CHAPTER 3

Characterization of Some Special Elements in Hypg(T)

In the semigroup theory, the special elements in semigroup have studied diverse
such as regular element, quasi-regular element and idempotent element. In Chapter 2,
we have (Hyp(7), op,04q4) and (Hypa(7T), oG, 0:q) are a monoids. So we can characterized
these special elements of Hyp(7) and Hypa(7). Th. Changphas characterize idempotent
elements and regular elements of the monoid of all hypersubstitutions of type 7 [7]. W.
Puninagool and S. Leeratanavalee characterized some special elements of the monoid of

all generalized hypersubstitutions of type 7. Such as the following:

(i) Characterize the set of all idempotent elements of the monoid of all generalized

hypersubstitutions of type 7 = (2) [22].

(ii) Characterize the set of all regular elements of the monoid of all generalized hyper-

substitutions of type 7 = (2) [20].

(iii) Characterize the set of all idempotent and regular elements of the monoid of all

generalized hypersubstitutions of type 7 = (n) [21].

Furthermore, all idempotent and regular elements of the monoid of all generalized hyper-
substitutions of type 7 = (3) was studied by S. Sudsanit and S. Leeratanavalee [23]. In
2014, S. Sudsanit, S. Leeratanavalee and W. Puninagool characterized left-right regular
elements of the monoid of all generalized hypersubstitutions of type 7 = (2) [24].

The main results of this thesis, we study on the factorisable monoid of generalized
hypersubstitutions of type 7. We know that a semigroup is factorisable if and only if it
is unit-regular semigroup. So in this chapter, at first we characterize the set of all unit
elements of the monoid of all generalized hypersubstitutions of type 7 = (n). Then we
used the concepts of unit element and regular element as tools to determine the set of all
unit-regular of the monoid of all generalized hypersustitutions of type 7 = (2) and type
T = (n), respectively.

Moreover, we characterize the set of all completely regular elements of the monoid of
all generalized hypersubstitutions of type 7 = (n) and we have that a completely regular

element is both left regular and right regular element of the monoid of all generalized
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hypersubstitutions of type 7 = (n). Finally, we show that the set of all completely regular
elements and the set of all intra-regular elements of type 7 = (2) are the same.

From now on, we introduce some notations which will be used throughout of this
thesis. Let 7 = (n) be a type, that means we have only one n-ary operation, say f and
let t € Wy,)(X), we denote

ot := the generalized hypersubstitution o of type 7 = (n) which maps f to the term ¢,
var(t) := the set of all variables occurring in the term ¢,

vb'(x):= the number of occurrences of a variable z in t.

3.1 All Unit Elements in Hypg(n)

In this section, we characterize all unit elements of the monoid of all generalized
hypersubstitutions of type 7 = (n).

We fix a type 7 = (n), i.e. we have only one n-ary operation, say f.

Lemma 3.1.1. Let oy € Hypg(n) wheret = f(t1,ta, ..., tn) € Wi (X). Ifti € Wiy (X)\X

for some i € {1,2,...,n}, then oy is not unit.

Proof. Lett = f(t1,....ti, ..., tn) € Wi)(X) where t; € Wi,y (X)\X for somei € {1,2,...,n}.
Let 05 € Hypg(n) and s = f(s1,52, ..., 5p) where s; € W,y (X) for all i € {1,2,...,n}.

Consider
(oroGas)(f) = Gulf(s1,82: . 8n)]
= S"(f(t1, ..., tiyoestn), 0¢s1], 0¢[S2], .., Ot[Sn])
= f(S"(t1,0¢[s1],0¢[S2]s - Te[Sn])s -y STty Te[51], Tt[S2], -, Ot[Sn)),
...,Sn(tn,at[Sﬂ,&t[SQ],...,8t[8n])).

Since t; € Wy (X)\ X, s0 0¢[sj] € Wy (X)\X forall j € {1,2,...,n}. Then (0r0¢0s)(f) #
f(x1, e, ...;xn) = 05q4(f). Hence o, o 05 # 04q for all o5 € Hypg(n). Therefore o, is not

unit in Hypg(n). O
Example 3.1.2. Let 7 = (2) and ¢t = f(z1, f(x2,23)). For each s = f(s1,s2) where
51,52 € Wy (X). Consider
(01 0c 05)(f) = ailf(s1,52)]
= S*(f(z1, fw2,23)),0e[s1],0uls2])  where Gi[s1],54[s2] € Wig)(X)
= [(04[s1], f(Oe[s2], 23))
# flz1,22) = 0ia(f).
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Hence o, ¢ U(Hypa(2)).

