
CHAPTER 3

Characterization of Some Special Elements in HypG(τ)

In the semigroup theory, the special elements in semigroup have studied diverse

such as regular element, quasi-regular element and idempotent element. In Chapter 2,

we have (Hyp(τ), ◦h, σid) and (HypG(τ), ◦G, σid) are a monoids. So we can characterized

these special elements of Hyp(τ) and HypG(τ). Th. Changphas characterize idempotent

elements and regular elements of the monoid of all hypersubstitutions of type τ [7]. W.

Puninagool and S. Leeratanavalee characterized some special elements of the monoid of

all generalized hypersubstitutions of type τ . Such as the following:

(i) Characterize the set of all idempotent elements of the monoid of all generalized

hypersubstitutions of type τ = (2) [22].

(ii) Characterize the set of all regular elements of the monoid of all generalized hyper-

substitutions of type τ = (2) [20].

(iii) Characterize the set of all idempotent and regular elements of the monoid of all

generalized hypersubstitutions of type τ = (n) [21].

Furthermore, all idempotent and regular elements of the monoid of all generalized hyper-

substitutions of type τ = (3) was studied by S. Sudsanit and S. Leeratanavalee [23]. In

2014, S. Sudsanit, S. Leeratanavalee and W. Puninagool characterized left-right regular

elements of the monoid of all generalized hypersubstitutions of type τ = (2) [24].

The main results of this thesis, we study on the factorisable monoid of generalized

hypersubstitutions of type τ . We know that a semigroup is factorisable if and only if it

is unit-regular semigroup. So in this chapter, at first we characterize the set of all unit

elements of the monoid of all generalized hypersubstitutions of type τ = (n). Then we

used the concepts of unit element and regular element as tools to determine the set of all

unit-regular of the monoid of all generalized hypersustitutions of type τ = (2) and type

τ = (n), respectively.

Moreover, we characterize the set of all completely regular elements of the monoid of

all generalized hypersubstitutions of type τ = (n) and we have that a completely regular

element is both left regular and right regular element of the monoid of all generalized
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hypersubstitutions of type τ = (n). Finally, we show that the set of all completely regular

elements and the set of all intra-regular elements of type τ = (2) are the same.

From now on, we introduce some notations which will be used throughout of this

thesis. Let τ = (n) be a type, that means we have only one n-ary operation, say f and

let t ∈ W(n)(X), we denote

σt := the generalized hypersubstitution σ of type τ = (n) which maps f to the term t,

var(t) := the set of all variables occurring in the term t,

vbt(x):= the number of occurrences of a variable x in t.

3.1 All Unit Elements in HypG(n)

In this section, we characterize all unit elements of the monoid of all generalized

hypersubstitutions of type τ = (n).

We fix a type τ = (n), i.e. we have only one n-ary operation, say f .

Lemma 3.1.1. Let σt ∈ HypG(n) where t = f(t1, t2, ..., tn) ∈ W(n)(X). If ti ∈ W(n)(X)\X
for some i ∈ {1, 2, ..., n}, then σt is not unit.

Proof. Let t = f(t1, ..., ti, ..., tn) ∈ W(n)(X) where ti ∈ W(n)(X)\X for some i ∈ {1, 2, ..., n}.
Let σs ∈ HypG(n) and s = f(s1, s2, ..., sn) where si ∈ W(n)(X) for all i ∈ {1, 2, ..., n}.
Consider

(σt ◦G σs)(f) = σ̂t[f(s1, s2, ..., sn)]

= Sn(f(t1, ..., ti, ..., tn), σ̂t[s1], σ̂t[s2], ..., σ̂t[sn])

= f(Sn(t1, σ̂t[s1], σ̂t[s2], ..., σ̂t[sn]), ..., S
n(ti, σ̂t[s1], σ̂t[s2], ..., σ̂t[sn]),

..., Sn(tn, σ̂t[s1], σ̂t[s2], ..., σ̂t[sn])).

Since ti ∈ W(n)(X)\X, so σ̂t[sj ] ∈ W(n)(X)\X for all j ∈ {1, 2, ..., n}. Then (σt◦Gσs)(f) �=
f(x1, x2, ..., xn) = σid(f). Hence σt ◦G σs �= σid for all σs ∈ HypG(n). Therefore σt is not

unit in HypG(n).

Example 3.1.2. Let τ = (2) and t = f(x1, f(x2, x3)). For each s = f(s1, s2) where

s1, s2 ∈ W(2)(X). Consider

(σt ◦G σs)(f) = σ̂t[f(s1, s2)]

= S2(f(x1, f(x2, x3)), σ̂t[s1], σ̂t[s2]) where σ̂t[s1], σ̂t[s2] ∈ W(2)(X)

= f(σ̂t[s1], f(σ̂t[s2], x3))

�= f(x1, x2) = σid(f).
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Hence σt /∈ U(HypG(2)).

Lemma 3.1.3. Let σt ∈ HypG(n) where t = f(xm1 , xm2 , ..., xmn) ∈ W(n)(X). If mi > n

for some i ∈ {1, 2, ..., n}, then σt is not unit in HypG(n).

Proof. Let t = f(xm1 , xm2 , ..., xmn) and mi > n for some i ∈ {1, 2, ..., n}. Then xmi ∈
X\Xn. Let σs ∈ HypG(n) where s = f(s1, s2, ..., sn).

Consider

(σt ◦G σs)(f) = σ̂t[f(s1, s2, ..., sn)]

= Sn(f(xm1 , xm2 , ..., xmn), σ̂t[s1], σ̂t[s2], ..., σ̂t[sn])

= f(Sn(xm1 , σ̂t[s1], σ̂t[s2], ..., σ̂t[sn]), S
n(xm2 , σ̂t[s1], σ̂t[s2],

..., σ̂t[sn]), ..., S
n(xmn , σ̂t[s1], σ̂t[s2], ..., σ̂t[sn])).

Since xmi ∈ X\Xn, so Sn(xmi,σ̂t[s1], σ̂t[s2], ..., σ̂t[sn]) = xmi . Then (σt ◦G σs)(f) �=
f(x1, x2, ..., xn) = σid(f) , i.e. σt ◦G σs �= σid for all σs ∈ HypG(n). Hence σt is not unit

in HypG(n).

Example 3.1.4. Let τ = (3) and t = f(x1, x4, x3). For each s = f(s1, s2, s3) where

s1, s2, s3 ∈ W(3)(X). Consider

(σt ◦G σs)(f) = σ̂t[f(s1, s2, s3)]

= S3(f(x1, x4, x3), σ̂t[s1], σ̂t[s2], σ̂t[s3])

where σ̂t[s1], σ̂t[s2], σ̂t[s3] ∈ W(3)(X)

= f(σ̂t[s1], x4, σ̂t[s3])

�= f(x1, x2, x3)

= σid(f).

Hence σt /∈ U(HypG(3)).

Theorem 3.1.5. An element σt ∈ U(HypG(n)) if and only if t = f(xπ(1), xπ(2), ..., xπ(n))

where π ∈ Sn and Sn is a set of all permutations of {1, 2, ..., n}.

Proof. Assume that σt ∈ U(HypG(n)), then there exists σs ∈ U(HypG(n)) such that

σt ◦Gσs = σid = σs ◦Gσt. By Lemma 3.1.1 and Lemma 3.1.3, if t = f(t1, t2, ..., tn) and s =

f(s1, s2, ..., sn) then t1, ..., tn, s1, ..., sn ∈ {x1, x2, ..., xn}. Let t = f(xπ(1), xπ(2), ..., xπ(n))
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and s = f(xπ′(1), xπ′(2), ..., xπ′(n)) where π, π′ : {1, 2, ..., n} → {1, 2, .., n}. Consider

σid(f) = (σt ◦G σs)(f)

f(x1, x2, ..., xn) = σ̂t[f(xπ′(1), xπ′(2), ..., xπ′(n))]

= Sn(f(xπ(1), xπ(2), ..., xπ(n)), xπ′(1), xπ′(2), ..., xπ′(n))

= f(xπ′(π(1)), xπ′(π(2)), ..., xπ′(π(n)))

= f(x(π′◦π)(1), x(π′◦π)(2), ..., x(π′◦π)(n))

and

σid(f) = (σs ◦G σt)(f)

f(x1, x2, ..., xn) = σ̂s[f(xπ(1), xπ(2), ..., xπ(n))]

= Sn(f(xπ′(1), xπ′(2), ..., xπ′(n)), xπ(1), xπ(2), ..., xπ(n))

= f(xπ(π′(1)), xπ(π′(2)), ..., xπ(π′(n)))

= f(x(π◦π′)(1), x(π◦π′)(2), ..., x(π◦π′)(n)).

Then π ◦ π′ = (1) = π′ ◦ π and π ◦ π′, π′ ◦ π are bijective. Next, we will show that π is

bijective. Let π(i) = π(j) for some i, j ∈ {1, 2, .., n}. Then

(π′ ◦ π)(i) = (π′(π(i)) = π′(π(j)) = (π′ ◦ π)(j).

Since π′ ◦ π is one-to-one, i = j. Thus π is one-to-one. Let i ∈ {1, 2, ..., n}. Since π ◦ π′
is onto, there exists j ∈ {1, 2, ..., n} such that (π ◦ π′)(j) = i. Then π(π′(j)) = i for some

π′(j) ∈ {1, 2, ..., n}. Hence π is onto, so π ∈ Sn.

Conversely, let σt ∈ HypG(n) where t = f(xπ(1), xπ(2), ..., xπ(n)) such that π ∈ Sn.

