## CONTENTS

| Acknowledgement                              | c  |
|----------------------------------------------|----|
| Abstract in Thai                             | d  |
| Abstract in English                          | f  |
| List of Tables                               | j  |
| List of Figures                              | k  |
| Chapter 1 Introduction                       | 1  |
| 1.1 Background of Study Area                 | 2  |
| 1.1.1) Seismic data                          | 2  |
| 1.1.2) Well data                             | 4  |
| 1.1.3) Seismic Interpretation                | 5  |
| 1.2 Literature Review                        | 7  |
| 1.2.1) Vulcan Sub-basin                      | 7  |
| 1.2.2) Pre-stack simultaneous inversion      | 8  |
| 1.3 Objective                                | 9  |
| Chapter 2 Methodology                        | 10 |
| 2.1 Rock Physics Analysis                    | 10 |
| 2.2 Well tie and Wavelet Extraction          | 15 |
| 2.3 Low Frequency Modelling                  | 17 |
| 2.4 Seismic Pre-Stack Simultaneous Inversion | 19 |
| 2.5 Lithofacies Classification               | 21 |
| Chapter 3 Rock Physics Analysis Results      | 22 |
| 3.1 Well Log Data Conditioning               | 22 |
| 3.2 Shear Wave Velocity Prediction           | 25 |

## Page

| 3.3 Reservoir Characterization Feasibility        | 26  |
|---------------------------------------------------|-----|
| 3.4 Fluid Replacement Modelling                   | 28  |
| 3.5 AVO Analysis and Attributes                   | 34  |
| Chapter 4 Well Tie and Wavelet Extraction Results | 41  |
| Chapter 5 Low Frequency Models                    | 49  |
| 5.1 Ultra-Low Frequency Models                    | 49  |
| 5.2 Low Frequency Models (using well log data)    | 59  |
| 5.3 Final Low Frequency Models                    | 63  |
| Chapter 6 Pre-Stack Simultaneous Inversion        | 66  |
| Chapter 7 Lithofacies Classification              | 79  |
| Chapter 8 Discussions and Conclusions             | 87  |
| 8.1 Discussions                                   | 87  |
| 8.2 Conclusions                                   | 88  |
| References                                        | 90  |
| Appendix 41 UNIVERSIT                             | 93  |
| Appendix A                                        | 93  |
| Appendix B                                        | 97  |
| Appendix C                                        | 102 |
| Appendix D by Chiang Mai University               | 162 |
| Curriculum Vitae rights reserved                  | 193 |

## LIST OF TABLES

| Table 1-1 | The angle ranges were used to produce the angle stacks,         | 4  |
|-----------|-----------------------------------------------------------------|----|
|           | reprocessing in 2014.                                           |    |
| Table 3-1 | Mineral properties input to rock physics analysis and FRM       | 28 |
|           | (modified after Mavko et al., 1998).                            |    |
| Table 3-2 | Fluid properties were calculated using the Batzle and Wang      | 31 |
|           | (1992) relationships.                                           |    |
| Table 3-3 | Elastic properties of a fluid mixture of 80% gas and 20% brine. | 31 |
| Table 3-4 | Average values of Vp, Vs and density used in AVO analysis as    | 35 |
|           | input.                                                          |    |
| Table 3-5 | Summary of AVO classification.                                  | 37 |
| Table 4-1 | Summary of the correlation coefficients when performing the     | 43 |
|           | well tie at each wells using the respective final time-depth    |    |
|           | relationships                                                   |    |
| Table 5-1 | Details of the stratigraphic layer type that were accounted for | 59 |
|           | in the framework model building process.                        |    |
| Table 6-1 | The final inversion parameters were used in the study.          | 71 |
| Table 7-1 | Normal distributions were derived for each lithotype.           | 81 |
| A         | ll rights reserved                                              |    |
|           |                                                                 |    |