Lemma 3.1.3. Let 0y € Hypg(n) where t = f(Tmy; Ty, o, Tm,,) € Wiy (X). If mi > n
for some i € {1,2,...,n}, then oy is not unit in Hypg(n).

Proof. Let t = f(Zmys Tmys -y Tm,,) and m; > n for some i € {1,2,...,n}. Then z,,, €

X\X,,. Let 05 € Hypg(n) where s = f(s1, 52, ..., $n)-

Consider
(JtOGGS)(f) = 8t[f(81782a"'a8n)]
= S"™(f(®my, Tmgs s Ty, )s Ot[S1], Ot[S2], vy Tt[Sn])
= [(S™(xmy,01[s1],0¢[s2], -+s Te[sn])), S™ (Timy, Tt[s51], Tt [s2],
ey Ot[Sn])y ooy 8™ (Xim,y» O1[S1], TL[S2], vy Te[S0]))-

Since x,, € X\X,, so S™(zm;0t[s1],0¢[s2],....0¢[Sn]) = @m,. Then (o og os)(f) #
f(x1, e, .coyxn) = 0q(f) , 1.e. oy og o5 # 044 for all o5 € Hypg(n). Hence oy is not unit

in Hypg(n). O

Example 3.1.4. Let 7 = (3) and ¢ = f(x1,24,23). For each s = f(s1,s2,s3) where
51,52, 53 € W(3)(X). Consider

(0toG os)(f) = elf(s1,52,53)]
= S(f(x1,24,23), 5e[51]), Ge[s2], Ge[s3])
where 0[s1],0¢[s2], ¢[s3] € Wig)(X)
= [f(G[s1], x4, 0u[s3])
#  f(@1, 22, 73)
= oulf)

Hence o, ¢ U(Hypa(3)).

Theorem 3.1.5. An element oy € U(Hypa(n)) if and only ift = f(xr1), Tr2), s Ta(n))

where ™ € Sy, and Sy, is a set of all permutations of {1,2,...,n}.

Proof. Assume that o, € U(Hypa(n)), then there exists o5 € U(Hypg(n)) such that
010G 05 = 0iqg = 050G 0¢. By Lemma 3.1.1 and Lemma 3.1.3, if t = f(¢1,t2,...,t,) and s =

f(s1,82,...,8n) then t1, .. ty,51,...,80 € {T1,72,..., 70}, Let t = f(Tr1), Tr2)s - Tr(n))
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and s = f(@r (1), T/ (2), s Tpr()) Where 7,7 2 {1,2,...;n} — {1,2,..,n}. Consider

oi(f) = (otocos)(f)
flxr, 22, 20) = Oilf(Tw), Tar(2)s o Tar(n))]
= S"(f(Tr1)s Tr(@)s - Ta(n))s Ta' (1) T/ (2)5 > Tl (n))
= F@r(m() Tr(x(2))s -+ Tl (w(m)))
= (@ (@om1)s T(wom)(2)s -+ T(n'om)(n))

and

oia(f) = (osoco)(f)

f(mla L2y eeey :En) = as[f(xw(l)a Lr(2)s -+ :Ew(n))]

- Sn(f(xﬂ’(l)v Ll (2)5 w05 xﬂ’(n))a Lr(1)s L(2)s +++ wﬂ(n))

= S@r(r 1)) Tr(xt(2))s - Tn(n(n))
W f(x(7r07r’)(1)7x(7ro7r’)(2)7 "‘7x(ﬂ0ﬂ,)(n))‘
Then mon’ = (1) = 7’ o and 7 o 7/, 7’ o w are bijective. Next, we will show that 7 is
bijective. Let 7 (i) = m(j) for some i,j € {1,2,..,n}. Then

(n"om)(i) = (n'(w (i) = o'(7(j)) = (x" o 7)(4)-
Since 7’ o 7 is one-to-one, i = j. Thus 7 is one-to-one. Let ¢ € {1,2,...,n}. Since w o7’
is onto, there exists j € {1,2,...,n} such that (7 o7’)(j) =i. Then 7(x'(j)) = ¢ for some
7'(j) € {1,2,...,n}. Hence 7 is onto, so 7 € S,,.
Conversely, let oy € Hypg(n) where t = f(2r(1), Tr(2); -+ Tr(n)) Such that m € S,.