Since (Sn, ◦) is a group, there exists π′ ∈ Sn such that π ◦ π′ = (1) = π′ ◦ π. Let

σs ∈ HypG(n) where s = f(xπ′(1), xπ′(2), ..., xπ′(n)). Then

(σt ◦ σs)(f) = σ̂t[f(xπ′(1), xπ′(2), ..., xπ′(n))]

= f(x(π′◦π)(1), x(π′◦π)(2), ..., x(π′◦π)(n))

= f(x1, x2, ..., xn)

= σid(f).

Similarly, we have σs ◦ σt = σid. So σt ∈ U(HypG(n)).

Example 3.1.6. Let τ = (5) and u ∈ W(5)(X) \ X where u = f(x4, x1, x5, x2, x3). Let

π ∈ S5 such that π(1) = 4, π(2) = 1, π(3) = 5, π(4) = 2 and π(5) = 3. Then

u = f(x4, x1, x5, x2, x3) = f(xπ(1), xπ(2), xπ(3), xπ(4), xπ(5)).

17



There exists π−1 ∈ S5 such that π−1(1) = 2, π−1(2) = 4, π−1(3) = 5, π−1(4) = 1 and

π−1(5) = 3. Let

u−1 = f(xπ−1(1), xπ−1(2), xπ−1(3), xπ−1(4), xπ−1(5)) = f(x2, x4, x5, x1, x3).

Consider

(σu ◦G σu−1)(f) = σ̂u[f(x2, x4, x5, x1, x3)]

= S5(u, σ̂u[x2], σ̂u[x4], σ̂u[x5], σ̂u[x1], σ̂u[x3])

= S5(f(x4, x1, x5, x2, x3), x2, x4, x5, x1, x3)

= f(x1, x2, x3, x4, x5)

= σid(f)

and

(σu−1 ◦G σu)(f) = σ̂u−1 [f(x4, x1, x5, x2, x3)]

= S5(u−1, σ̂u−1 [x4], σ̂u−1 [x1], σ̂u−1 [x5], σ̂u−1 [x2], σ̂u−1 [x3])

= S5(f(x2, x4, x5, x1, x3), x4, x1, x5, x2, x3)

= f(x1, x2, x3, x4, x5)

= σid(f).

Hence σu−1 is an inverse of σu. Therefore σu, σu−1 ∈ U(HypG(5)).

By Theorem 3.1.5, we get

U(HypG(n)) := {σt ∈ HypG(n)|t = f(xπ(1), xπ(2), ..., xπ(n)) where π ∈ Sn}

is the set of all unit elements in HypG(n).

Corollary 3.1.7. |U(HypG(n))| = n!.

Corollary 3.1.8. U(HypG(2)) = {σf(x1,x2) = σid, σf(x2,x1)}.

3.2 All Unit-regular Elements in HypG(2)

In this section, we used the concepts of unit element, idempotent element and regular

element as tools to determine the set of all unit-regular of the monoid of all generalized

hypersubstitutions of type τ = (2).

First, we fix a type τ = (2) with the binary operation symbol f . Let σt ∈ HypG(2),

we denote
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R(HypG(2))1 := {σt|t = f(x2, t
′) where t′ ∈ W(2)(X) such that x1 /∈ var(t′)},

R(HypG(2))2 := {σt|t = f(t′, x1) where t′ ∈ W(2)(X) such that x2 /∈ var(t′)},
R(HypG(2))3 := {σt|t = f(x1, t

′) where t′ ∈ W(2)(X) such that x2 /∈ var(t′)},
R(HypG(2))4 := {σt|t = f(t′, x2) where t′ ∈ W(2)(X) such that x1 /∈ var(t′)},
R(HypG(2))5 := {σt|t ∈ {x1, x2, f(x1, x2), f(x2, x1)}} and

R(HypG(2))6 := {σt|var(t) ∩ {x1, x2} = ∅}.

In 2011, W. Puninagool and S. Leeratanavalee showed that:

6⋃
i=1

R(HypG(2))i is the

set of all regular elements in HypG(2) [20]. In 2008, W. Puninagool and S. Leeratanavalee

showed that:
6⋃

i=3

R(HypG(2))i \ {σf(x2,x1)} = E(HypG(2)) [22]. By Corollary 3.1.8 we get

U(HypG(2)) = {σf(x1,x2) = σid, σf(x2,x1)}.

Since
6⋃

i=1

R(HypG(2))i is a set of all regular elements in HypG(2), a set of all unit-

regular elements in HypG(2) is a subset of
6⋃

i=1

R(HypG(2))i . Next, we will determine the

set of all unit-regular elements in HypG(2).

Theorem 3.2.1.

6⋃
i=1

R(HypG(2))i is a set of all unit-regular elements in HypG(2).

Proof. Let σt ∈
6⋃

i=1

R(HypG(2))i , then σt ∈ R(HypG(2))1 or σt ∈ R(HypG(2))2 or σt ∈
6⋃

i=3

R(HypG(2))i \ {σf(x2,x1)} or σt = σf(x2,x1).

Case 1: σt ∈ R(HypG(2))1 . Then t = f(x2, t
′) where t′ ∈ W(2)(X) such that x1 /∈ var(t′).

Consider

(σt ◦G σf(x2,x1) ◦G σt)(f) = σ̂t[σ̂f(x2,x1)[f(x2, t
′)]]

= σ̂t[S
2(f(x2, x1), x2, σ̂f(x2,x1)[t

′])]

= σ̂t[f(σ̂f(x2,x1)[t
′], x2)]

= S2(f(x2, t
′), σ̂t[σ̂f(x2,x1)[t

′]], x2)

= f(x2, t
′) since x1 /∈ var(t′)

= σt(f).

Hence σt ◦G σf(x2,x1) ◦G σt = σt.
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Case 2: σt ∈ R(HypG(2))2 . Then t = f(t′, x1) where t′ ∈ W(2)(X) such that x2 /∈ var(t′).

Consider

(σt ◦G σf(x2,x1) ◦G σt)(f) = σ̂t[σ̂f(x2,x1)[f(t
′, x1)]]

= σ̂t[S
2(f(x2, x1), σ̂f(x2,x1)[t

′], x1)]

= σ̂t[f(x1, σ̂f(x2,x1)[t
′])]

= S2(f(t′, x1), x1, σ̂t[σ̂f(x2,x1)[t
′]])

= f(t′, x1) since x2 /∈ var(t′)

= σt(f).

Hence σt ◦G σf(x2,x1) ◦G σt = σt.

Case 3: σt ∈
6⋃

i=3

R(HypG(2))i \ {σf(x2,x1)} = E(HypG(2)). Then

σt ◦G σid ◦G σt = σt ◦G σt = σt.

Case 4: σt = σf(x2,x1). Then

σf(x2,x1) ◦G σf(x2,x1) ◦G σf(x2,x1) = σid ◦G σf(x2,x1) = σf(x2,x1).

Therefore, for every σt ∈
6⋃

i=1

R(HypG(2))i , there exists σu ∈ U(HypG(2)) such that σt ◦G

σu ◦G σt = σt. Hence

6⋃
i=1

R(HypG(2))i is a set of all unit-regular elements in HypG(2).

Then we get, for every element in HypG(2) is a regular element if and only if it is

a unit-regular element.

Remark 3.2.2.
6⋃

i=1

R(HypG(2))i is not closed under ◦G, i.e.
6⋃

i=1

R(HypG(2))i is not a sub-

semigroup of HypG(2).

Example 3.2.3. (1) Let σt ∈ R(HypG(2))1 such that t = f(x2, t
′) where t′ = f(x3, x2).

Then

(σt ◦G σt)(f) = σ̂t[f(x2, f(x3, x2))]

= S2(f(x2, f(x3, x2)), σ̂t[x2], σ̂t[f(x3, x2)])

= S2(f(x2, f(x3, x2)), x2, f(x2, f(x3, x2)))

= f(f(x2, f(x3, x2)), f(x3, f(x2, f(x3, x2)))).
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So, σt ◦G σt /∈
6⋃

i=1

R(HypG(2))i .

(2) Let σt ∈ R(HypG(2))2 such that t = f(t′, x1) where t′ = f(x1, x5). Then

(σt ◦G σt)(f) = σ̂t[f(f(x1, x5), x1)]

= S2(f(f(x1, x5), x1), σ̂t[f(x1, x5)], σ̂t[x1])

= S2(f(f(x1, x5), x1), f(f(x1, x5), x1), x1)

= f(f(f(f(x1, x5), x1), x5), f(f(x1, x5), x1)).

So, σt ◦G σt /∈
6⋃

i=1

R(HypG(2))i .

(3) Let σt ∈ R(HypG(2))3 and σs ∈ R(HypG(2))4 such that t = f(x1, t
′) and s = f(s′, x2)

where t′ = f(x5, x1) and s′ = f(x2, x3).

Consider

(σt ◦G σs)(f) = σ̂t[f(f(x2, x3), x2)]

= S2(f(x1, f(x5, x1)), σ̂t[f(x2, x3)], σ̂t[x2])

= S2(f(x1, f(x5, x1), f(x2, f(x5, x2)), x2)

= f(f(x2, f(x5, x2)), f(x5, f(x2, f(x5, x2)))).

So σt ◦G σs /∈
6⋃

i=1

R(HypG(2))i .

Consider

(σs ◦G σt)(f) = σ̂s[f(x1, f(x5, x1))]

= S2(f(f(x2, x3), x2), σ̂s[x1], σ̂s[f(x5, x1)])

= S2(f(f(x2, x3), x2), x1, f(f(x1, x3), x1))

= f(f(f(f(x1, x3), x1), x3), f(f(x1, x3), x1)).

