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1)

2)

STATEMENTS OF ORIGINALITY

Theoretically, the novel observation on microstructure of phase transformation
and re-forming at the boundary among base metal, heat affected zone (HAZ)
and fusion area of the TIG welded Mn-substitution austenitic stainless steels
and reference AISI 304 mainly obtained by means of optical and electron
microscopy will lead to an international contribution on the knowledge of

physical metallurgy of welding.

Practically, the understanding of structure and property relationship of TIG
welded stainless steels will contribute to/in details for industrial applications
and indicate crucial controlled parameters in welding process. Regarding the
cost effective reason in pipeline application, the Mn-substitution austenitic
stainless steel may possible to introduce for the utilization in mild corrosive

environment as an alternative to AISI 304.



