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CHAPTER 2 

General Theory 

2.1 General Theory of Full Waveform Inversion 

 Full waveform inversion (FWI) is a method that uses the recorded seismic data to 

estimate parameters of subsurface model (Yong Ma, 2010), such as seismic wave 

velocity by solving the inverse problem. It begins from the simple assumption that the 

wave equation can be solved numerically of the form below. 

𝐹(𝑚) = 𝑝                                                            (2.1) 

where 𝑚 is parameter describing the subsurface model, 𝑝 is seismic wave field, and 𝐹 is 

the function that describes how to calculate a seismic wave field from the given model. 

FWI is an algorithmic approach that uses the repeated application of forward problem 

was expressed in equation (2.1) to solve the non-linear inverse problem that can be 

expressed as 

𝐹−1(𝑑) = 𝑚′                                                        (2.2) 

where 𝑑 contains the observed field data, 𝑚′ is an estimated subsurface model, and the 

inverse of 𝐹 function in equation (2.2) expresses the idea that if the model 𝑚′ is placed 

back to equation (2.1), then the predicted data 𝑝′ should be compatible with the original 

observed data 𝑑. 

 Unfortunately, most of the geophysical problems are non-linear. To solve that 

inverse problem, it is usually formulated as a least-squares optimization, which 

computes a model that minimises the difference between observed data and generated 

data from initial model or misfit function which can be expressed as follow. 

𝐸 =  
1

2
∑ (𝑑𝑜𝑏𝑠 − 𝐹(𝑚))2

𝑠                                              (2.3) 
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where 𝐸 is a misfit function, 𝑑𝑜𝑏𝑠 is the observed data, 𝐹(𝑚) is the generated data from 

model 𝑚, and 𝑠 is number of data. 

 For solving an inverse problem, if the non-linear between the data and model is 

not too strong, it could be possible to linearise the problem and it can be solved 

iteratively by local optimisation methods. Then the new model (𝑚) will be described by 

the linear combination of the initial or current model (𝑚0) and perturbed model or 

model correction (𝛿𝑚). 

𝑚 = 𝑚0 + 𝛿𝑚                                                      (2.4) 

The problem is now to find a model correction (𝛿𝑚) to generate a new model which 

reduces the difference between observed dataset and calculated data from the current 

model or misfit function toward zero. 

2.2 Gradient of misfit function 

 Solving a non-linear problem, gradient descent can also be used to solve a system 

of nonlinear equations and, it is more practical way to calculate the perturbation model 

(𝛿𝑚k) by minimising the misfit function. The method begins with current model (𝑚k), 

then uses the gradient of the misfit function to evaluate the current model and estimate 

the perturbation model (𝛿𝑚k), in equation (2.4) that reduce the data misfit function.  

 The gradient of misfit function represents the direction in which the misfit 

function is increasing most rapidly or the steepest direction. The misfit function can 

always be reduced by pursuing the negative of this direction (Pratt et al., 1998). 

Therefore, the estimation of the new model in equation (2.4) to reduce the misfit 

function by iteratively updating can be written as follow 

𝑚𝑘+1 = 𝑚𝑘 − 𝛼𝑘∇𝑚𝐸𝑘                                                (2.5) 

where ∇𝑚𝐸𝑘 is the gradient of misfit function, 𝛼𝑘 is the constant scaling for iteration 

number k. This scaling is chosen to indicate that how far the model can be updated to 

minimise the misfit function in the direction given by the gradient of misfit function. 

The role of the scaling can be also thought of as converting the units of the gradient 

vector to the model dimensions (Pratt et al., 1998). 
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 The gradient of the misfit function (𝛻𝑚𝐸) can be obtained by taking the first 

derivative of the misfit function, described in equation (2.3) with respect to each 

element of model 𝑚𝑖. Subsequently the gradient of misfit function should be: 

𝛻𝑚𝐸 =
𝜕�⃗� 

𝜕𝑚
=

𝜕

𝜕𝑚
(
1

2
∑(𝑑𝑜𝑏𝑠 − 𝐹(𝑚))2)                                     (2.6) 

𝛻𝑚𝐸 =  −∑
𝜕𝐹(𝑚)

𝜕𝑚
(𝑑𝑜𝑏𝑠 − 𝐹(𝑚))                                        (2.7) 

𝛻𝑚𝐸 =  −∑
𝜕𝐹(𝑚)

𝜕𝑚
𝛿𝑑                                                 (2.8) 

where 
𝜕𝐹(𝑚)

𝜕𝑚
 is the partial derivative of the data with respect to the model parameter, and 

𝛿𝑑 = (𝑑𝑜𝑏𝑠 − 𝐹(𝑚))  represents the residual data or the difference between the 

observed data and generated data from the model. Hence, the gradient of misfit function 

can be interpreted as a product of time correlation between the partial derivative wave 

field and the residual data in time domain. This process is aimed to pick missing 

information on the initial model and uses it to calculate the perturbation model from the 

optimisation algorithm. (Operto et al., 2013) 

2.3 Partial derivative wave field 

 To calculate the gradient of misfit function, the partial derivative wave fields were 

required and used to detect the missing information on the initial model from true model. 

It begins with solving the acoustic wave equation. The full wave field can be calculated 

at any place and time in the current velocity model. The 2D acoustic wave equation can 

be written as follows. 

