
CHAPTER 2

Preliminaries

In this chapter, we begin with some basic knowledges of semigroup theory and some

concepts of identities, hyperidentities and the monoid of generalized hypersubstitutions

that will be used throughout this thesis.

2.1 Semigroups

2.1.1 Elementary Concepts of Semigroup Theory

A groupoid (S, ·) is defined as a non-empty set S on which a binary operation ”·”
(by which we mean a map · : S × S → S) is defined. We called (S, ·) is a semigroup if

the operation · is associative, i.e. a · (b · c) = (a · b) · c for all a, b, c ∈ S. For convenience,

we write ab replacements of a · b.

A semigroup S is called a monoid if a binary operation is defined on S that has an

identity, i.e., there exists an element e in S such that ae = a = ea for all a in S. Clearly,

if a binary operation has an identity, then that identity is unique.

For any monoid S, an element u ∈ S is called unit if there exists u−1 ∈ S such that

uu−1 = e = u−1u where e is the identity element of S and called u−1 is an inverse of

u. In general, the set of all unit elements of S is denoted by U(S). Obviously, if S is a

monoid and u ∈ S has an inverse in S, then that inverse is unique. A monoid S will be

called a group if every element of S has an inverse in S. It is clear that U(S) is a group

and then it is called the group of units of S.

Let S be a semigroup, an element e ∈ S is called idempotent if e2 = ee = e and the

set of all idempotent elements of a semigroup S is denoted by E(S).

Let a be an element of a semigroup S, then

a is called regular if a = axa for some x ∈ S and

a is called completely regular if a = axa and ax = xa for some x ∈ S.
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A regular [completely regular] semigroup is a semigroup in which every element is regular

[completely regular].

An element a of a monoid S is called unit-regular if there exists u ∈ U(S) such

that a = aua. The monoid S is called unit-regular if all its elements are unit-regular.

An element a of a semigroup S is called left [right] regular if a ∈ Sa2 [a ∈ a2S] and

a is called intra-regular if a ∈ Sa2S. The semigroup S is left regular [right regular,

intra-regular] if all its elements are left regular [right regular, intra-regular].

Example 2.1.1. Z10 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} is a commutative semigroup under mul-

tiplication with the identity 1. E(Z10) = {0, 1, 5, 6}. It is clear that for every element in

E(Z10) is both left regular and right regular element in Z10. Consider

2 = 22 · 8 = 8 · 22, 3 = 32 · 7 = 7 · 32,
4 = 42 · 4 = 4 · 42, 7 = 72 · 3 = 3 · 72,
8 = 82 · 2 = 2 · 82, 9 = 92 · 9 = 9 · 92.

Then Z10 is both left regular and right regular semigroup. It is clear that Z10 is intra-

regular semigroup, since 1 ∈ Z10.

6Z10 = {0, 2, 4, 6, 8} is a subsemigroup of Z10 and E(6Z10) = {0, 6}. We see that

6Z10 is both left regular and right regular semigroup. It is clear that 0, 6 are intra-regular

elements in 6Z10. Consider

2 = 2 · 22 · 4, 4 = 4 · 42 · 6 and 8 = 2 · 82 · 6.

Then 6Z10 is an intra-regular semigroup.

Theorem 2.1.2 ([18]). An element a of a semigroup S is completely regular if and only

if a is both left regular and right regular.

Proof. Let a be a completely regular element in a semigroup S. Then there exists x ∈ S

such that a = axa and ax = xa. So a = axa = a2x ∈ a2S and a = axa = xa2 ∈ Sa2, i.e.

a is both left regular and right regular.

Conversely, if a is both left regular and right regular element in a semigroup S, then

a ∈ a2S ∩ Sa2. So a = a2x and a = ya2 for some x, y ∈ S. Consider

aya = ay(a2x) = a(ya2)x = aax = a2x = a,

axa = (ya2)xa = y(a2x)a = yaa = ya2 = a
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and ax = ya2x = ya.

Hence a(yax)a = (aya)xa = axa = a and a(yax) = (aya)x = ax = ya = y(axa) = (yax)a.

Therefore a is completely regular.

Theorem 2.1.3 ([18]). An element a of a semigroup S is a completely regular if and

only if a ∈ a2Sa2.

Proof. Let a be a completely regular element in a semigroup S. Then there exists x ∈ S

such that a = axa and ax = xa. So

a = axa = (axa)x(axa) = (aax)x(xaa) = a2(xxx)a2 ∈ a2Sa2

Conversely, if a ∈ a2Sa2, then a ∈ a2Sa2 ⊆ a2S ∩Sa2. So a is both left regular and

right regular. By Theorem 2.1.2, a is completely regular.