## LIST OF FIGURES

| Figure 1-1 | Location of the study area, Timor Sea, Western Australia                 | 2  |
|------------|--------------------------------------------------------------------------|----|
|            | (modified from Oxygen Group, 2015)                                       |    |
| Figure 1-2 | The example of seismic angle gathers on inline 7198.                     | 3  |
| Figure 1-3 | Near, mid, far and full angle range stacks along crossline number 14922. | 4  |
| Figure 1-4 | Well locations in the study area.                                        | 5  |
| Figure 1-5 | Interpreted horizons overlain on full seismic PSDM data.                 | 6  |
| Figure 1-6 | Time structural map of Horizon H1, respectively, with the well           | 6  |
|            | location in overlay.                                                     |    |
| Figure 1-7 | Location of Bonaparte Basin and associated sub-basin, colored            | 7  |
|            | by geological time (Barrett et al., 2004).                               |    |
| Figure 1-8 | The structurally significant were presented in the Vulcan Sub-           | 8  |
|            | basin (Commonwealth of Australia, 2015).                                 |    |
| Figure 2-1 | Crossplot showing Greenberg and Castagna (1992) Vp -Vs                   | 11 |
|            | relation of quartz, illite, calcite and dolomite.                        |    |
| Figure 2-2 | Fluid replacement modelling (FRM) workflow using Gassmann's Equation.    | 12 |
| Figure 2-3 | The AVO classes (modified from Simm and Bacon, 2014).                    | 14 |
| Figure 2-4 | AVO classes were categorized using crossplot of intercept and            | 15 |
|            | AVO gradient (modified after Simm and Bacon, 2014).                      |    |
| Figure 2-5 | Well tie and wavelet extraction workflow.                                | 16 |
| Figure 2-6 | (a) Relative impedance trace derived from seismic, (b) Low               | 17 |
|            | frequency trend (in red) derived from impedance log (in                  |    |
|            | black), and (c) Absolute impedance trace after addition of the           |    |
|            | low frequency trend (modified from Chopra and Sharma,                    |    |
|            | 2012).                                                                   |    |

| Figure 2-7  | Low frequency model was filled the bandwidth of seismic       | 18 |
|-------------|---------------------------------------------------------------|----|
|             | frequency range (modified from Pendrel and Van Riel, 2000).   |    |
| Figure 2-8  | Low frequency modelling workflow.                             | 19 |
| Figure 2-9  | Schematic workflow of pre-stack simultaneous inversion.       | 20 |
| Figure 2-10 | Workflow used for lithofacies classification using Bayes'     | 21 |
|             | theorem.                                                      |    |
| Figure 3-1  | Composite well log data (measured, edited and calculated) for | 23 |
|             | Wells-A and -B.                                               |    |
| Figure 3-2  | Composite well log data (measured, edited and calculated) for | 24 |
|             | Wells-C and -D.                                               |    |
| Figure 3-3  | Crossplot of Vp and density in Well-B using original measured | 24 |
|             | log data (top) and edited well data (bottom). Polygons-A, -B  |    |
|             | and -C were highlighted on edited data points which           |    |
|             | corresponded on log viewer                                    |    |
| Figure 3-4  | Crossplot of Vp and density log data for all wells colored by | 25 |
|             | interpreted lithology log after well log data conditioning.   |    |
| Figure 3-5  | Crossplot demonstrating empirical best fit equations for Vp   | 26 |
|             | versus Vs using measured log data from Well-A, colored by     |    |
|             | interpreted lithology log data.                               |    |
| Figure 3-6  | Crossplot of compressional velocity versus effective porosity | 27 |
|             | log for sandstone colored by well.                            |    |
| Figure 3-7  | Crossplot of Vp/Vs versus acoustic impedance (AI) for Well-A  | 28 |
| -           | colored by lithology type.                                    |    |
| Figure 3-8  | Fluid calculator in RokDoc software was used in fluid         | 30 |
| A           | properties calculation.                                       |    |
| Figure 3-9  | Crossplot of Kdry/Kmin versus effective porosity colored by   | 32 |
|             | effective porosity for each wells.                            |    |
| Figure 3-10 | Well log plot showing the effect of FRM in Well-A.            | 33 |