𝜕2𝑃(𝑥,𝑧,𝜔)

𝜕𝑥2 +
𝜕2𝑃(𝑥,𝑧,𝜔)

𝜕𝑧2 +
𝜔2

𝑐2 𝑃(𝑥, 𝑧, 𝜔) = 𝑆(𝑥, 𝑧, 𝜔)                       (2.9) 

where 𝜔 is the angular frequency, 𝑐 is the velocity, 𝑃(𝑥, 𝑧, 𝜔) is the pressure field and 

𝑆(𝑥, 𝑧, 𝜔) is the source function. Then, this equation can be written in the following 

simple matrix form (Shin et al., 2001) 

�⃗⃗⃗� �⃗� = 𝑆                                                                (2.10) 

where �⃗⃗⃗�  is a complex impedance matrix ( �⃗⃗⃗� =
𝜔2

𝑐2 + ∇2  where ∇2  is the Laplacian 

operator), �⃗�  is the pressure field and 𝑆  is the source function. Taking the partial 
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derivative of previous equation with respect to the model parameter 𝑚𝑖 on both sides, 

the result will be equation (2.9) and because source function is independent of model 

parameter, then it becomes zero. (Shin et al., 2001) 

�⃗⃗⃗� 𝜕�⃗� 

𝜕𝑚𝑖
+ �⃗� 

𝜕�⃗⃗⃗� 

𝜕𝑚𝑖
= 0                                                  (2.11) 

or 

�⃗⃗⃗� 𝜕�⃗� 

𝜕𝑚𝑖
= −�⃗� 

𝜕�⃗⃗⃗� 

𝜕𝑚𝑖
                                                    (2.12) 

This equation can be rearranged to: 

�⃗⃗⃗� 𝜕�⃗� 

𝜕𝑚𝑖
= 𝑓 (𝑖)                                                       (2.13) 

Where 𝑓 (𝑖) = −�⃗� 
𝜕�⃗⃗⃗� 

𝜕𝑚𝑖
 is a virtual source term at location of 𝑖th parameter (Shin et al., 

2001), which represents the interaction (or scattering) of a predicted wave field �⃗�  with 

model 𝑚𝑖 as shown in Figure 2.1 (Pratt et al., 1998). Therefore, 
𝜕�⃗� 

𝜕𝑚𝑖
 was referred as the 

partial derivative wave field from location 𝑖th, which can be described as follow 

𝜕�⃗� 

𝜕𝑚𝑖
= �⃗⃗⃗� −1𝑓 (𝑖)                                                    (2.14) 

 From the above equation, the partial derivative wave field with respect to the 

velocity model can be interpreted as the wave field emitted at surface source, scattered 

by diffraction point located at mi and recorded by surface receivers. (Operto et al., 2013) 

 
Figure 2.1: 𝑁𝑥 × 𝑁𝑧  grid of earth model with n sources and receivers distributed along 

surface, 𝑓 (𝑖) indicates a virtual source according to node 𝑖𝑡ℎ model parameter (Shin et 

al., 2001) 
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2.4 Finite difference modelling for acoustic wave 

 In this study, the synthetic datasets were generated based on a constant density 

solution to the wave equation using Matlab code in AFD (Acoustic Finite Difference) 

package developed by CREWES (CREWES, 2015). This algorithm solves the wave 

equation over a discrete set of grid points or model elements using the central finite 

difference schemes to approximate the second derivative to the scalar wave equation. 

(Youzwishen et al, 1999) 

𝜕2∅(𝑥,𝑧,𝑡)

𝜕𝑡2 = 𝑣2(𝑥, 𝑧)∇2∅(𝑥, 𝑧, 𝑡)                                   (2.15) 

where ∅ is a wave function, 𝑣 is a velocity and the Laplacian, ∇2 is given by 

∇2∅ =
𝜕2∅

𝜕𝑥2 +
𝜕2∅

𝜕𝑧2                                                    (2.16) 

 The Laplacian operator and the second order time derivative in scalar wave 

equation can be estimated by the finite difference schemes using 5 points of grid 

respectively for the second order approximation, as shown in Figure 2.2. Therefore, the 

Laplacian operator and time derivative can be expressed as follow. (Youzwishen et al, 

1999) 

∇2∅𝑗
𝑛 ≈

∅𝑗
𝑛+1−2∅𝑗

𝑛+∅𝑗
𝑛−1

∆𝑥2 +
∅𝑗+1

𝑛 −2∅𝑗
𝑛+∅𝑗−1

𝑛

∆𝑧2                                  (2.17) 

𝜕2∅(𝑡)

𝜕𝑡2 ≈
∅(𝑡+∆𝑡)−2∅(𝑡)+∅(𝑡−∆𝑡)

∆𝑡2                                          (2.18) 

where n is the x coordinate and j is the z coordinate of the grid, as shown in Figure 2.2.  

 By substituting the approximation of Laplacian operator in (2.17) and time 

derivative in (2.18) into the scalar wave equation in (2.15), the estimation of the wave 

field at time 𝑡 + ∆𝑡 can be solved as: 

∅𝑗
𝑛(𝑡 + ∆𝑡) ≈ (∆𝑡2(𝑣𝑗

𝑛2
)∇2 + 2)∅𝑗

𝑛(𝑡) − ∅𝑗
𝑛(𝑡 − ∆𝑡)                (2.19) 

 Equation (2.19) demonstrates that the wave field at time 𝑡 + ∆𝑡 can be estimated 

by knowing the wave field at time 𝑡 and 𝑡 − ∆𝑡. This process is called time stepping or 

snapshot. (Youzwishen et al, 1999). Figure 2.3 illustrates a workflow for estimating the 

wave field at time 𝑡 + ∆𝑡 time using stepping finaite difference in equation (2.19). 
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Figure 2.2: The computational grid of the second order finite difference approximation. 

 

 

Figure 2.3: Time stepping Finite difference workflow (Youzwishen et al, 1999). 