Theorem 2.1.4 ([18]). Let S be a semigroup and a ∈ S. If a is completely regular, then

a is intra-regular.

Proof. Let a be completely regular. Then there exists b ∈ S such that a = aba and

ab = ba. So a = aba = a(ab) = aba(ab) = (ab)a2(b) ∈ Sa2S.

2.1.2 Factorisation on Semigroups

Let S be a semigroup and let E(S) be the set of all idempotent elements of S. We

say S is left [right] factorisable if S = GE(S) [S = E(S)H] for some subgroup G [H] of

S. S is factorisable if S is both left and right factorisable.

Example 2.1.5. Consider Z6 = {0, 1, 2, 3, 4, 5} is a semigroup under multiplication. G =

{1, 5} is a subgroup of Z6 and E(Z6) = {0, 1, 3, 4}. Then GE(Z6) = Z6 and E(Z6)G = Z6.

Hence Z6 is factorisable.

Theorem 2.1.6 ([2]). A monoid S is factorisable if and only if it is unit-regular.

Proof. If S is unit-regular, then for each x ∈ S, x = xux for some unit u in S. Thus

xu, ux ∈ E(S) and so x = xuu−1 ∈ E(S)U(S) and x = u−1ux ∈ U(S)E(S) Then

S = E(S)U(S) = U(S)E(S). So S is factorisable.

Conversely, if S is factorisable and x ∈ S, say x = ea for some e ∈ E(S) and for

some a ∈ U(S), then

xa−1x = (ea)a−1(ea) = (eaa−1)ea = eea = ea = x.

Therefore x is unit-regular and hence S is unit-regular.
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Example 2.1.7. Z6 = {0, 1, 2, 3, 4, 5} is a semigroup under multiplication with the iden-

tity 1, G = {1, 5} = U(Z6) and E(Z6) = {0, 1, 3, 4}. By Example 2.1.2, Z6 is factorisable.

Consider

0 · 1 · 0 = 0, 1 · 1 · 1 = 1,

2 · 5 · 2 = 2, 3 · 1 · 3 = 3,

4 · 1 · 4 = 4, 5 · 5 · 5 = 5.

Then Z6 is unit-regular.

Theorem 2.1.8 ([14]). If S is factorisable then S has an identity and S = GE(S) =

E(S)G where G is a group of units of S. Moreover, if S has an identity and S = E(S)G

where G is a group of units of S then S = GE(S).

Proof. Suppose that S = GE(S) for some subgroup G of S and let e be the identity

of G. Then for each x ∈ S there exists a ∈ G and f ∈ E(S) such that x = af and

ex = (ea)f = af = x. That is, S has a left identity and, by Duality, it has a right

identity, and hence e is an identity of S. Suppose G is the group of units of S and

S = HE(S) for some subgroup H of S. If x ∈ G then x = af for some a ∈ H, f ∈ E(S)

and so

f = ef = x−1xf = x−1aff = x−1x = e.

Hence, x = ae = a ∈ H. So G ⊆ H and it follows that G = H. A dual argument shows

that S = E(S)G also. Finally, assume that S has an identity and S = E(S)G where G

is a group of units of S. Let x ∈ S. Then x = fg for some f ∈ E(S) and g ∈ G. Since

(g−1fg)(g−1fg) = g−1fg, we get g−1fg ∈ E(S). Thus

x = ex = (gg−1)fg = g(g−1fg) ∈ GE(S).

This proves that S = GE(S).

2.2 Identities and Varities

In this section, we give the briefly concept of identities and hyperidentities.

Let X := {x1, x2, ...} be a countably infinite set of symbols called variables. We

often refer to these variables as letters, to X as an alphabet, and also refer to the set

Xn := {x1, x2, . . . , xn} as an n-element alphabet. Let τ = (ni)i∈I be a type such that

the set of operation symbols {fi|i ∈ I} is disjoint with Xn. An n-ary term, is defined

inductively as follows:
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(i) The variables x1, x2, ..., xn are n-ary terms.

(ii) If t1, t2, ..., tni are n-ary terms then fi(t1, t2, ..., tni) is an n-ary term.

The smallest set, which contains x1, x2, ..., xn and is closed under finite application

of (ii), is denoted by Wτ (Xn) and it is called the set of all n−ary terms of type τ . It is clear

that every n-ary term is also an m-ary term for all m ≥ n. Let Wτ (X) :=

∞⋃
n=1

Wτ (Xn).