- Figure 3-11 Crossplot of acoustic impedance versus Vp/Vs ratio after application of FRM for all four input wells. Trends are similar for all wells, but separation of both lithology and fluid effects were further enhanced for Wells-B, -C, and -D, probably caused by the use of a synthetic Vs log for these wells.
- Figure 3-12 The plots using Well-A models for AVO classification 37 comprised (a) AVO analysis plots showing RC versus incidence angle, (b) intercept-gradient crossplot, (c) Monte-Carlo simulation of intercept-gradient at interface with weighted stack function, and (d) Gaussian distribution of data points based on Monte-Carlo simulation.
- Figure 3-13 The plots using Well-B models for AVO classification comprised (a) AVO analysis plots showing RC versus incidence angle, (b) intercept-gradient crossplot, (c) Monte-Carlo simulation of intercept-gradient at interface with weighted stack function, and (d) Gaussian distribution of data points based on Monte-Carlo simulation.
- Figure 3-14 The plots using Well-C models for AVO classification comprised (a) AVO analysis plots showing RC versus incidence angle, (b) intercept-gradient crossplot, (c) Monte-Carlo simulation of intercept-gradient at interface with weighted stack function, and (d) a Gaussian distribution of data points based on Monte-Carlo simulation.
- Figure 3-15 The plots using Well-D models for AVO classification comprised (a) AVO analysis plots showing RC versus incidence angle, (b) intercept-gradient crossplot, (c) Monte-Carlo simulation of intercept-gradient at interface with weighted stack function, and (d) a Gaussian distribution of data points based on Monte-Carlo simulation.
- Figure 4-1 Well Editor module of Jason Workbench software using for 42 well tie.

39

38

34

40

m

| Figure 4-2  | Wavelet polarity convention of the seismic input data used in    | 42 |
|-------------|------------------------------------------------------------------|----|
|             | this study.                                                      |    |
| Figure 4-3  | Extracted wavelets at well locations Wells-A, -C and -D for all  | 44 |
|             | angle stacks.                                                    |    |
| Figure 4-4  | Final average wavelets, extracted using only Well-C and Well-    | 45 |
|             | D for all angle stacks.                                          |    |
| Figure 4-5  | Synthetic tie at Well-A showing the tie at mid angle stacks.     | 45 |
| Figure 4-6  | Synthetic tie at Well-C showing the tie at mid angle stacks.     | 46 |
| Figure 4-7  | Synthetic tie at Well-D showing the tie at mid angle stacks.     | 46 |
| Figure 4-8  | Well locations and the arbitary line was used to show the well   | 47 |
|             | tie result.                                                      |    |
| Figure 4-9  | The arbitrary line of near angle stack was overlaid by Wells-A,  | 47 |
|             | -C and -D synthetic traces.                                      |    |
| Figure 4-10 | The arbitrary line of mid angle stack was overlaid by Wells-A,   | 48 |
|             | -C and -D synthetic traces.                                      |    |
| Figure 4-11 | The arbitrary line of far angle stack was overlaid by Wells-A, - | 48 |
|             | C and -D synthetic traces.                                       |    |
| Figure 5 1  | Crossplat of outrasted saispin interval valuaity versus Vn log   | 50 |
| Figure 3-1  | vising Well A Well C and Well D data                             | 50 |
| E'          | using weil-A, weil-C and weil-D data.                            | 51 |
| Figure 5-2  | An arbitrary location to show the results in Chapter 5.          | 51 |
| Figure 5-3  | Comparison of seismic interval stacking velocity between         | 51 |
| ଗ           | original (left) and calibrated seismic velocities using          |    |
|             | relationships at wells.                                          | 50 |
| Figure 5-4  | Vp and AI relations using well data colored by wells.            | 52 |
| Figure 5-5  | Vp and SI relations using well data colored by wells.            | 53 |
| Figure 5-6  | Vp and density relations using well data colored by wells. The   | 53 |
|             | table was shown the data points which used to construct the      |    |
|             | relationships of Vp and density.                                 |    |
| Figure 5-7  | Initial ultra-low frequency models transformed using             | 55 |
|             | relationships at wells.                                          |    |
| Figure 5-8  | Residual log of all properties and theirs inputs.                | 56 |