Since (Sy,o) is a group, there exists ' € S, such that mon’ = (1) = 7’ o7w. Let

os € Hypg(n) where s = f(Zx1(1), T/ (2), s Tnt(n)). Then

(oroos)(f) = Gtlf(@w()s Tr(2)s s Trr(n))]

= [@@om ) T(wom)(2) -+ T(wom) ()
= f(z1,22, . Tn)

= 0oiq(f)-

Similarly, we have o5 0 0y = ;4. So 0, € U(Hypa(n)). O

Example 3.1.6. Let 7 = (5) and u € W5)(X) \ X where u = f(x4, 21,75, 72, 73). Let
m € S5 such that (1) =4, 7(2) =1, 7(3) =5, m(4) = 2 and 7(5) = 3. Then

u = f(x4,21,25,22,73) = [(Tr(1)s Tr(2), Tn(3)s Tr(4)> Tr(5))-
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There exists 7! € S5 such that 771(1) = 2, 771(2) =4, 77 1(3) =5, 7~ }(4) = 1 and
71(5) = 3. Let
uwt = f(mﬂ'_l(l)’ xﬂ'_l(2)7xﬂ'_1(3)7xﬂ'_l(4)?xﬂ'_1(5)) = f(l'2,$4, L5, 131,..’E3)-
Consider
(Ju °G Ju_l)(f) = a\u[f(l'2,$4,l'5,l‘1, :E3)]
= 55(u,Eu[a;g],Eu[:c4],Eu[x5],8u[m1],8u[x3])
— 55(f(354,$]_,IE5,$2,$3),$2,$4,$5,.’E1,l‘3)
= f(w1, 22,23, 74, 25)

= olf)
and

(ou-10¢ ou)(f) = Gy-1[f(2a, 21,25, 22, 73)]
= S°(uh Gy1[wa], Gy fa1) Gy [25], Gy 2], Gy )
o S5(f($2,a:4,565,561,963),334,371,335,!132,1?3)
= f(x1,72,73,74,75)

= oi(f)
Hence 0,1 is an inverse of . Therefore o,,0,-1 € U(Hypc(5)).
By Theorem 3.1.5, we get
U(Hypc(n)) == {01 € Hypg(n)[t = f(Tr1) Tx(2); -+ Tr(n)) Where T € Sy}
is the set of all unit elements in Hypg(n).
Corollary 3.1.7. |U(Hypg(n))| = nl.

Corollary 3.1.8. U(Hypg(2)) = {0f(z,,02) = Tid> O f(z,01) ) -

3.2 All Unit-regular Elements in Hypg(2)

In this section, we used the concepts of unit element, idempotent element and regular
element as tools to determine the set of all unit-regular of the monoid of all generalized
hypersubstitutions of type 7 = (2).

First, we fix a type 7 = (2) with the binary operation symbol f. Let oy € Hypa(2),

we denote

18



Ritype2)), = 1ot = f(x2,1') where t' € W) (X) such that z; ¢ var(t')},
RHype(2))s = 1ot = f(t',21) where t' € W) (X) such that zp ¢ var(t')},
RiHype(2))s = 1ot = f(x1,1') where t' € W) (X) such that zo ¢ var(t')},
RHype2))a = 1ot = f(t',x2) where t' € W) (X) such that z1 ¢ var(t')},
Rtype(2))s = 1ot € {z1, 22, f(71,22), f(22,71)}} and

R(t1ype 2))s := {otlvar(t) N {z1, z2} = 0}.
6

In 2011, W. Puninagool and S. Leeratanavalee showed that: U R(t1ype(2)),; 1s the

i=1
set of all regular elements in Hypa(2) [20]. In 2008, W. Puninagool and S. Leeratanavalee
6

showed that: U Ribype2): \ 0@} = E(Hypa(2)) [22]. By Corollary 3.1.8 we get
i=3
U(Hypc(2)) = {0 f(z1,00) = Tids O f(z0,21) -

6

Since U Riype(2)): is a set of all regular elements in Hypg(2), a set of all unit-
i=1
' 6
regular elements in Hyp;(2) is a subset of U R(trype(2));- Next, we will determine the
i=1

set of all unit-regular elements in Hypa(2).