It is called the set of all terms of type τ .

Example 2.2.1. Let τ = (2, 3). This means we have one binary operation symbol and

one ternary operation symbol, say f and g respectively. These are some examples of

ternary terms of type (2, 3): x1, x2, x3, f(x3, g(x1, x3, x3)), g(f(x2, x3), x1, g(x3, x1, x2)).

The complexity of terms is a mapping c : Wτ (X) → N ∪ {0} which is inductively

defined by

(i) if t = xi ∈ X then c(t) := 0

(ii) if t1, t2, ..., tni ∈Wτ (X) and max{c(t1), c(t2), ..., c(tni)} = m

then c(fi(t1, t2, ..., tni)) := m+ 1.

Let τ = (ni)i∈I be a type with the sequence of operation symbol (fi)i∈I . Let

t ∈ Wτ (Xn) for n ∈ N and A = (A, (fA
i )i∈I) be an algebra of type τ . The n − ary term

operation tA : An → A of type τ is inductively defined by

(i) tA(a1, a2, ..., an) := ai if t = xi ∈ Xn.

(ii) tA(a1, a2, ..., an) := fA
i (tA1 (a1, a2, ..., an), tA2 (a1, a2, ..., an), ..., tAni

(a1, a2, ..., an))

if t is a compound term fi(t1, t2, ..., tni).

The set of all n−ary term operations of the algebra A denoted by Wτ (Xn)
A and

denote the set of all (finitary) term operations on A by Wτ (X)A. Make a remark that

the element of Wτ (Xn)
A are also called n−ary term operations induced by terms from

Wτ (Xn).

Let X = {x1, x2, ...} be a countably infinite set of variables. Let τ = (ni)i∈I be a

type and A be an algebra of type τ .

An equation of type τ is a pair of terms (s, t) from Wτ (X); such pairs are more

commonly write as s ≈ t. The set of all equations of type τ is denoted by Eτ (X).

An equation s ≈ t is said to be an identity in an algebra A of type τ if sA = tA,

that is, if the term operations induced by s and t on the algebra A are equal. In this case
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we also say that the equation s ≈ t is satisfied or modelled by the algebra A, and we write

A |= s ≈ t.

We now consider the class Alg(τ) of all algebras of type τ . Let K be a class of

algebra of type τ . The class K satisfies an equation s ≈ t, if for every A ∈ K, A |= s ≈ t,

and we write K |= s ≈ t.

Let Σ be a set of equations of type τ . A class K of algebras of type τ is said to

satisfies Σ, if K |= s ≈ t for every s ≈ t ∈ Σ, and we write K |= Σ. Let

IdK := {s ≈ t ∈ Eτ (X)|K |= s ≈ t},
ModΣ := {A ∈ Alg(τ)|A |= Σ}.

be the set of all identities satisfied inK and the class of all algebras satisfied Σ, respectively.

We obtain the following theorem.

Theorem 2.2.2 ([11]). Let K,K1,K2 ⊆ Alg(τ) and Σ,Σ1,Σ2 ⊆ Eτ (X). Then

(i) K ⊆ModIdK and Σ ⊆ IdModΣ,

(ii) if K1 ⊆ K2 then IdK2 ⊆ IdK1 and, if Σ1 ⊆ Σ2 then ModΣ2 ⊆ModΣ1.

A class Σ of equations of type τ is called an equational theory if Σ = IdModΣ. A

class V of algebra of type τ is called a variety if V = ModIdV .

Theorem 2.2.3 ([11]). A non-empty subclass V of Alg(τ) is a variety if and only if

there exists Σ ∈ Eτ (X) such that V = ModΣ.

2.3 Hyperidentities and Hypervarities

The notions of hyperidentities and hypervarieties of a given type τ without nullary

operations originated by J.Aczèl [1], V.D. Belousov [3], W.D. Neumann [17] and W.

Taylor [25]. The main tool used to study hyperidentities and hypervarieties is the concept

of a hypersubstitution which was introduced by K. Denecke, D. Lau, R. Pöschel and D.

Schweigert [9].

Let τ = (ni)i∈I be a type with the sequence of operation symbols (fi)i∈I . A hy-

persubstitution of type τ is a mapping σ : {fi | i ∈ I} −→ Wτ (X) which maps ni-ary

operation symbols to ni-ary terms. Let Hyp(τ) be the set of all hypersubstitutions of

type τ .