| Figure 5-9  | Interpolated residual logs of each property                     | 57 |
|-------------|-----------------------------------------------------------------|----|
| Figure 5-10 | Final ultra-low frequency models which were contained 0-2       | 58 |
|             | Hz of frequency range.                                          |    |
| Figure 5-11 | Stratigraphic framework model used to constrain well log data   | 59 |
|             | interpolation during construction of LFM.                       |    |
| Figure 5-12 | Various areal weighting interpolation methods were tested to    | 61 |
|             | verify the influence when introducing well log data to the low- |    |
|             | frequency model building. Based on these tests, global kriging  |    |
|             | with 10 km variogram range was selected in this project.        |    |
| Figure 5-13 | Final low frequency models using well data i.e. acoustic        | 62 |
|             | impedance, shear impedance and density. The frequency           |    |
|             | content of these models was 2-10 Hz.                            |    |
| Figure 5-14 | Design filter using final low frequency model                   | 63 |
| Figure 5-15 | Final low frequency models were generated using calibrated      | 64 |
|             | ultra-low frequency models merged with low frequency model      |    |
|             | from well data.                                                 |    |
| Figure 5-16 | Frequency analysis was performed on mid angle seismic to        | 65 |
|             | find the low-end of seismic frequency.                          |    |
| Figure 6-1  | Seismic misfit signal to noise ratio of near angle stacks.      | 67 |
| Figure 6-2  | Seismic misfit signal to noise ratio of mid angle stacks.       | 68 |
| Figure 6-3  | Seismic misfit signal to noise ratio of far angle stacks.       | 68 |
| Figure 6-4  | QC panel of contrast misfit acoustic impedance uncertainty.     | 69 |
| Figure 6-5  | QC panel of contrast misfit shear impedance uncertainty.        | 70 |
| Figure 6-6  | QC panel of contrast misfit density uncertainty.                | 70 |
| Figure 6-7  | Index map showing arbitrary line.                               | 72 |
| Figure 6-8  | Final absolute acoustic impedance comparing with acoustic       | 74 |
|             | impedance logs at well location (top). Bandpass filtering were  |    |
|             | applied to both inverted acoustic impedance and well data to    |    |
|             | create comparable relative inversion results (bottom).          |    |

- Figure 6-9 Final absolute shear impedance compared with shear 75 impedance logs at well location (top). Bandpass filtering were applied to both inverted shear impedance and well log data to create comparable relative inversion results (bottom).
- Figure 6-10 Final absolute Vp/Vs compared with Vp/Vs logs at well 76 location (top). Bandpass filtering were applied to both inverted Vp/Vs and well log data to create comparable relative inversion results (bottom).
- Figure 6-11 Final absolute density compared with density logs at well 77 location (top). Bandpass filtering were applied to both inverted density and well log data to create comparable relative inversion results (bottom).
- Figure 6-12Derived residuals of near, mid and far angle stacks, achieved78by subtracting input seismic data from inverted synthetic data.
- Figure 7-1 Probability density functions were derived using the crossplot 80 of elastic properties (acoustic impedance versus Vp/Vs) colored by lithotypes extracted from well log data for shale, carbonates and sandstone.
- Figure 7-2 Prior probability for each lithology. 82
- Figure 7-3 Location of random line which was used to show the final 82 results.
- Figure 7-4 (Top) Random line showing the resulting lithofacies cube
  83 superposed with the lithology log at each well location colored
  by grey shale, cyan carbonate, yellow sandstone.
  (Bottom) Random line showing the probability of sand
  superposed with the lithology log at each well location.
- Figure 7-5 (Top) Random line showing the probability of carbonate, 84 superposed with the lithology log at each input well location.
  (Bottom) Random line showing the probability of shale, superposed with the lithology log at each input well location.

р

Figure 7-6 Comparison of lithofacies derived from inverted properties and 85 Well-B lithology log. The original lithology log was only available within a short interval (left), so a more complete lithology log was estimated, using other available logs (right).

86

Figure 7-7 Sand probability map along horizon H1 using amplitude extraction from seismic reservoir characterization volumes.



ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright<sup>©</sup> by Chiang Mai University All rights reserved