So σs ◦G σt /∈
6⋃

i=1

R(HypG(2))i .

By (1), (2) or (3), we have

6⋃
i=1

R(HypG(2))i is not a subsemigroup of HypG(2).

3.3 All Unit-regular Elements in HypG(n)

In this section, we determine the set of all unit-regular of the monoid of all general-

ized hypersubstitutions of type τ = (n). Moreover, we will show that it is not a submonoid

of the monoid of all generalized hypersubstitutions of type τ = (n).
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For a type τ = (n) with n-ary operation f , we define:

Definition 3.3.1. Let t ∈ W(n)(X), a subterm of t is defined inductively by the following.

(i) Every variable x ∈ var(t) is a subterm of t.

(ii) If t = f(t1, ..., tn), then t itself, t1, ..., tn are subterm of t.

(iii) If t′, t′′ ∈ W(n)(X) which t′′ is a subterm of t′ and t′ is a subterm of t, then t′′ is a

subterm of t.

We denote the set of all subterms of t by sub(t).

Example 3.3.2. Let τ = (2) and t ∈ W(2)(X) where t = f(t1, t2) such that t1 =

f(x3, f(x1, x4)) and t2 = f(f(x7, x1), f(x2, x1)). Then

sub(t1) = {t1, f(x1, x4), x1, x3, x4},
sub(t2) = {t2, f(x7, x1), f(x2, x1), x1, x2, x7},
sub(t) = {t, t1, t2, f(x1, x4), f(x7, x1), f(x2, x1), x1, x2, x3, x4, x7}.

Lemma 3.3.3. For each σs, σt ∈ HypG(n) where t = f(t1, ..., tn) such that ti1 = xj1 , ..., tim

= xjm for some i1, . . . , im, j1, . . . , jm ∈ {1, ..., n} and var(t) ∩ Xn = {xj1 , ..., xjm}. Let

h1, ..., hp ∈ {j1, . . . , jm} and hl �= hr if l �= r. Then σt ◦G σs ◦G σt = σt if and only if

s = f(s1, ..., sn) where shq = sjl = xil for all q ∈ {1, ..., p} and for some l ∈ {1, ...,m}.

Proof. Assume that σt ◦Gσs ◦Gσt = σt and let s = f(s1, ..., sn). Suppose that, there exists

shq = sjl for some q ∈ {1, ..., p} and for some l ∈ {1, ...,m} such that sjl ∈ Wn(X) \ {xil}
for some l ∈ {1, ...,m}. Then

(σt ◦G σs ◦G σt)(f) = σ̂t[σ̂s[t]]

= σ̂t[S
n(f(s1, ..., sn), σ̂s[t1], ..., σ̂s[tn])]

= σ̂t[f(w1, ..., wn)] where wi = Sn(si, σ̂s[t1], ..., σ̂s[tn])

for all i ∈ {1, ..., n}
= Sn(f(t1, ..., tn), σ̂t[w1], ..., σ̂t[wn])

= f(u1, ..., un) where ui = Sn(ti, σ̂t[w1], ..., σ̂t[wn])

for all i ∈ {1, ..., n}.

Since til = xjl for all l ∈ {1, ...,m}, thus uil = Sn(til , σ̂t[w1], ..., σ̂t[wn]) = σ̂t[wjl ]. Since

wjl = Sn(sjl , σ̂s[t1], ..., σ̂s[tn]) and sjl �= xil , wjl �= σ̂s[til ] = xjl , we get uil = σ̂t[wjl ] �= xjl ,
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and then f(u1, ..., un) �= t. This is a contradiction. Hence shq = sjl = xil for all l ∈
{1, ...,m}.

Conversely, let s = f(s1, ..., sn) where shq = sjl = xil for all q ∈ {1, ..., p} and for

some l ∈ {1, ...,m}. Then (σt ◦G σs ◦G σt)(f) = σ̂t[f(w1, ..., wn)] where wi = Sn(si, σ̂s[t1],

..., σ̂s[tn]) for all i ∈ {1, ..., n}. Since shq = sjl = xil for all q ∈ {1, ..., p} and for some

l ∈ {1, ...,m}, wjl = Sn(sjl , σ̂s[t1], ..., σ̂s[tn]) = Sn(xil , σ̂s[t1], ..., σ̂s[tn]) = σ̂s[til ] = xjl , we

get

σ̂t[f(w1, ..., wn)] = Sn(f(t1, ..., tn), σ̂t[w1], ..., σ̂t[wn]) = f(t1, ..., tn) = t.

Hence σt ◦G σs ◦G σt = σt.

Example 3.3.4. Let τ = (5) and let σt ∈ HypG(5) such that t = f(t′, x1, x4, t′, x2)

where t′ ∈ W(5)(X) and var(t′) ∩ X5 = {x1, x2, x4}. Choose σs ∈ HypG(5) such that

s = f(x2, x5, s
′, x3, s′′) where s′, s′′ ∈ W(5)(X) \X5. Then

(σt ◦G σs ◦G σt)(f) = σ̂t[σ̂s[t]]

= σ̂t[S
5(f(x2, x5, s

′, x3, s′′), σ̂s[t′], σ̂s[x1], σ̂s[x4], σ̂s[t′], σ̂s[x2])]

= σ̂t[S
5(f(x2, x5, s

′, x3, s′′), σ̂s[t′], x1, x4, σ̂s[t′], x2)]

= σ̂t[f(x1, x2, s
′, x4, s′)]

= S5(f(t′, x1, x4, t′, x2), σ̂s[x1], σ̂s[x2], σ̂s[s′], σ̂s[x4], σ̂s[s′′])

= S5(f(t′, x1, x4, t′, x2), x1, x2, σ̂s[s′], x4, σ̂s[s′′])

= f(t′, x1, x4, t′, x2) = σt(f).

We see that σt is a regular element of HypG(5). If {s′, s′′} = {x1, x5} then σs ∈
U(HypG(5)) and so σt ◦G σs ◦G σt = σt, i.e. σt is a unit-regular element of HypG(5).

Let σt ∈ HypG(n), we denote

R1 := {σxi |xi ∈ X},
R2 := {σt|t ∈ W(n)(X) \X and var(t) ∩Xn = ∅},
R3 := {σt|t ∈ W(n)(X) \X such that t = f(t1, ..., tn) where ti1 = xj1 , ..., tim = xjm

for some i1, ..., im, j1, ..., jm ∈ {1, ..., n} and var(t) ∩Xn = {xj1 , ..., xjm}}.

Example 3.3.5. Let τ = (3) and let t = f(f(x4, x4, x4), x5, x6), s = f(x3, f(x4, x3,

x4), x2) and w = f(x3, f(x1, x3, x4), x2). Then σt ∈ R2, σs ∈ R3 but σw /∈
3⋃

i=1

Ri, so

3⋃
i=1

Ri � HypG(3). It is clear that σt is a regular element in HypG(3). By Lemma 3.3.3,

we get σs is a regular element but σw is not a regular element in HypG(3).
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By the definition of R1 and R2 it is easy to check that for every element in R1 ∪R2

is a regular element in HypG(n). In 2010, W. Puninagool and S. Leeratanavalee [21]

characterized the regular generalized hypersubstitutions of type τ = (n).

Theorem 3.3.6 ([21]). Let t = f(t1, t2, ..., tn) ∈ W(n)(X) and var(t) ∩ Xn = {xj1 , xj2 ,
..., xjm}. Then σt is regular if and only if there exist i1, i2, ..., im ∈ {1, 2, ..., n} such that

ti1 = xj1 , ti2 = xj2 , ..., tim = xjm.

By Theorem 3.3.6, we have every element in R3 is regular. Then

3⋃
i=1

Ri is the set of

all regular elements in HypG(n).

For each σt ∈ HypG(n), we denote

E := {σt|t = f(t1, ..., tn) where ti1 = xi1 , ..., tim = xim for some i1, ..., im ∈ {1, ..., n}
and var(t) ∩Xn = {xi1 , ..., xim}}. Clearly, E ⊂ R3.

Example 3.3.7. Let τ = (3) and σt ∈ HypG(3) where t = f(x1, f(x4, x1, x5), x3). Then

σt ∈ E ⊂ R3. Consider

(σt ◦G σt)(f) = σ̂t[f(x1, f(x4, x1, x5), x3)]

= S3(t, σ̂t[x1], σ̂t[f(x4, x1, x5)], σ̂t[x3])

= S3(t, x1, S
3(t, σ̂t[x4], σ̂t[x1], σ̂t[x5]), x3)

= S3(t, x1, S
3(f(x1, f(x4, x1, x5), x3), x4, x1, x5), x3)

= S3(t, x1, f(x4, f(x4, x4, x5), x5), x3)

= S3(f(x1, f(x4, x1, x5), x3), x1, f(x4, f(x4, x4, x5), x5), x3)

= f(x1, f(x4, x1, x5), x3)

= σt(f).

Hence σt ∈ E(HypG(3)).

Let s = f(x3, f(x4, x1, x5), x1). Then σs ∈ R3 \ E. Consider

(σs ◦G σs)(f) = σ̂s[f(x3, f(x4, x1, x5), x1)]

= S3(s, σ̂s[x3], σ̂s[f(x4, x1, x5)], σ̂s[x1])

= S3(s, x3, S
3(s, σ̂s[x4], σ̂s[x1], σ̂s[x5]), x1)

= S3(s, x3, S
3(f(x3, f(x4, x1, x5), x1), x4, x1, x5), x1)

= S3(s, x3, f(x5, f(x4, x4, x5), x4), x1)
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= S3(f(x3, f(x4, x1, x5), x1), x3, f(x5, f(x4, x4, x5), x4), x1)

= f(x1, f(x4, x3, x5), x3)

�= σs(f).

Hence σs /∈ E(HypG(3)).

By the definition of R1 and R2 it is easy to check that for all elements in R1 ∪ R2

are idempotent elements in HypG(n). In 2010, W. Puninagool and S. Leeratanavalee [21]

characterized the idempotent generalized hypersubstitutions of type τ = (n).

Theorem 3.3.8 ([21]). Let t = f(t1, t2, ..., tn) ∈ W(n)(X) and var(t) ∩ Xn = {xi1 , xi2 ,
..., xim}. Then σt is idempotent if and only if tik = xik for all k ∈ {1, 2, ...,m}.

By Theorem 3.3.8, we have that for every element in E is idempotent. It is clear

that E(HypG(n)) = R1 ∪R2 ∪ E. By Example 3.3.7, E(HypG(n)) �

3⋃
i=1

Ri.

Remark 3.3.9. E(HypG(n)) is not subsemigroup of HypG(n).

Example 3.3.10. Let σt, σs ∈ E(HypG(3)) where t = f(x5, x2, x4) and s = f(x1, f(x1,

x1, x1), x5).

Consider

(σt ◦G σs)(f) = σ̂t[f(x1, f(x1, x1, x1), x5)]

= S3(t, σ̂t[x1], σ̂t[f(x1, x1, x1)], σ̂t[x5])

= S3(t, x1, S
3(t, σ̂t[x1], σ̂t[x1], σ̂t[x1]), x5)

= S3(t, x1, S
3(f(x5, x2, x4), x1, x1, x1), x5)

= S3(t, x1, f(x5, x1, x4), x5)

= S3(f(x5, x2, x4), x1, f(x5, x1, x4), x5)

= f(x5, f(x5, x1, x4), x4).

Then σt ◦G σs /∈ E(HypG(3)). So E(HypG(3)) is not closed under ◦G, i.e. E(HypG(3)) is

not a subsemigroup of HypG(3).

By the definition of a regular element and a unit-regular element, we get the set

of all unit-regular elements is a subset of the set of all regular elements. From now on,

we show that the set of all unit-regular elements and the set of all regular elements in

HypG(n) are the same.
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Theorem 3.3.11.

3⋃
i=1

Ri is a set of all unit-regular elements in HypG(n).

Proof. Let σt ∈
3⋃

i=1

Ri. If σt ∈ R1 ∪ R2, then σt ∈ E(HypG(n)). So σt ◦G σid ◦G σt =

σt ◦G σt = σt. If σt ∈ R3, then t = f(t1, ..., tn) where ti1 = xj1 , ..., tim = xjm for

some i1, ..., im, j1, ..., jm ∈ {1, ..., n} and var(t) ∩ Xn = {xj1 , ..., xjm}. Choose σu ∈
U(HypG(n)) where u = f(u1, ..., un) = f(xπ(1), ..., xπ(n)) for some π ∈ Sn such that

π(j1) = i1, ..., π(jm) = im. Then ujl = xπ(jl) = xil for all l ∈ {1, ...,m}. By Lemma 3.3.3,

σt ◦G σu ◦G σt = σt. Hence σt is a unit-regular element in HypG(n). Since

3⋃
i=1

Ri is a

set of all regular elements and all its elements are unit-regular, so

3⋃
i=1

Ri is a set of all

unit-regular elements in HypG(n).

Therefore, for every element in HypG(n) is a regular element if and only if it is a

unit-regular element.

We have

3⋃
i=1

Ri is a proper subset of HypG(n), i.e. HypG(n) is not a regular semi-

group. Next, we will prove that

3⋃
i=1

Ri is not closed under ◦G. Firstly, we construct some

tools used for this proof. We define:

Definition 3.3.12. Let t ∈ W(n)(X) \ X where t = f(t1, ..., tn) for some t1, ..., tn ∈
W(n)(X). For each s ∈ sub(t), s �= t, sequences of s in t, denoted by seqt(s), is defined by

seqt(s) = {(i1, ..., im)|m ∈ N and s = πim ◦ ... ◦ πi1(t)}

where πil : W(n)(X) \X → W(n)(X) with πil(f(t1, ..., tn)) = til . Maps πil are defined for

il = 1, 2, ..., n.

Example 3.3.13. Let t ∈ W(4)(X) where t = f(t1, t2, t3, t4) such that t1 = f(x3, x1, s, x4),

t2 = x4, t3 = f((x7, s, x1, x4), x4, f(x8, f(x3, x1, s, x4), x2, f(x3, x1, s, x4)), s) and t4 = s

for some s ∈ W(4)(X). Then

seqt(s) = {(1, 3), (3, 1, 2), (3, 3, 2, 3), (3, 3, 4, 3), (3, 4), (4)},
seqt3(s) = {(1, 2), (3, 2, 3), (3, 4, 3), (4)},
seqt(t1) = {(1), (3, 3, 2), (3, 3, 4)},
seqt(x4) = {(1, 4), (2), (3, 1, 3)}.

Lemma 3.3.14. Let t, s ∈ W(n)(X) \X, x ∈ var(t) and var(s) ∩Xn = {xz1 , ..., xzk}. If

(i1, ..., im) ∈ seqt(x) where i1, ..., im ∈ {z1, ..., zk} then x ∈ var(σ̂s[t]) = var(σs ◦G σt) and
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there is (ai1 , ..., aim) ∈ seqσ̂s[t](x) where aij is a sequence of natural numbers j1, ..., jh such

that (j1, ..., jh) ∈ seqs(xij ) for all j ∈ {1, ...,m}.

Proof. Let t = f(t1, ..., tn) for some t1, ..., tn ∈ W(n)(X) and (i1, ..., im) ∈ seqt(x) where

i1, ..., im ∈ {z1, ..., zk}. Let us proceed by mathematical induction on m. If (i1) ∈ seqt(x)

where i1 ∈ {z1, ..., zk}, then x = πi1(t) = ti1 where ti1 ∈ {t1, ..., tn}. Hence σ̂s[ti1 ] =

σ̂s[x] = x. Consider

σs ◦G σt(f) = σ̂s[t] = Sn(s, σ̂s[t1], ..., σ̂s[tn])

Since xi1 ∈ var(s) ∩ Xn, x = σ̂s[ti1 ] ∈ var(σ̂s[t]) and there is (ai1) ∈ seqσ̂s[t](x) where

ai1 is a sequence of natural numbers j1, ..., jh such that (j1, ..., jh) ∈ seqs(xi1). Let m

be a natural number and assume that, for each u ∈ W(n)(X) \ X, x ∈ var(u) and

(l1, ..., lp) ∈ sequ(x) where l1, ..., lp ∈ {z1, ..., zk}, then x ∈ var(σ̂s[u]) = var(σs ◦G σu)

and there is (al1 , ..., alp) ∈ seqσ̂s[u](x) where alq is a sequence of natural numbers r1, ..., rh∗

such that (r1, ..., rh∗) ∈ seqs(xlq) for all q ∈ {1, ..., p} is true for all natural numbers

p < m. If (i1, ..., im) ∈ seqt(x) where i1, ..., im ∈ {z1, ..., zk} , then x = πim ◦ ... ◦ πi1(t) =
πim ◦ ... ◦ πi2(ti1), i.e. x ∈ var(ti1) and (i2, ..., im) ∈ seqti1 (x). By our assumption, we

get x ∈ var(σ̂s[ti1 ]) and there is (ai2 , ..., aim) ∈ seqσ̂s[ti1 ](x) where aij is a sequence of

natural numbers j1, ..., jh such that (j1, ..., jh) ∈ seqs(xij ) for all j ∈ {2, ...,m}. Since

xi1 ∈ var(s) ∩Xn, σ̂s[ti1 ] ∈ sub(Sn(s, σ̂s[t1], ..., σ̂s[tn])) = sub(σ̂s[t]) and seqσ̂s[t](σ̂s[ti1 ]) =

seqs(xi1). Hence x ∈ var(σ̂s[t]) and there is (ai1 , ai2 , ..., aim) ∈ seqσ̂s[t](x) where aij

is a sequence of natural numbers j1, ..., jh such that (j1, ..., jh) ∈ seqs(xij ) for all j ∈
{1, 2, ...,m}.

Theorem 3.3.15. Let t = f(t1, ..., tn) where ti1 = xj1 , ..., tim = xjm for some i1, ..., im,

j1, ..., jm ∈ {1, ..., n} and var(t) ∩ Xn = {xj1 , ..., xjm}. If xjl ∈ var(tk) for some l ∈
{1, ...,m} and k ∈ {1, ..., n}\{i1, ..., im} where (k1, ..., kp) ∈ seqtk(xjl) for some k1, ..., kp ∈
{1, ..., n} \ {il} then there exists σs ∈ HypG(n) such that σs ◦G σt is not a unit-regular

element in HypG(n).

Proof. Assume that the condition holds. Since (k1, ..., kp) ∈ seqtk(xjl), we get (k, k1, ...,

kp) ∈ seqt(xjl). Let h1, ..., hq ∈ {k, k1, ..., kp} and hl �= hr if l �= r. Then q ≤ n. Choose

σs ∈ HypG(n) where s = f(s1, ..., sn) such that s1 = xh1 , ..., sq = xhq and sq+1, ..., sn ∈
W(n)(X) and var(sr)∩Xn = ∅ for all r ∈ {q+1, ..., n}. Then si �= xil for all i ∈ {1, ..., n}.
Consider

(σs ◦G σt)(f) = σ̂s[f(t1, ..., tn)] = Sn(f(s1, .., sn), σ̂s[t1], ..., σ̂s[tn]) = f(u1, ..., un)
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where ui = Sn(si, σ̂s[t1], ..., σ̂s[tn]) for all i ∈ {1, ..., n}. Since si �= xil , ui �= xjl for all

i ∈ {1, ..., n}. By Lemma 3.3.14, we get xjl ∈ var(σs ◦G σt) such that xjl ∈ var(uj) where

uj ∈ W(n)(X) \ X for some j ∈ {1, ..., n}. Hence σs ◦G σt /∈
3⋃

i=1

Ri, so σs ◦G σt is not a

unit-regular element in HypG(n).

Example 3.3.16. Let τ = (3) and σt ∈
3⋃

i=1

Ri where t = f(x2, f(f(x4, x4, x5), x2, x5),

f(x5, x2, x5)). Choose σs ∈ R3 where s = f(x2, x3, x4). Consider

(σs ◦G σt)(f) = σ̂s[f(x2, f(f(x4, x4, x5), x2, x5), f(x5, x2, x5))]

= S3(s, x2, f(x2, x5, x4), f(x2, x5, x4))

= f(f(x2, x5, x4)), f(x2, x5, x4), x4).

We see that σs ◦Gσt /∈
3⋃

i=1

Ri. So σs ◦Gσt is not a unit-regular element in HypG(3). Hence

3⋃
i=1

Ri is not closed under ◦G.

Therefore
3⋃

i=1

Ri is not unit-regular submonoid and it is not regular submonoid of

HypG(n).

3.4 All Completely Regular Elements in HypG(n)

In semigroup theory, the principle special study of a regular element are inverse

of an element and a completely regular element with a great diversity of their various

generalization.

In the monoid of all generalized hypersubstitutions, a regular element was studied

by W. Puninagool and S. Leeratanavalee in 2010 [21]. The main tool used to study a

regular element of the monoid of all generalized hypersubstitutions is the concept of a

regular element of the monoid of all hypersubstitutions. The concept of a regular element

of the monoid of all hypersubstitutions originated by Th. Changphas and K. Denecke [7].

In this section, we used the concepts of regular element as tools to determine the

set of all completely regular elements of the monoid of all generalized hypersubstitutions

of type τ = (n) and we have that a completely regular element is both left regular and

right regular element of the monoid of all generalized hypersubstitutions of type τ = (n).

Denote R1, R2, R3 and E as in Section 3.3. Then

3⋃
i=1

Ri is the set of all regular ele-

ments in HypG(n). By the definition of completely regular we get the set of all completely
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regular elements is a subset of

3⋃
i=1

Ri.

In 2010, W. Puninagool and S. Leeratanavalee showed that E(HypG(n)) = R1 ∪
R2 ∪E is the set of all idempotent elements in HypG(n) such that E(HypG(n)) ⊂

3⋃
i=1

Ri

[21].

Theorem 3.4.1. For each σt ∈ E(HypG(n)), σt is a completely regular element in

HypG(n).

Proof. The proof is obvious.

Let Sn be the set of all permutations of {1, 2, . . . , n} and let σt ∈ HypG(n). By

Section 3.1, we have

U(HypG(n)) := {σt ∈ HypG(n)|t = f(xπ(1), ..., xπ(n)) where π ∈ Sn}

is the set of all unit elements in HypG(n). We see that U(HypG(n)) ⊂ R3 ⊂
3⋃

i=1

Ri.

Theorem 3.4.2. For each σt ∈ U(HypG(n)), σt is a completely regular element in

HypG(n).

Proof. Let σt ∈ U(HypG(n)). Then there exists σt−1 ∈ U(HypG(n)) ⊆ HypG(n) such

that σt ◦G σt−1 = σid = σt−1 ◦G σt and σt ◦G σt−1 ◦G σt = σt.

Let σt ∈ HypG(n), we denote

CR(R3) := {σt|t = f(t1, ..., tn) and ti1 = xπ(i1), ..., tim = xπ(im) where π is a bijective

map on {i1, ..., im} for some i1, . . . , im ∈ {1, ..., n} and var(t) ∩Xn = {xπ(i1), ..., xπ(im)}}.
Then we have (E ∪ U(HypG(n))) ⊆ CR(R3) ⊂ R3.

Example 3.4.3. Let τ = (5) and t = f(t1, t2, t3, t4, t5) where t1 = x3, t2 = f(x6, x6,

x3, x6, x6), t3 = x4, t4 = x1 and t5 = x3. Let π be a bijective map on {1, 3, 4} where

π(1) = 3, π(3) = 4 and π(4) = 1. Then t1 = xπ(1), t3 = xπ(3) and t4 = xπ(4). So

σt ∈ CR(R3).

Theorem 3.4.4. For each σt ∈ CR(R3), σt is a completely regular element in HypG(n).

Proof. Let σt ∈ CR(R3). Then t = f(t1, ..., tn) and ti1 = xπ(i1), ..., tim = xπ(im) where

π is a bijective map on {i1, ..., im} for some i1, . . . , im ∈ {1, ..., n} and var(t) ∩ Xn =

{xπ(i1), ..., xπ(im)}. Let s ∈ W(n)(X) where s = f(s1, ..., sn) such that sπ(i1) = xi1 , ...,

sπ(im) = xim . Let tk ∈ sub(tj) and sk ∈ sub(sj) for all j ∈ {1, .., n} \ {i1, ..., im} and
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k ∈ {1, .., n}. If var(tk) ∩ Xn = ∅ then we choose sk = tk. And, if tk = xπ(il) and

π(ip) = il for some ip, il ∈ {i1, .., im} we choose sk = xip . By Lemma 3.3.3, we have

σt ◦G σs ◦G σt = σt. Next, we will show that σt ◦G σs = σs ◦G σt. Consider

(σt ◦G σs)(f) = Sn(f(t1, ..., tn), σ̂t[s1], ..., σ̂t[sn]) = f(w1, ..., wn)

where wi = Sn(ti, σ̂t[s1], ..., σ̂t[sn]) for all i ∈ {1, .., n}. And consider

(σs ◦G σt)(f) = Sn(f(s1, ..., sn), σ̂s[t1], ..., σ̂s[tn]) = f(u1, ..., un)

where ui = Sn(si, σ̂s[t1], ..., σ̂s[tn]) for all i ∈ {1, .., n}.
Case 1: il ∈ {i1, ..., im}.
Since π is a bijective map on {i1, ..., im}, there exists ip ∈ {i1, .., im} such that π(ip) = il.

Then

uil = Sn(sil , σ̂s[t1], ..., σ̂s[tn]) = Sn(xip , σ̂s[t1], ..., σ̂s[tn]) = σ̂s[tip ] = xπ(ip) = xil

and

wil = Sn(til , σ̂t[s1], ..., σ̂t[sn]) = Sn(xπ(il), σ̂t[s1], ..., σ̂t[sn]) = σ̂t[sπ(il)] = xil .

So uil = wil for all l ∈ {1, ...,m}.
Case 2: j ∈ {1, .., n} \ {i1, ..., im}.
Let tk ∈ sub(tj) and sk ∈ sub(sj) for all k ∈ {1, ..., n}. Then wj = Sn(tj , σ̂t[s1], ..., σ̂t[sn])

and uj = Sn(sj , σ̂s[t1], ..., σ̂s[tn]). We put w′k = Sn(tk, σ̂t[s1], ..., σ̂t[sn]) and u′k = Sn(sk,

σ̂s[t1], ..., σ̂s[tn]) for all k ∈ {1, ..., n}. If var(tk)∩Xn = ∅, then w′k = tk and u′k = sk = tk.

If tk = xπ(il) and π(ip) = il, then

w′k = Sn(tk, σ̂t[s1], ..., σ̂t[sn]) = Sn(xπ(il), σ̂t[s1], ..., σ̂t[sn]) = σ̂t[sπ(il)] = xil

and

u′k = Sn(sk, σ̂s[t1], ..., σ̂s[tn]) = Sn(xip , σ̂s[t1], ..., σ̂s[tn]) = σ̂s[tip ] = xπ(ip) = xil .

So wj = uj for all j ∈ {1, .., n} \ {i1, ..., im}.
Hence f(w1, ..., wn) = f(u1, ..., un), so σt ◦G σs = σs ◦G σt. Therefore σt is a

completely regular element in HypG(n).

Lemma 3.4.5. Let t = f(t1, ..., tn) where ti1 = xj1 , ..., tim = xjm for some i1, . . . , im,

j1, . . . , jm ∈ {1, ..., n} and var(t) ∩Xn = {xj1 , ..., xjm}. If there exists l ∈ {1, ...,m} such

that til = xjl where il /∈ {j1, ..., jm}, then σt �= σs ◦G σ2
t for all σs ∈ HypG(n).

Proof. Assume that the condition holds. Consider

(σt ◦G σt)(f) = σ̂t[t] = Sn(f(t1, ..., tn), σ̂t[t1], ..., σ̂t[tn]) = f(u1, ..., un)
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where ui = Sn(ti, σ̂t[t1], ..., σ̂t[tn]) for all i ∈ {1, ..., n}. We have ui = Sn(ti, σ̂t[t1],

..., σ̂t[tn]) ∈ {xj1 , ..., xjm} if and only if ti = xik for some k ∈ {1, ...,m}. Since il /∈
{j1, ..., jm}, ti �= xil for all i ∈ {1, ..., n}. So ui �= xjl . Hence σ2

t (f) = f(u1, ..., un) where

ui �= xjl for all i ∈ {1, ..., n}. Let σs ∈ HypG(n). Next, we will show that σt �= σs ◦G σ2
t . If

s = xi where xi ∈ X, then (σs ◦Gσ2
t )(f) = xj �= σt(f) for some xj ∈ X. If s = f(s1, ..., sn)

where s1, ..., sn ∈ W(n)(X), then

(σs ◦G σ2
t )(f) = σ̂s[f(u1, ..., un)]

= Sn(f(s1, ..., sn), σ̂s[u1], ..., σ̂s[un])

= f(w1, ..., wn)

where wi = Sn(si, σ̂s[u1], ..., σ̂s[un]) for all i ∈ {1, ..., n}. Since ui �= xjl for all i ∈ {1, ..., n},
σ̂s[ui] �= xjl . So wi �= xjl for all i ∈ {1, ..., n}. Hence f(w1, ..., wn) �= f(t1, ..., tn), so

σt �= σs ◦G σ2
t .

Theorem 3.4.6. Let CR(HypG(n)) := CR(R3) ∪ R1 ∪ R2. Then CR(HypG(n)) is the

set of all completely regular elements in HypG(n).

Proof. By Theorem 3.4.1 and Theorem 3.4.4, every element in CR(HypG(n)) is completely

regular. Let σt be a regular element where σt /∈ CR(HypG(n)). Then σt ∈ R3 \ CR(R3).

By Lemma 3.4.5, σt �= σs ◦G σ2
t for all σs ∈ HypG(n). Then σt �= (σ2

t ◦G σu) ◦G σ2
t

where σ2
t ◦G σu ∈ HypG(n). By Theorem 2.1.3, σt is not a completely regular element

in HypG(n). Therefore CR(HypG(n)) is the set of all completely regular elements in

HypG(n).

Corollary 3.4.7. Let σt ∈ CR(HypG(n)). Then σt is both left regular and right regular

element in HypG(n), and σt is an intra-regular element in HypG(n).

Corollary 3.4.8. If σt ∈ R3 \CR(R3), then σt is not a left regular element in HypG(n).

Example 3.4.9. Let τ = (3) and let σt ∈ HypG(3) where t = f(x3, f(x4, x4, x4), x5) then

σt ∈ R3 \ CR(HypG(3)). Consider

(σt ◦G σt)(f) = σ̂t[f(x3, f(x4, x4, x4), x5)]

= S3(t, σ̂t[x3], σ̂t[f(x3, f(x4, x4, x4), x5)], σ̂t[x5])

= S3(t, x3, S
3(t, σ̂s[x4], σ̂t[x4], σ̂t[x4]), x5)

= S3(t, x3, S
3(f(x3, f(x4, x4, x4), x5), x4, x4, x4), x5)
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= S3(t, x3, f(x4, f(x4, x4, x4), x5), x5)

= S3(f(x3, f(x4, x4, x4), x5), x3, f(x4, f(x4, x4, x4), x5), x5)

= f(x5, f(x4, x4, x4), x5).

Let σs ∈ HypG(3), if s ∈ X then σ2
t ◦Gσs ∈ X and σu◦Gσ2

t ◦Gσs ∈ X for all σu ∈ HypG(3).

If s ∈ W(3)(X) \X then σ2
t ◦G σs = σ2

t �= σt and σu ◦G σ2
t ◦G σs = σu ◦G σ2

t �= σt for all

σu ∈ HypG(3). So σt is not a right regular element and it is not an intra-regular element

in HypG(3) .

By Corollary 3.4.8 and Example 3.4.9, there exist regular elements in HypG(τ) such

that it is not left regular, right regular and intra-regular elements in HypG(τ).

Example 3.4.10. Let τ = (3) and let σt, σs ∈ HypG(3) where t = f(x3, x5, x1), s =

f(x4, x3, x2) then σt, σs ∈ CR(HypG(3)). Consider

(σt ◦G σs)(f) = σ̂t[f(x4, x3, x2)]

= S3(t, σ̂t[x4], σ̂t[x3], σ̂t[x2])

= S3(f(x3, x5, x1), x4, x3, x2)

= f(x2, x5, x4).

We see that σt ◦G σs /∈ CR(HypG(3)). So CR(HypG(3)) is not closed under ◦G.

Therefore CR(HypG(τ)) is not a submonoid of HypG(τ).

3.5 All Intra-regular Elements in HypG(2)

By Theorem 2.1.4, we conclude that a completely regular element is an intra-regular

element. In general, an intra-regular element need not be a completely regular element.

In this section, we use the concept in Section 3.4 to show that an intra-regular element of

the monoid of all generalized hypersubstitutions of type τ = (2) is a completely regular

element. Moreover, we have a relationship of completely regular, left regular, right regular

and intra-regular elements of the monoid of all generalized hypersubstitutions of type

τ = (2).

3.5.1 Sequence of Terms

At first, we construct some tools used to characterize all intra-regular elements

in HypG(2). These tools are called the sequence of a term and the depth of a term,

respectively.
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Let t ∈ W(n)(X) \X, and ti ∈ sub(t). It can be possible that ti occurs in the term

t more than once, we denote

t
(j)
i := subterm ti occurring in the jth order of t (from the left).

Definition 3.5.1. Let t ∈ W(n)(X)\X where t = f(t1, ..., tn) for some t1, ..., tn ∈ W(n)(X)

and let πil : W(n)(X) \ X → W(n)(X) with πil(t) = πil(f(t1, ..., tn)) = til . Maps πil are

defined for il = 1, 2, ..., n. For each s(j) ∈ sub(t) for some j ∈ N, we denote the sequence of

s(j) in t by seqt(s(j)) and denote the depth of s(j) in t by deptht(s(j)). If s(j) = πim◦...◦πi1(t)
for some m ∈ N, then

seqt(s(j)) = (i1, ..., im) and deptht(s(j)) = m.

Example 3.5.2. Let τ = (3) and let t ∈ W(3)(X) \ X where t = f(t1, t2, t3) such that

t1 = x5, t2 = f(x3, f(x4, f(x2, x7, x10), x5), x5) and t3 = f(f(x5, x4, f(x2, x7, x10)), x1, x6).

Then

seqt(x
(1)
5 ) = (1) and deptht(x

(1)
5 ) = 1;

seqt(x
(2)
5 ) = (2, 2, 3) and deptht(x

(2)
5 ) = 3;

seqt(x
(3)
5 ) = (2, 3) and deptht(x

(3)
5 ) = 2;

seqt(x
(4)
5 ) = (3, 1, 1) and deptht(x

(4)
5 ) = 3;

seqt(f(x2, x7, x10)
(1)) = (2, 2, 2) and deptht(f(x2, x7, x10)

(1)) = 3;

seqt(f(x2, x7, x10)
(2)) = (3, 1, 3) and deptht(f(x2, x7, x10)

(2)) = 3;

seqt3(f(x2, x7, x10)
(1)) = (1, 3) and deptht3(f(x2, x7, x10)

(1)) = 2;

seqt(x
(1)
10 ) = (2, 2, 2, 3) and deptht(x

(1)
10 ) = (4);

seqt(x
(2)
10 ) = (3, 1, 3, 3) and deptht(x

(2)
10 ) = 4;

seqt3(x
(1)
10 ) = (1, 3, 3) and deptht3(x

(1)
10 ) = 3.

Let t, s1, s2, ..., sk ∈ W(n)(X) \X and xi ∈ var(t). We donote

x
(j)
i := the variable xi occurring in the jth order of t (from the left);

x
(j,j1)
i := the variable x

(j)
i occurring in the jth1 order of σ̂s1 [t] (from the left );

x
(j,j1,j2)
i := the variable x

(j,j1)
i occurring in the jth2 order of σ̂s2 [σ̂s1 [t]] (from the left ).

Similarly,

x
(j,j1,j2,...,jk)
i := the variable x

(j,j1,...,jk−1)
i occurring in the jthk order of σ̂sk [σ̂sk−1

[...[σ̂s2 [σ̂s1 [t]]...]

(from the left ).

Theorem 3.5.3. Let t, s ∈ W(n)(X) \ X and x
(j)
i ∈ var(t) for some i, j ∈ N and let

seqt(x
(j)
i ) = (i1, ..., im). Then xi1 , ..., xim ∈ var(s)∩Xn if and only if x

(j,j1)
i ∈ var(σ̂s[t]) =
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var(σs ◦G σt) for some j1 ∈ N and seqσ̂s[t](x
(j,j1)
i ) = (ai1 , ..., aim) where ail is a sequence

of natural number p1, ..., pq such that (p1, ..., pq) = seqs(xhl
il
) for some hl ∈ N and for all

l ∈ {1, ...,m}.

Proof. (⇒). The proof similar to Lemma 3.3.14.

(⇐). Assume that x
(j,j1)
i ∈ var(σ̂s[t]) = var(σs◦Gσt) for some j1 ∈ N and seqσ̂s[t](x

(j,j1)
i ) =

(ai1 , ..., aim) where ail is a sequence of natural number p1, ..., pq such that (p1, ..., pq) =

seqs(xhl
il
) for some hl ∈ N and for all l ∈ {1, ...,m}. Then

vbσ̂s[t](x
(j)
i ) = vbs(xi1)× vbs(xi2)× ...× vbs(xim).

Suppose that xik /∈ var(s)∩Xn for some 1 ≤ k ≤ m, so vbs(xiz) = 0, i.e. vbσ̂s[t](x
(j)
i ) = 0,

which contradicts to our assumption. Hence xi1 , ..., xim ∈ var(s) ∩Xn.

Example 3.5.4. Let τ = (3) and let t = f(x2, f(x4, x5, x2), f(x2, x6, x7)) and s =

f(x3, x1, x3). Then seqt(x
(1)
2 ) = (1), seqt(x

(2)
2 ) = (2, 3), seqt(x

(3)
2 ) = (3, 1) and seqt(x

(1)
7 ) =

(3, 3). By Theorem 3.5.3, there exist x
(1,h)
2 , x

(3,k1)
2 , x

(3,k2)
2 , x

(1,l1)
7 , x

(1,l2)
7 , x

(1,l3)
7 , x

(1,l4)
7 ∈

var(σ̂s[t]) for some h, k1, k2, l1, l2,3 , l4 ∈ N and

seqσ̂s[t](x
(1,h)
2 ) = (2) = seqσ̂s[t](x

(1,2)
2 ) where seqs(x

(1)
1 ) = (2);

seqσ̂s[t](x
(3,k1)
2 ) = (1, 2) = seqσ̂s[t](x

(3,1)
2 ) where seqs(x

(1)
3 ) = (1) and seqs(x

(1)
1 ) = (2);

seqσ̂s[t](x
(3,k2)
2 ) = (3, 2) = seqσ̂s[t](x

(3,3)
2 ) where seqs(x

(2)
3 ) = (3) and seqs(x

(1)
1 ) = (2);

seqσ̂s[t](x
(1,l1)
7 ) = (1, 1) = seqσ̂s[t](x

(1,1)
7 ) where seqs(x

(1)
3 ) = (1) and seqs(x

(1)
3 ) = (1);

seqσ̂s[t](x
(1,l2)
7 ) = (1, 3) = seqσ̂s[t](x

(1,2)
7 ) where seqs(x

(1)
3 ) = (1) and seqs(x

(2)
3 ) = (3);

seqσ̂s[t](x
(1,l3)
7 ) = (3, 1) = seqσ̂s[t](x

(1,3)
7 ) where seqs(x

(2)
3 ) = (3) and seqs(x

(1)
3 ) = (1);

seqσ̂s[t](x
(1,l4)
7 ) = (3, 3) = seqσ̂s[t](x

(1,4)
7 ) where seqs(x

(2)
3 ) = (3) and seqs(x

(2)
3 ) = (3).

Since x2 /∈ var(s), so x
(2,i)
2 /∈ var(σ̂s[t]) for all i ∈ N. Consider,

σ̂s[t] = σ̂s[f(x
(1)
2 , f(x4, x5, x

(2)
2 ), f(x

(3)
2 , x6, x

(1)
7 ))]

= S3(f(x3, x1, x3), σ̂s[x
(1)
2 ], σ̂s[f(x4, x5, x

(2)
2 )], σ̂s[f(x

(3)
2 , x6, x

(1)
7 )])

= f(f(x
(1,1)
7 , x

(3,1)
2 , x

(1,2)
7 ), x

(1,2)
2 , f(x

(1,3)
7 , x

(3,3)
2 , x

(1,4)
7 ))

= f(f(x7, x2, x7), x2, f(x7, x2, x7)).

Corollary 3.5.5. Let t, s ∈ W(n)(X) \ X and x
(j)
i ∈ var(t) for some i, j ∈ N such

that seqt(x
(j)
i ) = i1, i2, ..., im for some i1, i2, ..., im ∈ {1, ..., n} and xik ∈ var(s) for all

1 ≤ k ≤ m. Then there exists j1 ∈ N such that

depthσ̂s[t](x
(j,j1)
i ) = depths(x

(l1)
i1

) + depths(x
(l2)
i2

) + ...+ depths(x
(lm)
im

)
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for some l1, l2, ..., lm ∈ N, and

vbσ̂s[t](x
(j)
i ) = vbs(xi1)× vbs(xi2)× ...× vbs(xim).

Let vbt(xi) = d.

If xi ∈ Xn, then vbσ̂s[t](xi) =

d∑
j=1

vbσ̂s[t](x
(j)
i ).

If xi ∈ X \Xn where xi /∈ var(s), then vbσ̂s[t](xi) =
d∑

j=1

vbσ̂s[t](x
(j)
i ).

Example 3.5.6. For each τ = (3). Let t, s ∈ W(2)(X) \X where

t = f(f(x3, x5, x4), x5, f(x2, x5, x4)) and s = f(x2, f(x2, x3, x3), x3)

Then

seqt(x13) = (1, 1) =⇒ vbσ̂s[t](x13) = vbs(x1)× vbs(x1) = 0× 0 = 0;

seqt(x15) = (1, 2) =⇒ vbσ̂s[t](x15) = vbs(x1)× vbs(x2) = 0× 2 = 0;

seqt(x25) = (2) =⇒ vbσ̂s[t](x25) = vbs(x2) = 2;

seqt(x35) = (3, 2) =⇒ vbσ̂s[t](x35) = vbs(x3)× vbs(x2) = 3× 2 = 6;

seqt(x14) = (1, 3) =⇒ vbσ̂s[t](x14) = vbs(x1)× vbs(x3) = 0× 3 = 0;

seqt(x24) = (3, 3) =⇒ vbσ̂s[t](x24) = vbs(x3)× vbs(x3) = 3× 3 = 9;

seqt(x12) = (3, 1) =⇒ vbσ̂s[t](x12) = vbs(x3)× vbs(x1) = 3× 0 = 0.

Consider

σs ◦G σt = σ̂s[f(f(x3, x5, x4), x5, f(x2, x5, x4))]

= S3(s, σ̂s[f(x3, x5, x4)], σ̂s[x5], σ̂s[f(x2, x5, x4)])

= S3(s, S3(s, σ̂s[x3], σ̂s[x5], σ̂s[x4)], x5, S
3(s, σ̂s[x2], σ̂s[x5], σ̂s[x4)]))

= S3(s, f(x5, f(x5, x4, x4), x4), x5, f(x5, f(x5, x4, x4), x4))

= f(x5, f(x5, f(x5, f(x5, x4, x4), x4), f(x5, f(x5, x4, x4), x4)),

f(x5, f(x5, x4, x4), x4)).

3.5.2 All Intra-regular Elements in HypG(2)

In this section, we characterize the set of all intra-regular elements of the monoid

of all generalized hypersubstitutions of type τ = (2). Finally, we show that the set of all

completely regular elements and the set of all intra-regular elements in HypG(2) are the

same.

We recall first the characterization of all completely regular elements in HypG(2).
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Let τ = (2) be a type with a binary operation symbol f . By the definition of R1, R2

and R3 in Section 3.3 and the definition of CR(R3) in Section 3.4, we get

R1 := {σxi |xi ∈ X};
R2 := {σt|t ∈ W(2)(X) \X and var(t) ∩X2 = ∅};
R3 := {σt|t ∈ W(2)(X) \X and t = f(t1, t2) where ti = xj for some i, j ∈ {1, 2} and

var(t) ∩X2 = {xj}}∪ {σf(x1,x2), σf(x2,x1)};
CR(R3) := {σt|t ∈ W(2)(X) \X and t = f(t1, t2) where ti = xi for some i ∈ {1, 2}

and var(t) ∩X2 = {xi}}∪ {σf(x1,x2), σf(x2,x1)}.

Then we have
3⋃

i=1

Ri is the set of all regular elements in HypG(2) [21]. By Theorem

3.4.6 and by Corollary 3.4.7, we have CR(HypG(2)) := CR(R3)∪R1∪R2 = E(HypG(2))∪
{σf(x2,x1)} is the set of all completely regular elements in HypG(2) and every element in

CR(HypG(2)) is intra-regular. In Lemma 3.5.7 - Lemma 3.5.11, we determine some

elements in HypG(2) \ CR(HypG(2)) which are not intra-regular.

Lemma 3.5.7. If t = f(t1, x1) where t1 ∈ W(2)(X) \ X2 then σt is not intra-regular in

HypG(2).

Proof. Let t = f(t1, x1) where t1 ∈ W(2)(X)\X2. For each u ∈ X, we get σu ◦Gσ2
t ◦Gσv �=

σt and σv ◦Gσ2
t ◦Gσu �= σt for all v ∈ W(2)(X). Let u, v ∈ W(2)(X)\X where u = f(u1, u2)

and v = f(v1, v2) for some u1, u2, v1, v2 ∈ W(2)(X), we will show that σu ◦G σ2
t ◦G σv �= σt.

If t1 ∈ X \ X2 then x2 /∈ var(t). By Theorem 3.5.3, x1 /∈ var(σ̂t[t]) = var(σ2
t ), i.e.

var(σ2
t ) ∩X2 = ∅. Hence σu ◦G σ2

t ◦G σv �= σt. If t1 ∈ W(2)(X) \X, then

σ2
t (f) = σ̂t[t] = S2(f(t1, x1), σ̂t[t1], x1) = f(w1, w2)

where w1 = S2(t1, σ̂t[t1], x1) and w2 = S2(x1, σ̂t[t1], x1) = σ̂t[t1] and denote w = f(w1, w2).