For all σ ∈ Hyp(τ) induces a mapping σ̂ : Wτ (X) → Wτ (X) as follows, for any

t ∈Wτ (X), σ̂[t] is inductively defined by
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(i) σ̂[t] := t if t ∈ X.

(ii) σ̂[fi(t1, . . . , tni)] := σ(fi)(σ̂[t1], . . . , σ̂[tni ]), for any ni-ary operation symbol fi where

σ̂[tj ], 1 ≤ j ≤ ni are already defined.

Example 2.3.1. Let τ = (3) be a type, i.e. we have only ternary operation symbol, say

f . Let σ : {f} −→ Wτ (X) be defined by σ(f) = f(x2, x1, x3) ∈ Wτ (X3). Then σ is a

hypersubstitution of type τ = (3). Then we obtain

σ̂[f(x2, x1, f(x3, x2, x1))] = σ(f)(σ̂[x2], σ̂[x1], σ̂[f(x3, x2, x1)])

= f(x2, x1, x3)(σ̂[x2], σ̂[x1], σ̂[f(x3, x2, x1)])

= f(x2, x1, x3)(x2, x1, σ(f)(σ̂[x3], σ̂[x2], σ̂[x1]))

= f(x2, x1, x3)(x2, x1, f(x2, x1, x3)(x3, x2, x1))

= f(x2, x1, x3)(x2, x1, f(x2, x3, x1))

= f(x1, x2, f(x2, x3, x1)).

By using the induced maps σ̂, a binary operation ◦h can be defined on the set

Hyp(τ). For any hypersubstitutions σ1, σ2 ∈ Hyp(τ), σ1 ◦h σ2 := σ̂1 ◦ σ2 where ◦ denotes

the usual composition of mappings.

Let σid be the hypersubstitution which maps each ni-ary operation symbol fi to the

term fi(x1, . . . , xni). It turns out that Hyp(τ) = (Hyp(τ), ◦h, σid) is a monoid where σid

is the identity element.

Let M be a submonoid of the monoid of all hypersubstitutions of type τ and let V

be a variety of type τ . We called an identity s ≈ t ∈ IdV is M−hyperidentity if

∀σ ∈M(V |= σ̂[s] ≈ σ̂[t]).

We called the variety V is M−solid variety if

∀s ≈ t ∈ IdV, ∀σ ∈M(σ̂[s] ≈ σ̂[t] ∈ IdV ).

IfM is the monoid of all hypersubstitutions of type τ , then we calledM−hyperidentity
and M−solid variety is hyperidentity and solid variety, repectively.

2.4 The Monoid of all Generalized Hypersubstitutions

In 2000, S. Leeratanavalee and K. Denecke generalized the concepts of a hyper-

substitution and a hyperidentity to the concepts of a generalized hypersubstitution and
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a strong hyperidentity, respectively [16]. The set of all generalized hypersubstitutions

together with a binary operation and the identity hypersubstitution forms a monoid.

Let τ = (ni)i∈I be a type with the sequence of operation symbols (fi)i∈I . A gen-

eralized hypersubstitution of type τ is a mapping σ : {fi|i ∈ I} → Wτ (X) which does

not necessarily preserve the arity. We denote the set of all generalized hypersubstitutions

of type τ by HypG(τ). To define a binary operation on this set, we need the concept

of generalized superposition of terms Sm : Wτ (X)m+1 → Wτ (X) which is defined by the

following steps:

(i) If t = xj , 1 ≤ j ≤ m, then Sm(t, t1, ..., tm) = Sm(xj , t1, ..., tm) := tj .

(ii) If t = xj , m < j ∈ N, then Sm(t, t1, ..., tm) = Sm(xj , t1, ..., tm) := xj .

(iii) If t = fi(s1, s2, ..., sni), then

Sm(t, t1, ..., tm) := fi(S
m(s1, t1, ..., tm), ..., Sm(sni , t1, ..., tm)).

Every generalized hypersubstitution σ can be extended to a mapping σ̂ : Wτ (X)→
Wτ (X) defined as follows:

(i) σ̂[x] := x ∈ X,

(ii) σ̂[fi(t1, t2, ..., tni)] := Sni(σ(fi), σ̂[t1], ..., σ̂[tni ]), for any ni-ary operation symbol fi

and supposed that σ̂[tj ], 1 ≤ j ≤ ni are already defined.

Example 2.4.1. Let τ = (2), i.e. there is only one binary operation symbol, say f . Let

σ ∈ HypG(2) where σ(f) = f(x2, f(x3, x2)). Then

σ̂[f(f(x1, x5), x3)] = S2(σ(f), σ̂[f(x1, x5)], σ̂[x3])

= S2(f(x2, f(x3, x2)), S
2(σ(f), σ̂[x1], σ̂[x5]), x3)

= S2(f(x2, f(x3, x2)), S
2(f(x2, f(x3, x2)), x1, x5), x3)

= S2(f(x2, f(x3, x2)), f(x5, f(x3, x5)), x3)

= f(x3, f(x3, x3)).

Example 2.4.2. Let τ = (2, 3), i.e. we have one binary operation symbol and one ternary

operation symbol, say f and g, respectively. Let σ : {f, g} −→ W(2,3)(X) where σ(f) =

f(x1, g(x3, x1, x2)) and σ(g) = f(x4, x1). Then σ is a generalized hypersubstitution of
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type τ = (2, 3) which is not a hypersubstitution of type τ = (2, 3). Then we have

σ̂[f(g(x3, x2, x1), x5)] = S2(σ(f), σ̂[g(x3, x2, x1)], σ̂[x5])

= S2(f(x1, g(x3, x1, x2)), S
3(σ(g), σ̂[x3], σ̂[x2], σ̂[x1]), x5)

= S2(f(x1, g(x3, x1, x2)), S
3(f(x4, x1), x3, x2, x1), x5)

= S2(f(x1, g(x3, x1, x2)), f(x4, x3), x5)

= f(f(x4, x3), g(x3, f(x4, x3), x5)).

We define a binary operation ◦G on HypG(τ) by σ1 ◦G σ2 := σ̂1 ◦σ2 where ◦ denotes
the usual composition of mappings.

Example 2.4.3. Let τ = (3) be a type with an operation symbol f . Let σ, ρ ∈ HypG(3)

where σ(f) = f(x3, f(x2, x4, x5), x1) and ρ(f) = f(f(x4, x2, x5), x1, x2). Then

(σ ◦G ρ)(f) = (σ̂ ◦ ρ)(f)
= σ̂[f(f(x4, x2, x5), x1, x2)]

= S3(σ(f), σ̂[f(x4, x2, x5)], σ̂[x1], σ̂[x2])

= S3(σ(f), S3(σ(f), σ̂[x4], σ̂[x2], σ̂[x5]), x1, x2)

= S3(σ(f), S3(f(x3, f(x2, x4, x5), x1), x4, x2, x5), x1, x2)

= S3(σ(f), f(x5, f(x2, x4, x5), x4), x1, x2)

= S3(f(x3, f(x2, x4, x5), x1), f(x5, f(x2, x4, x5), x4), x1, x2)

= f(x2, f(x1, x4, x5), f(x5, f(x2, x4, x5), x4))

and

(ρ ◦G σ)(f) = (ρ̂ ◦ σ)(f)
= ρ̂[f(x3, f(x2, x4, x5), x1)]

= S3(ρ(f), ρ̂[x3], ρ̂[f(x2, x4, x5)], ρ̂[x1])

= S3(ρ(f), x3, S
3(ρ(f), ρ̂[x2], ρ̂[x4], ρ̂[x5]), x1)

= S3(ρ(f), x3, S
3(f(f(x4, x2, x5), x1, x2), x2, x4, x5), x1)

= S3(ρ(f), x3, f(f(x4, x4, x5), x2, x4), x1)

= S3(f(f(x4, x2, x5), x1, x2), x3, f(f(x4, x4, x5), x2, x4), x1)

= f(f(x4, f(f(x4, x4, x5), x2, x4), x5), x3, f(f(x4, x4, x5), x2, x4)).

We see that σ ◦G ρ �= ρ ◦G σ, so ◦G does not satisfy commutative law.
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Let σid be the hypersubstitution which maps each ni-ary operation symbol fi to the

term fi(x1, x2, ..., xni). In [16], S. Leeratanavalee and K. Denecke proved that:

Theorem 2.4.4 ([16]). For arbitrary terms t, t1, ..., tn ∈ Wτ (X) and for arbitrary gen-

eralized hypersubstitutions σ, σ1, σ2,

(i) Sn(σ̂[t], σ̂[t1], ..., σ̂[tn]) = σ̂[Sn(t, t1, ..., tn)],

(ii) (σ̂1 ◦ σ2)̂ = σ̂1 ◦ σ̂2.

Theorem 2.4.5 ([16]). HypG(τ) = (HypG(τ), ◦G, σid) is a monoid and the set of all

hypersubstitutions of type τ forms a submonoid of HypG(τ).

Next, for more convenience we will write HypG(τ) instead of the monoid HypG(τ).
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