SU4) and normal descending progradational trajectory of the	
	shelf edge.	
Figure 3.19	Seismic section showing reflection characteristics of unit 5	58
ິຄ	(SU5) and aggradational to progradational shelf edge trajectories.	
Figure 3.20	Seismic section showing reflection characteristics of unit 6	59
A	(SU6). rights reserved	
Figure 3.21	Seismic section showing reflection characteristics of unit 7	59
	(SU7).	
Figure 3.22	Seismic section showing reflection characteristics of unit 8	60
	(SU8).	
Figure 3.23	Seismic section showing reflection characteristics of unit 9	61
	(SU9).	

Figure 3.24	Seismic section showing reflection characteristics of unit 10	62
	and 11 (SU10 and SU11).	
Figure 3.25	Systems tracts interpretation from 2D seismic line P95-118.	64
Figure 3.26	Systems tracts interpretation of 2D seismic line CNL95B-038	65
Figure 3.27	Example of RGBA map showing low to moderate degree of	66
	sinuosity channel within Highstand Systems Tract.	
Figure 3.28	Example of RGBA map showing low sinuosity, entrenched	68
	channels that formed during the end of regression or the onset	
	of early transgression.	
Figure 3.29	Example of RGBA map showing channels that formed during	69
	the end transgression, the channels exhibits less clarity than	
	those extracted from interval.	
Figure 3.30	Seismic cross-sections through depositional element observed	71
	at different levels. a-b) showing different scale channels and	
	slump feature at the shelf and slope of H7	
Figure 3.31	Magnified view of mega-channels in the southern part of H10	72
	of Late Pleistocene age.	
Figure 3.32	Cross-section along the length of two-mega channels observed	73
	in H10 of Late Pleistocene age showing changes in their	
	widths and depths.	
Figure 3.33	Chronostratigraphic chart (Wheeler diagram) based on the	74
6	interpretation from P95-118.	
Figure 3.34	Chronostratigraphic chart (Wheeler diagram) based on the	75
A	interpretation from CNL95B-038.	
Figure 3.35	Maps and quantitative data for channel A and B on Maximum	77
	Regressive Surface (MRS)	
Figure 3.36	Maps and quantitative data for channel A and B from phantom	80-81
	horizon extracted from the HST unit.	

Figure 4.1	Model for the development of a listric normal fault at the base	83
	of prograding sequence. (Source: Morley and Naghadeh,	
	2016)	
Figure 4.2	Schematic diagram illustrate development of the MTC within	85
	the study area; A) initial stage prior to movement B)	
	translation and toe region creation of the MTC along the	
	destabilized surface caused by fluid escape C) Burial of the	
	MTC by subsequent sedimentation during the Pliocene.	
Figure 4.3	Conceptual model of depositional history of the prograding	88-89
	sequences (A-F) in the study area showing the timing	
	relationship with the late stage of growth faults and	
	depositional trend associated with relative sea-level changes	
	through time.	
Figure 4.4:	Correlation of the base-level curve of this study with the	90
	Hansen sea-level curve during the last 5 million years.	
	(Modified from Root Routledge, created from source	
	information from Jame Hansen publications)	
	MALTERSI	
	UNIVE	

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved