CONTENTS

Acknowledgement	d
Abstract in Thai	g
Abstract in English	i
List of Tables	0
List of Figures	q
Statement of Originality in Thai	v
Statement of Originality in English	w
Chapter 1 Introduction	1
Chapter 2 Literature Survey	4
2.1 Classification of Stainless Steels and Effects of Alloying Elements	4
on Their Structure and Properties	
2.2 The Mn-substituted Austenitic Stainless Steels	12
2.3 Welding Process for Thin Plate Austenitic Stainless Steels	13
2.3.1 Pulsed Current TIG Arc Welding or Pulsed Gas Tungsten	16
Arc Welding for Thin Plate without Filler	
2.3.2 Effect of Welding Parameters on TIGW/GTAW	17
for Thin Plate Welding without Filler	
- Cooling rate	17
- Shielding gas	17
2.4 Solidification of Weld Fusion Zones in Austenitic	19
and Weldments	
2.4.1 Phase Transformation During Cooling Cycle of	19
the Weld Metals	

		2.4.2 Microstructure and Solidification Mode in Welded	19
		Austenitic Stainless Steels	
		2.4.2.1 Microstructure Classification by Cr- and Ni-	19
		Equivalency Ratio	
		2.4.2.2 Primary Solidification Modes in Welded	21
		Austenitic Stainless Steels	
	2.5	Corrosion of Stainless Steels and Weldment	27
	2.6	Micro-Vickers Hardness (MVH) of Weldment	32
	2.7	Tensile Properties of Weldment	33
Chapter	3 Exp	perimental Procedures	35
	3.1	Objectives	35
	3.2	Materials and Summary of Methodology	35
	3.3	Pulsed Current Tungsten Inert Gas Welding (PCTIGW)	36
	3.4	Chemical Analysis of Base Metals by	40
		Glow Discharge Spectrometry (GDS)	
	3.5	Chemical Analysis of Weldment by	42
		Oxygen/ Nitrogen Combustion Analysis	
	3.6	Phase Identification by X-ray Diffractometry	42
		and Ferritescope	
	3.7	Microstructural Investigation by Optical Microscopy	44
	3.8	Microstructural Investigation by Scanning Electron Microscopy	45
	q	and Electron Probe Microanalysis	
	3.9	Pitting Corrosion Resistance Test	46
	3.10	Degree of Sensitization Test	48
	3.11	Micro-Vicker Hardness Test of Weldment	49
	3.12	Tensile Test	50
Chapter	4 Res	sults and Discussion	52
	4.1	Chemical Analysisand Phase Identification of Base ASSs	52
	4.2	Pitting Corrosion Resistance of Base ASSs	56
	4.3	Intergranular Corrosion Susceptibility of Base ASSs	61
	4.4	MechanicalProperties of Base ASSs	66

	4.4.1 Tensile Properties	66
	4.4.2 Micro-Vickers Hardness Test	66
4.5	Prediction of Structure Type and Solidification Mode	68
	andWeldments	
4.6	Dissolved Nitrogen in Weld Pool and Ferrite Content	69
4.7	Weld Pool Inspection	76
4.8	Pitting Corrosion Resistance (PCR) of Weldment	81
	4.8.1 PCGTAW AISI 304	85
	4.8.2 PCGTAW AISI 304L	87
	4.8.3 PCGTAW 201-2M	89
	4.8.4 PCGTAW AISI 202	91
4.9	Degree of Sensitization of Weldment	94
	4.9.1 PCGTAW AISI 304	94
	4.9.2 PCGTAW AISI 304L	98
	4.9.3 PCGTAW 201-2M	101
	4.9.4 PCGTAW AISI 202	104
4.10	Tensile Properties of Weldment	108
4.11	Micro-Vickers Hardness of Weldment	111
Chapter 5 Co	onclusions and Further Work	115
5.1	Base Metals	115
8	5.1.1 Chemical Composition	115
ଗ	5.1.2 Corrosion Resistance Properties	115
0	5.1.3 Mechanical Properties	116
5.2	PCGTAW Austenitic Stainless Steels	116
	5.2.1 Welding Process Control Parameters	116
	5.2.2 Weld Structure Prediction	116
	5.2.3 Pitting Corrosion Resistance	116
	5.2.4 Degree of Sensitization	117
	5.2.5 Mechanical Properties	117
5.3	Future Work	117
References		118

Appendices

Appendix A	Different in Temperature Gradients Tables	138
Appendix B	Weld Pool Inspection Tables	140
Appendix C	Tensile Properties Tables	143
Appendix D	Autolab GPES Version 4.9: Corrosion Rate Calculation	145

Curriculum Vitae

148

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

		Page
Table 2.1	Classification of Stainless Steels by Dominant Microstructure	6
Table 2.2	Summary of Modified Equivalencies Cr and Ni Calculation	10
Table 2.3	Stacking Fault Energy Estimation for Austenitic Stainless Steels	12
Table 2.4	Notations	22
Table 2.5	Solidification Mode, Solidification Sequence, and Solid-state	23
	Transformation Responsible for the Variation in Fusion Zone	
	Of Welds Austenitic Stainless Steels	
Table 3.1	Experimental Austenitic Stainless Steels	35
Table 3.2	Summary of Methology	36
Table 3.3	Controlled Parameters	37
Table 3.4	Variable Parameters	37
Table 3.5	Calculated Heat Input at Various Welding Current and	38
	N ₂ Percentage in Shielding Gas	
Table 4.1	Chemical Analysis of Base ASSs by GDS	53
Table 4.2	UNS Chemical Composition of ASSs	53
Table 4.3	Calculated Parameters of Base ASSs	54
Table 4.4	PREN _{Mn} and Pit Depth in Base ASSs	57
Table 4.5	Corrosion Parameters of Base ASSs	59
Table 4.6	DOS Test of Base ASSs	61
Table 4.7	Tensile Properties	66
Table 4.8	Micro-Vickers Hardness (MVH) of Base ASSs	66
Table 4.9	Calculated Parameters of Austenitic Stainless Steels	68
Table 4.10	Average Weld Metal Nitrogen Contents in Different Weld Samples	70
Table 4.11	Ferrite Contents as δ -ferrite and FN in ASS Weldment	71
Table 4.12	Calculation on Pitting Corrosion Resistance at I = 130A	81
Table 4.13	Calculation on Pitting Corrosion Resistance at I = 160A	82
Table 4.14	DOS of PCGTAW AISI 304Stainless Steels	97
Table 4.15	DOS of PCGTAW AISI 304L Austenitic Stainless Steels	100
Table 4.16	DOS of PCGTAW 201-2M Austenitic Stainless Steels	103

- Table 4.17DOS of PCGTAW AISI 202 Austenitic Stainless Steels106Table A1Peak Temperature at Position 1 to 5. Welding Current 130 Amp138Table A2Peak Temperature at Position 1 to 5. Welding Current 160 Amp139Table B1Weld Pool Inspection for PCGTAW AISI 304 Austenitic Stainless Steels140141Table B2Weld Pool Inspection for PCGTAW AISI 304L141
- Table B3Weld Pool Inspection for PCGTAW 201-2M Austenitic Stainless Steels141
- Table B4Weld Pool Inspection for PCGTAW AISI 202 Austenitic Stainless Steels142
- Table C1Tensile Stress Results of PCGTAW Austenitic Stainless Steels143
- Table C2% Elongation of PCGTAW Austenitic Stainless Steels144

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure 2.1	Illustration of Fe-Cr Phase Diagram	4
Figure 2.2	Fe-Cr Phase diagram from Brystan's work	11
Figure 2.3	Schematic illustration of typical TIG/GTAW process	14
Figure 2.4	Regions of a fusion weld	15
Figure 2.5	Illustrations of isotherms about theheat sources in fusion welding,	15
	the shape of weld beads, the weld pool shape and penetration	
Figure 2.6	Illustrations of tear drop and elliptical bead front	16
Figure 2.7	Morphology of vermicular and lacy (lathy) ferrite in weld	20
	Microstructure of austenitic stainless steels	
Figure 2.8	Microstructure types and the amount of δ -ferrite in structure	21
	of welded austenitic stainless steels as predicted by	
	theSchäffler diagram	
Figure 2.9	Solidification mode in fusion zone of welds austenitic stainless steels	26
Figure 2.10	Potential stages during passive film break down and pitting is occurred	28
Figure 2.11	Illustration of pitting corrosion forming at deteriorated sites	29
	sites in protective film of stainless steels	
Figure 2.12	2 Double loop electrochemical potentiodynamic reactivation (DL-EPR)	30
	methodology according to ASTM G108 for determining degree of	
	sensitization (DOS) in ASSs	
Figure 2.13	DL-EPR loop shapes	31
Figure 2.14	Classification of sensitized microstructure according to	31
	ASTM A262-2008	
Figure 2.15	Illustration of micro-Vickers indenter layout and mean	33
	diagonal measurement following ASTM E384 standard practice	
Figure 3.1	The work bench and the array of welding torch and shielding gas nozzles	38
Figure 3.2	Schematic drawing showing five positions of thermocouples	39
	attached to the weld plate	
Figure 3.3	Inner chamber of glow discharge spectrometer (LECO GDS 850A)	40
	where sample was attached	

Mechanism of glow discharge spectroscopy (GDS)	41
Oxygen/ Nitrogen Analyzer, Horiba EMGA -920	42
Rikaku TTRAXIII X-ray diffractometer	43
Ferritescope, Fischer GmbH FMP 30	44
The line-intercept method per instruction in ASTM E112-08	44
Shimadzu-1610 EPMA	45
Three electrode cell for pitting corrosion resistance test: flat cell	46
Pit morphology observation in terms of width, depth and volume density	47
in according to ASTM G108 for detecting sensitization in ASSs	
2(a) Vickers indenter, (b) Anton Paar, PaarPhysica,	49
MHT-10micro-hardness tester	
3 Illustration of dog bone specimens for tensile test	51
Prediction plots in Schäfler diagramfrom the chemical composition Of base ASSs	54
Phase identification by XRD of base ASSs	55
Morphology of pits in (a) AISI 304 and (b) 201-2M	56
after performed pitting resistance corrosion test by	
means of cyclic potentiodynamic polarization technique	
Cyclic potentiodynamic polarization curves of base ASSs	58
A trend between corrosion potential (Ecorr) and pitting potential (Ep)	60
Of base ASSs	
DOS test results of AISI 304 austenitic stainless steel:	62
a) microstructure of original grain orientation in the normal direction	
to the cold-rolling direction ($G = 16.94$), (b) DL-EPR curve and	
(c) sensitized microstructure	
DOS test results of 201-2M austenitic stainless steel:	63
a) microstructure of original grain orientation in the normal direction	
to the cold-rolling direction ($G = 16.94$), (b) DL-EPR curve and	
(c) sensitized microstructure	
DOS test results of AISI 202 austenitic stainless steel:	64
a) microstructure of original grain orientation in the normal direction	
to the cold-rolling direction (G = 16.94), (b) DL-EPR curve and	
	Mechanism of glow discharge spectroscopy (GDS) Oxygen/Nitrogen Analyzer, Horiba EMGA -920 Rikaku TTRAXIII X-ray diffractometer Ferritescope, Fischer GmbH FMP 30 The line-intercept method per instruction in ASTM E112-08 Shimadzu-1610 EPMA OThree electrode cell for pitting corrosion resistance test: flat cell Pit morphology observation in terms of width, depth and volume density in according to ASTM G108 for detecting sensitization in ASSs 2(a) Vickers indenter, (b) Anton Paar, PaarPhysica, MHT-10micro-hardness tester Billustration of dog bone specimens for tensile test Prediction plots in Schäfler diagramfrom the chemical composition Of base ASSs Phase identification by XRD of base ASSs Morphology of pits in (a) AISI 304 and (b) 201-2M after performed pitting resistance corrosion test by means of cyclic potentiodynamic polarization technique Cyclic potentiodynamic polarization technique Cyclic potentiodynamic polarization technique OS test results of AISI 304 austenitic stainless steel: a) microstructure of original grain orientation in the normal direction to the cold-rolling direction (G = 16.94), (b) DL-EPR curve and (c) sensitized microstructure DOS test results of AISI 202 austenitic stainless steel: a) microstructure of original grain orientation in the normal direction to the cold-rolling direction (G = 16.94), (b) DL-EPR curve and (c) sensitized microstructure DOS test results of AISI 202 austenitic stainless steel: a) microstructure of original grain orientation in the normal direction to the cold-rolling direction (G = 16.94), (b) DL-EPR curve and (c) sensitized microstructure DOS test results of AISI 202 austenitic stainless steel: a) microstructure of original grain orientation in the normal direction to the cold-rolling direction (G = 16.94), (b) DL-EPR curve and (c) sensitized microstructure

(c) sensitized microstructure

Figure 4.9 (a) Detected weight percentage of nitrogen and (b) FN in weld metal	72
of AISI 304 at different mixed ratio of N2: Ar shielding gas at	
welding current 130 and 160 A	
Figure 4.10(a) Detected weight percentage of nitrogen and (b) FN in weld metal	73
of AISI 304Lat different mixed ratio of N ₂ : Ar shielding gas at	
welding current 130 and 160 A	
Figure 4.11 (a) Detected weight percentage of nitrogen and (b) FN in weld metal	74
of 201-2Mat different mixed ratio of N2: Ar shielding gas at	
welding current 130 and 160 A	
Figure 4.12(a) Detected weight percentage of nitrogen and (b) FN in weld metal	75
of AISI 202at different mixed ratio of N2: Arshielding gas at	
welding current 130 and 160 A	
Figure 4.13 (a), (b) Weld pool inspection of PCGTAW AISI 304, shielding gas	77
ratio = $0N_2$:100Ar, (c) weld pool front width and (d) completed	
penetration depth, at welding current 130 and 160 Amp, respectively	
Figure 4.14(a), (b) Weld pool inspection of PCGTAW AISI 304L, shielding gas	78
ratio = $0N_2$:100Ar and 5:95, (c) weld pool front width and	
(d) completed penetration depth, at welding current 130 and	
160 Amp, respectively	
Figure 4.15(a), (b) Weld pool inspection of PCGTAW 201-2M, shielding gas	79
ratio = 5:95, (c) weld pool front width and (d) completed penetration	
depth at welding current 130 and 160 A, respectively	
Figure 4.16(a), (b) Weld pool inspection of PCGTAW AISI 202, shielding gas	80
ratio = 5:95, (c) weld pool front width and (d) completed penetration	
depth at welding current 130 and 160 A, respectively	
Figure 4.17(a) and (b) pit depth in the observed area across weld specimen	83
with change in pitting potentials at different welding currents	
and under various mixed shielding gases, (c) and (d) pit density	
distribution in the observed area across weld specimen with change	
in pitting potentials at different welding currents and under	
various mixed shielding gases.	

Figure 4.18 Pit morphology of PCGTAW AISI 304	85
Figure 4.19 CV potentiodynamic polarization curves of PCGTAWAISI 304	86
at welding current 130 and 160 A under various ratio of N_2 :Ar	
shielding gases	
Figure 4.20 Pit morphology of PCGTAW AISI 304	87
Figure 4.21 CV potentiodynamic polarization curves of PCGTAWAISI 304L	88
at welding current 130 and 160 A under various ratio of N_2 :Ar	
shielding gases	
Figure 4.22 Pit morphology of PCGTAW AISI 304	89
Figure 4.23 CV potentiodynamic polarization curves of PCGTAW 201-2M at	90
current 130 and 160 A under various ratio of $Ar:N_2$ shielding gases	
Figure 4.24 Pit morphology of PCGTAW AISI 202	91
Figure 4.25 CV potentiodynamic polarization curves of PCGTAW AISI 202 at	92
welding current 130 and 160 A under various ratio of $Ar:N_2$	
shielding gases	
Figure 4.26 Grain boundary morphology of sensitized PCGTAW AISI 304	96
and DLEPR plots at welding current 130 and 160 A under	
5N ₂ :95 Ar	
Figure 4.27 Grain boundary morphology of sensitized PCGTAW AISI 304L	99
and DLEPR plots at welding current 130 and 160 A under	
current 130 and 160 Amp under 5N ₂ :95 Ar	
Figure 4.28 Grain boundary morphology of sensitized PCGTAW 201-2M	100
and DLEPR plots at welding current 130 and 160 A under	
current 130 and 160 Amp under 10N ₂ :90 Ar	
Figure 4.29 Grain boundary morphology of sensitized PCGTAW AISI 202	103
and DLEPR plots at welding current 130 and 160 A under	
current 130 and 160 Amp under 10N ₂ :90 Ar	
Figure 4.30 Change in DOS under different N_2 proportion in shielding gas and	107
welding current at 130 and 160 A	
current 130 and 160 Amp under 10N ₂ :90 Ar	
Figure 4.31 Comparison of tensile strength of PCGTAW austenitic	109
stainless steels at welding current 130 and 160 A under 0, 5 and	

10 vol.%N2 shielding gases

Figure 4.32 Comparison of % elongation of PCGTAW austenitic stainless	109
steels under various vol.% nitrogen (0, 5 and 10 %) in shielding gases	
Figure 4.33 Examples of fracture surface of the base metals and PCGTAW	110
weldment at welding current 130 and 160 A under $Ar:N2 = 95:5$	
Figure 4.34 MVH of weld cross-section of PCGTAW AISI 304 at welding	111
current 130 and 160 A	
Figure 4.35 MVH of weld cross-section of PCGTAW AISI 304Lat welding	111
current 130 and 160 A	
Figure 4.36 MVH of weld cross-section of PCGTAW 201-2Mat welding	112
current 130 and 160 A	
Figure 4.37 MVH of weld cross-section of PCGTAW AISI 202at welding	112
current 130 and 160 A	
Figure ANNEX D.1 Tafel plot generated in Corrosion rate analysis	147
Windows by Autolab GPES Ver.4.9	

 Al UNIVERSIT

 Al UNIVERSIT

 Al ONIVERSIT

 Al ONIVERSIT

 Al ONIVERSIT

 Al ONIVERSIT

 Copyright[©] by Chiang Mai University

 Al I rights reserved

ข้อความแห่งการริเริ่ม

- ความริเริ่มในเชิงทฤษฎี การศึกษาโครงสร้างทางจุลภาคของการเปลี่ยนเฟส และการสร้างเฟส ใหม่ตรงบริเวณขอบเขตระหว่างโลหะคั้งเดิม ฮีทเอฟเฟคท์โซน และบริเวณโลหะหลอมเหลว ใน งานเชื่อมแบบทิก ของแผ่นเหล็กกล้าไร้สนิมออสติเนติก เกรคเอไอเอสไอ 304 และเกรคที่มีการ แทนที่บางส่วนค้วยแมงกานีส หรือเกรค 200 โคยใช้กล้องจุลทรรศน์แบบแสง และกล้อง จุลทรรศน์อิเล็กตรอน จะช่วยให้เกิดองค์ความรู้ใหม่เผยแพร่สู่ระคับสากล ในค้านที่เกี่ยวกับสมบัติ โลหะทางกายภาพของงานเชื่อมโลหะ
- 2) ความริเริ่มในเชิงปฏิบัติ ความเข้าใจในความสัมพันธ์ระหว่างโครงสร้างและสมบัติ ของงานเชื่อม แบบทิกของเหล็กกล้าไร้สนิม จะช่วยให้มีความเผยแพร่ความรู้ และรายละเอียดเพิ่มเติม เพื่อการ ประยุกต์ใช้งานจริงทางภาคอุตสาหกรรม และบ่งชี้ตัวควบคุมที่มีความสำคัญในกระบวนการ เชื่อมโลหะ นอกจากนี้ เมื่อคำนึงถึงต้นทุนการประยุกต์ใช้งานทางค้านอุตสาหกรรมท่อแล้ว ใน สภาพแวดล้อมที่มีความกัดกร่อนน้อย มีความเป็นไปได้ ในการนำเหล็กกล้าไร้สนิมเกรด 200 มา เป็นตัวเลือกทดแทนการใช้งานเหล็กกล้าไร้สนิมเกรดเอไอเอสไอ 304

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

MAI UNIVER

STATEMENTS OF ORIGINALITY

- Theoretically, the novel observation on microstructure of phase transformation and re-forming at the boundary among base metal, heat affected zone (HAZ) and fusion area of the TIG welded Mn-substitution austenitic stainless steels and reference AISI 304 mainly obtained by means of optical and electron microscopy will lead to an international contribution on the knowledge of physical metallurgy of welding.
- 2) Practically, the understanding of structure and property relationship of TIG welded stainless steels will contribute to/in details for industrial applications and indicate crucial controlled parameters in welding process. Regarding the cost effective reason in pipeline application, the Mn-substitution austenitic stainless steel may possible to introduce for the utilization in mild corrosive environment as an alternative to AISI 304.

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

NG MAI