Since t1 /∈ X, so w1 /∈ X and w2 = σ̂t[t1] /∈ X. Consider

σ2
t ◦G σv(f) = σ̂w[v] = S2(f(w1, w2), σ̂w[v1], σ̂w[v2]) = f(s1, s2)

where si = S2(wi, σ̂w[v1], σ̂w[v2]) for all i ∈ {1, 2}. Since wi /∈ X for all i ∈ {1, 2}, si /∈ X

for all i ∈ {1, 2}. Then σ̂u[si] /∈ X for all i ∈ {1, 2}. Consider

σu ◦G σ2
t ◦G σv(f) = S2(f(u1, u2), σ̂u[s1], σ̂u[s2]) = f(r1, r2)

where ri = S2(ui, σ̂u[s1], σ̂u[s2]) for all i ∈ {1, 2}. If u2 ∈ W(2)(X) \ X or u2 ∈ X2 then

r2 /∈ X. If u2 ∈ X \X2 then u2 = r2. So r2 �= x1. Therefore σu ◦G σ2
t ◦G σv �= σt. Hence

σt is not intra-regular in HypG(2).
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Lemma 3.5.8. If t = f(x2, t2) where t2 ∈ W(2)(X) \ X2 then σt is not intra-regular in

HypG(2).

Proof. The proof is similar to the proof of Lemma 3.5.7.

Lemma 3.5.9. If t = f(x1, t2) where t2 ∈ W(2)(X) \X2 and x2 ∈ var(t) then σt is not

intra-regular in HypG(2).

Proof. Assume that t = f(x1, t2) where t2 ∈ W(2)(X) \ X2 and x2 ∈ var(t). Let m =

max{deptht(x(i)2 )|x(i)2 ∈ var(t) for some i ∈ N} (∗), then there exists h ∈ N such that

seqt(x
(h)
2 ) = (i1, i2, ..., im) where i1, i2, ..., im ∈ {1, 2}. It means x

(h)
2 = πim◦πim−1◦...◦πi1(t)

where maps πi1 , ..., πim−1 , πim are defined on W(2)(X) \ X2 to W(2)(X). Since x
(h)
2 ∈

var(t2), πi1(t) = t2, i.e. i1 = 2. So seqt(x
(h)
2 ) = (2, i2, ..., im). By Theorem 3.5.3, there is

x
(h,h1)
2 ∈ var(σ̂t[t]) = var(σ2

t ) for some h1 ∈ N such that

seqσ
2
t (x

(h,h1)
2 ) = (2, i2, ..., im, ai2 , ..., aim)

where (2, i2, ..., im) = seqt(x
(h)
2 ) and aiz is a sequence of natural numbers such that (aiz) =

seqs(x
(hiz )
iz

) for some hiz ∈ N and for all 2 ≤ z ≤ m.
[
Note: x

(h)
2 is a variable x2 occurring

in the hth order of t (from the left) and x
(h,h1)
2 is a variable x

(h)
2 occurring in the hth1 order

of σ2
t (from the left)

]
. Instead of a sequence ai2 , ..., aim , we write a sequence of natural

numbers w1, ..., wd for some d ∈ N and w1, ..., wd ∈ {1, 2}. Then

seqσ
2
t (x

(h,h1)
2 ) = (2, i2, ..., im, w1, ..., wd).

Suppose that there exist u, v ∈ W(2)(X) such that σu ◦G σ2
t ◦G σv = σt (∗∗), i.e. u =

f(x1, u2) and v = f(x1, v2) for some u2, v2 ∈ W2(X) where x2 ∈ var(u2)∩var(v2). Choose
x
(j)
2 ∈ var(v) for some j ∈ N. Then seqv(x

(j)
2 ) = (2, p1, ..., pq) for some p1, ..., pq ∈ {1, 2}

and for some q ∈ N. By Theorem 3.5.3, there is x
(j,j1)
2 ∈ var(σ2

t ◦G σv) for some j1 ∈ N
such that

seqσ
2
t ◦Gσv(x

(j,j1)
2 ) = (2, i2, ..., im, w1, ..., wd, ap1 , ..., apq)

where (2, i2, ..., im, w1, ..., wd) = seqσ
2
t (x

(h,h1)
2 ) and apz is a sequence of natural numbers

such that (apz) = seqs(x
(lz)
pz ) for some lz ∈ N and for all 1 ≤ z ≤ q.

[
Note: x

(j)
2 is a variable

x2 occurring in the jth order of v (from the left) and x
(j,j1)
2 is a variable x

(j)
2 occurring

in the jth1 order of σ2
t ◦G σv (from the left)

]
. Instead of a sequence ap1 , ..., apq we write a

sequence of natural numbers wd+1, ..., wk for some k ∈ N and wd+1, ..., wk ∈ {1, 2}. Then

seqσ
2
t ◦Gσv(x

(j,j1)
2 ) = (2, i2, ..., im, w1, ..., wd, wd+1, ..., wk).
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By Theorem 3.5.3, we have x
(j,j1,j2)
2 ∈ var(σu ◦G σ2

t ◦G σv) for some j2 ∈ N. By Corollary

3.5.5, we have

depthσu◦Gσ2
t ◦Gσv(x

(j,j1,j2)
2 ) = depthu(x

(b1)
2 ) + depthu(x

(b2)
i2

) + ...+ depthu(x
(bm)
im

)

+depthu(x(bm+1)
w1

) + ...+ depthu(x
(bm+d)
wd )

+depthu(x
(bm+d+1)
wd+1 ) + ...+ depthu(x

(bm+k)
wk )

> m

for some b1, ..., bm, bm+1, ..., bm+d, bm+d+1, ..., bm+k ∈ N, which contradicts to (∗) and (∗∗).
Therefore σt is not intra-regular in HypG(2).

Lemma 3.5.10. If t = f(t1, x2) where t1 ∈ W(2)(X) \X2 and x1 ∈ var(t) then σt is not

intra-regular in HypG(2).

Proof. The proof is similar to the proof of Lemma 3.5.9.

Lemma 3.5.11. If t = f(t1, t2) where t1, t2 ∈ W(2)(X) \X2 and var(t) ∩X2 �= ∅ then σt

is not intra-regular in HypG(2).

Proof. Let t = f(t1, t2) where t1, t2 ∈ W(2)(X) \X2 and var(t) ∩X2 �= ∅.
Case1: var(t) ∩X2 = {xi} for some i ∈ {1, 2}. Let j ∈ {1, 2} where i �= j.

If j is occurring in seqt(x
(h)
i ) for all x

(h)
i ∈ var(t) then var(σ2

t ) ∩ X2 = ∅, i.e.

σu ◦G σ2
t ◦G σv �= σt for all u, v ∈ W(2)(X).

If j is not occurring in seqt(x
(h)
i ) for some x

(h)
i ∈ var(t) then seqt(x

(h)
i ) = (i1, i2, ..., im)

where i1, i2, ..., im ∈ {i} for some m ∈ N. We can prove similar to the proof of Lemma

3.5.9, then σu ◦G σ2
t ◦G σv �= σt for all u, v ∈ W(2)(X).

Case2: var(t) ∩ X2 = X2. We can prove similar to the proof of Lemma 3.5.9, then

σu ◦G σ2
t ◦G σv �= σt for all u, v ∈ W(2)(X).

Therefore σt is not intra-regular in HypG(2).

Theorem 3.5.12. CR(HypG(2)) is the set of all intra-regular elements in HypG(2).

Proof. By Corollary 3.4.7 and by Lemma 3.5.7 - Lemma 3.5.11.

In 2014, S. Sudsanit, S. Leeratanavalee and W. Puninagool [24] characterized left-

right regular elements in the monoid generalized hypersustitutions of type τ = (2).

Proposition 3.5.13 ([24]). If σt is idempotent, then σt is left(right) regular.

Proposition 3.5.14 ([24]). σf(x2,x1) is left(right) regular in HypG(2).
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By Proposition 3.5.13 and Proposition 3.5.14, S. Sudsanit, S. Leeratanavalee and

W. Puninagool showed that every element in CR(HypG(2)) is left(right) regular.

Proposition 3.5.15 ([24]). σf(x2,xm) where m ∈ N with m > 2 is not left(right) regular

in HypG(2).

Proposition 3.5.16 ([24]). σf(xm,x1) where m ∈ N with m > 2 is not left(right) regular

in HypG(2).

Proposition 3.5.17 ([24]). Let t ∈ W(2)(X) \X. Then the following statements hold:

(i) If x2 ∈ var(t), then σf(x1,t) is not left(right) regular;

(ii) If x1 ∈ var(t), then σf(t,x2) is not left(right) regular;

(iii) σf(t,x1) and σf(x2,t) are not left(right) regular;

(iv) If x1 ∈ var(t) or x2 ∈ var(t) then σf(xm,t) and σf(t,xm) are not left(right) regular

where m ∈ N with m > 2.

Proposition 3.5.18 ([24]). Let t1, t2 ∈ W(2)(X) \X. If x1 ∈ var(t1) ∪ var(t2) or x2 ∈
var(t1) ∪ var(t2) then σf(t1,t2) is not left(right) regular.

By Proposition 3.5.15 - Proposition 3.5.18, S. Sudsanit, S. Leeratanavalee and W.

Puninagool showed that every element in HypG(2) \ CR(HypG(2)) is not left(right) reg-

ular, i.e. CR(HypG(2)) is the set of all left(right) regular elements in HypG(2).

By Section 3.4, we have the set of all completely regular elements, the set of all left

regular and the set of all right regular elements in HypG(2) are the same. Then

Theorem 3.5.19. Let σt ∈ HypG(2). The following statements are equivalent:

(i) σt is completely regular;

(ii) σt is left regular;

(iii) σt is right regular;

(iv) σt is intra-regular.
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