Theorem 3.2.1. U R(Hype(2)): 18 a set of all unit-reqular elements in Hypg(2).
=1
6

Proof. Let o4 € UR(H?J;DG(?))N then o, € R(HypG(Q))l or oy € R(Hypc(Z))z or oy €
i=1

U Rirtpe@): \ {07 @aan} OF 01 = 0f(agan)-

i=3
Case 1: 01 € Ripypi(2)),- Then t = f(xa,t') where t' € Wi5)(X) such that z1 ¢ var(t').

Consider

(010G O f(ag,21) °C T)(f) = Gl f(wn,a0)[f (w2, 1)]]
= Gu[S?(f(02:21), 02,5 p(ay,00) [t])]
= Gif(Cr(agan)t’], 22)]
= S*(f(x2,),0t[0 p (g 0[] 72)
= f(xa,t') since z1 ¢ var(t)

= oi(f).

Hence oy oz O f(z9,21) OG Ot = Ot.
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Case 2: 01 € Ripypg(2)),- Then t = f(t',21) where t' € Wy (X) such that xo ¢ var(t').

Consider

(010G O f(wym1) °G 00)(f) = Gtl0 f(w,on) [f (', 21)]]
= GuS*(f(x2,21), 8 playen) [t 71)]
= e[ (21,0 (a0 [t'])]
= SH(f(t 1), 21, 5e[0 pan,an) [t])

= f(t,z1) since xo & var(t')

= ou(f).
Hence oy oz O f(z9,21) OG Ot = Ot.
6
Case 3: ot € U R(HypG(Q))i \ {Uf(wz,wl)} = E(Hypg(Q)). Then

i=3
0t O0G 0id °G 0t = 0¢ °G 0¢ = O¢.

Case 4: 0t = 0(4,4,)- Then

O f(za,21) OG T f(z2,m1) OG O f(wa,x1) = Tid OG O f(z2,21) = O f(z2,31)"

6
Therefore, for every oy € U R(Hyps(2));> there exists o, € U(Hypg(2)) such that oy o
=1
\ (2
oy o¢ 0 = oy Hence U R(kype(2)); 1s a set of all unit-regular elements in Hypg(2). [
i=1

Then we get, for every element in Hypa(2) is a regular element if and only if it is
a unit-regular element.

6
Remark 3.2.2. U R(mrype(2)); 18 not closed under og;, i.e. U R(typs(2)); 18 not a sub-
i=1 =1
semigroup of Hypg(2).

Example 3.2.3. (1) Let 0y € R(pyp,(2)), such that ¢ = f(z2,t') where t' = f(x3,2).
Then

(orogo)(f) = Gulf(x2, flas,x2))]
= SH(f(x2, f(x3,22)),0u[x2], 5[ f (w3, 22)])
= S(f(x2, f(x3,20)), w2, f (w2, f(23,22)))
= [(f (@2, fxs,22)), f(xs, f (22, f(23,22))))-
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6
So, o106 0v & | Rirrypa (),
i=1
(2) Let 0y € R(fryps(2)), such that t = f(t',z1) where t' = f(21,25). Then

(oroco)(f) = ot[f(f(z1,25),21)]
= S*(f(f(x1,25), 21),04[f (21, 25)], 0e[x1])
= S*(f(f(x1,w5), 1), f(f (w1, 25), 21), 21)
= [Uf(f(f(m1,25), 21),25), f(f(z1,25), 21)).
6
So, oy og ot ¢ U R(Hypc(2))¢'

i=1
(3) Let 01 € Ripyp,(2)), and 05 € R(fypg(2)), such that t = f(x1,t') and s = f(s, z2)

where t' = f(x5,21) and s’ = f(x2,x3).

Consider
(orocos)(f) = oulf(f(22,23),22)]
= S*(f(a1, f(ws,21)), 54 f (w2, 23)], 0 2]
= S*(f(w1, flas, x1), f (22, f (25, 12)), 72)
= f(f(x27 (.1'5,.%2)), (.1'5, (xg,f(l'5,$2))))~
6
So 010G 05 ¢ U Rtypa(2)):-
Consider =

(0soga)(f) = 0Os[f(x1, fzs,21))]
= S*(f(f(x2,23), @2),0s[x1], OsLf (w5, 21)])
= S*(f(f(x2,23), x2), x1, f(f(z1,23),21))
= fUf(f(f(z1,23),21),23), f(f(21,23), 1))
6
So o0 a1 & | Rty @)-

i=1
6

By (1), (2) or (3), we have U R(Hype(2)), 18 not a subsemigroup of Hypg(2).
i=1

3.3 All Unit-regular Elements in Hypg(n)

In this section, we determine the set of all unit-regular of the monoid of all general-
ized hypersubstitutions of type 7 = (n). Moreover, we will show that it is not a submonoid

of the monoid of all generalized hypersubstitutions of type 7 = (n).
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For a type 7 = (n) with n-ary operation f, we define:
Definition 3.3.1. Let t € W,,)(X), a subterm of t is defined inductively by the following.
(i) Every variable x € var(t) is a subterm of ¢.
(ii) If t = f(t1,...,tn), then ¢ itself, ¢1, ..., t, are subterm of ¢.

(iii) If ¢',¢" € W,y (X) which #” is a subterm of ¢’ and #' is a subterm of ¢, then " is a

subterm of ¢.
We denote the set of all subterms of ¢ by sub(t).

Example 3.3.2. Let 7 = (2) and t € Wy)(X) where t = f(t1,t2) such that t; =
f(xs, f(x1,24)) and to = f(f(x7,21), f(22,21)). Then

sub(ti) = {t1, f(@1, 24), 21,23, 24},

sub(tz) = {t2, f(@7, 21), f(22,21), 21, 22, 7},

SUb(t) - {tutl)t27f($17:r4)7 f(x’?,xl),f(l‘z,$1),$17$2,I3,$4,$7}.

Lemma 3.3.3. For each os,0, € Hypg(n) wheret = f(t1,...,tn) such thatt;, = xj,,....t;,,
= xj,, for some i1,... im, 1,...,Jm € {1,...,n} and var(t) N X,, = {zj,,...,x;, }. Let
hi,....hp € {j1,...,jm} and hy # hy if | # r. Then o, 0g 05 og 0¢ = oy if and only if

s = f(81,..-,5n) where sy, = sj, = x;, for all g € {1,...,p} and for some | € {1,...,m}.

Proof. Assume that oyog 05060, = o and let s = f(sq, ..., s,). Suppose that, there exists
Sh, = 8j, for some ¢ € {1,...,p} and for some | € {1,...,m} such that s; € W, (X)\ {z;}
for some [ € {1,...,m}. Then

(orogosoca)(f) = oufos[t]]
= 0¢[S™(f (81, Sn), Os[t1], vy Os[tn])]
= o[f(wi,...,wy)] where w; = S"(s,05[t1], ..., Ts[tn])

foralli e {1,...,n}
=SSt ), Bol] - Feln])
= f(u1,...,un) where u; = S"(t;,0¢[wi], ..., 5t{wy))
for all i € {1,...,n}.

Since t;, = xj for all [ € {1,...,m}, thus w;, = S™(t;,, 0¢[wi], ..., 0¢[wy]) = d¢{w;,]. Since

wj, = S™(s4,,05[t1], ..., 0s[tn]) and s, # x4, wj, # Gs[ts,] = x5, we get w;, = o¢[w;,] # xj,,
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and then f(u,...,u,) # t. This is a contradiction. Hence Sh, = 85, = wj; for all | €
{1,...,m}.

Conversely, let s = f(s1, ..., 8,) where s3, = 55, = x;, for all ¢ € {1,...,p} and for
some [ € {1,...,m}. Then (0, og 05 o 01)(f) = o¢[f (w1, ..., wy)] where w; = S™(s;, 7s[t1],
<y Os[ty]) for all i € {1,...,n}. Since s, = sj, = x;, for all ¢ € {1,...,p} and for some
e {l,....,m}, wj, = S"(sj,,0s[t1], ... 0s[tn]) = S™(xi,, 0s[t1], ..., Os[tn]) = Os[ts,] = xj,, we

get

o[ f(wiyeeoywn)] = S™(f(t1y ooy tn), Ot[wr], .oy Tt{wn]) = f(t1, .oy tn) =T,

Hence o, o 05 o 04 = 0y. ]

Example 3.3.4. Let 7 = (5) and let o, € Hypg(5) such that t = f(t/, 21, 24,1, 22)
where t' € W5 (X) and var(t') N X5 = {x1,29,24}. Choose o5 € Hypg(5) such that
s = f(xo, 25,8, 13,5") where s', 5" € Wi5)(X)\ X5. Then

(0r0g os0q ar)(f) = Gufos[t]]
= O[S (flwo, 5,8, w3,5"),04[t'], Gu[21], Ts[w4], O[], Ts[w2])]
= 54[S°(f(wa, 25,8 w3, 8"),5s[t], 21, 24, 5s[t'], 22)]
= oylf(x1, 22,8, 24, 5)]
= S°(f(t w1, 24,1 22), Gs[a1], Folwa], T [5), T [ara), 55 [5"])

- S5(f(t/7 T1,T4, tlu 5(52)7 Ty, T2, 88[8/]7 T4, 88[5”])

= f(t/,$1,$4,t,,x2) = Ut(f)‘

We see that oy is a regular element of Hypg(5). If {s,s"} = {x1,25} then o4 €

U(Hypa(5)) and so oy o 05 o 0p = 0y, 1.e. 0y is a unit-regular element of Hypg(5).

Let 01 € Hypa(n), we denote

Ry = {og,|zi € X},

Ry = {oy|t € W,,y(X) \ X and wvar(t) N X, = 0},

Ry := {oy|t € W,,y(X) \ X such that t = f(t1,...,t,) where t;, = xj,,....,t;,, = 7,

for some i1, ..., %m, 1, e, Jm € {1, ...,n} and var(t) N X, = {xj,,...,xj, }}

Example 3.3.5. Let 7 = (3) and let t = f(f(z4,x4,24),25,26), s = f(xs, f(z4,x3,

3
r4),72) and w = f(x3, f(x1,23,74),22). Then oy € R, 05 € R3 but 0, ¢ URz‘, SO

1=1
3

U R; C Hypg(3). It is clear that oy is a regular element in Hypg(3). By Lemma 3.3.3,
i=1
we get o, is a regular element but o, is not a regular element in Hypg(3).
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By the definition of Ry and Rs it is easy to check that for every element in Ry U Ry
is a regular element in Hypg(n). In 2010, W. Puninagool and S. Leeratanavalee [21]

characterized the regular generalized hypersubstitutions of type 7 = (n).

Theorem 3.3.6 ([21]). Let t = f(t1,t2,...,tn) € Wiy (X) and var(t) N X, = {z,, 7y,
o, it Then oy is reqular if and only if there exist i1, i, ...,0m € {1,2,...,n} such that
til = levtig = Tjy, ...,tim = Tj,,-

3
By Theorem 3.3.6, we have every element in R3 is regular. Then U R; is the set of
i=1
all regular elements in Hypg(n).

For each o, € Hypg(n), we denote
E = {0t = f(t1,...,tn) where t;;, = xiy,.... t;
and var(t) N X,, = {xi,, ..., x;,, } }. Clearly, E C R3.

= x;,, for some iy, ....7,, € {1,...,n}

m

Example 3.3.7. Let 7 = (3) and oy € Hypg(3) where t = f(x1, f(z4,21,25),23). Then
o € B C R3. Consider

(010 o1)(f) = Gilf(z1, f(za, 21, 25), 73)]

I
wn
w
\‘H
)
=
wn
w
=
Y
)
B,
NG
)
=,
2
)
2
8
w
S—

Hence o; € E(Hypa(3)).
Let s = f(xs, f(x4,21,25),21). Then o5 € Rg \ E. Consider

(050G os)(f) = Os[f(as, f(z4,21,25),21)]

s, 0s[w3], 0s[f (24, w1, 25)], 0s[71])

5,23, 5% (5, 05[], 05[], 0s[ws]), 1)

s, 23, S%(f (w3, f(x4,71,25), 1), 24, 71, T5), 1)

— S3 S,T3, f(xf)a f(.’E4,.’1347$5), 114),.’1)1)
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= S3(f(zs, f(za, 21, 35), 1), @3, f (25, f(T4, 24, 25), 24), T1)
= flz1, f(z4, 23, 25), 73)

7é Us(f)‘
Hence o5 ¢ E(Hypg(3)).

By the definition of Ry and Rs it is easy to check that for all elements in Ry U Ry
are idempotent elements in Hypg(n). In 2010, W. Puninagool and S. Leeratanavalee [21]

characterized the idempotent generalized hypersubstitutions of type 7 = (n).

Theorem 3.3.8 ([21]). Let t = f(t1,t,....tn) € W) (X) and var(t) N Xy, = {24, Tiy,
i, }. Then oy is idempotent if and only if t;, = x;, for all k € {1,2,...,m}.

By Theorem 3.3.8, we have that for every element in F is idempotent It is clear

that E(Hypg(n)) = R1 U Ry U E. By Example 3.3.7, E(Hypa(n)) & U R;.

Remark 3.3.9. E(Hypg(n)) is not subsemigroup of Hypg(n).

Example 3.3.10. Let 04,05 € E(Hypa(3)) where t = f(xs,x2,24) and s = f(z1, f(x1,

ﬂfl,iﬂl),$5).

Consider

(otoG os)(f) = Gulf(zr, fxr,21,21), 25)]
= 83 t,o t[ ] [f(zlamlvxl)]7at[x5])

= 93 t,x1,S (t Jt[xl] at[xl],a[xl]),x5)

I
o)

(
(
S(t,wy, S°(f (w5, w2, 74), 71, %1, 71), T5)
= S3(t,x1, f(xs,21,24), T5)

= S%(f(ws, w2, 24), w1, f (25, 01, 74), 25)

= [flxs, f(z5,21,24), 74).

Then oy 0g 05 ¢ E(Hypa(3)). So E(Hypa(3)) is not closed under og, i.e. E(Hypa(3)) is
not a subsemigroup of Hypg(3).

By the definition of a regular element and a unit-regular element, we get the set
of all unit-regular elements is a subset of the set of all regular elements. From now on,
we show that the set of all unit-regular elements and the set of all regular elements in

Hypg(n) are the same.

25



Theorem 3.3.11. ORi is a set of all unit-reqular elements in Hypg(n).
i=1
3
Proof. Let oy € URZ" If o, € Ry U Ry, then o, € E(Hypg(n)). So o oG 04 oG 0¢ =
ot 0 Ot = Oy. zI:flat € Rs, then t = f(t1,...,t,) where t;, = xj,,...,t;,, = xj, for
SOMe 41, ...,%m, j1,--s jm € {1,..,n} and var(t) N X,, = {zj,...,x;,,}. Choose o, €
U(Hypg(n)) where u = f(ui,...,un) = f(Tr(1),-» Tr(n)) for some 7 € S, such that

7(j1) = 1150, T(Jm) = im- Then uj, = xr(;,y = 23 for all 1 € {1,...,m}. By Lemma 3.3.3,

Jt)
3
0t oG 0y 0G 0y = o0y. Hence oy is a unit-regular element in Hypg(n). Since U R; is a

i=1
3

set of all regular elements and all its elements are unit-regular, so U R; is a set of all
i=1
unit-regular elements in Hypg(n). O

Therefore, for every element in Hypg(n) is a regular element if and only if it is a

unit-regular element.
3

We have U R; is a proper subset of Hypa(n), i.e. Hypg(n) is not a regular semi-

i=1
3

group. Next, we will prove that U R; is not closed under og. Firstly, we construct some

=1
tools used for this proof. We define:

Definition 3.3.12. Let ¢t € W,)(X) \ X where t = f(t1,...,t,) for some t1,....t, €
W) (X). For each s € sub(t), s # t, sequences of s in ¢, denoted by seq'(s), is defined by

seq (s) = {(i1; s im)|lm € N and s = m;,_ o ...om, (t)}

where m;, @ Wiy (X)) \ X = Wi,y (X) with 7, (f(t1, ..., tn)) = t;,. Maps 7, are defined for

i=1,2,..,n.

Example 3.3.13. Let t € Wy (X) wheret = f(t1,t2,13,%4) such that ¢, = f(z3, 21, s, 74),
to = x4, t3 = f((x7,s,21,24), 24, f(xs, f(23,21,8,24), T2, f(23,21,5,24)),5) and t4 = s
for some s € W4 (X). Then

seqt(s) = {(1,3),(3,1,2),(3,3,2,3),(3,3,4,3),(3,4), (4)},

seq”(s) ={(1,2),(3,2,3),(3,4,3), (4)},

seq'(t1) = {(1),(3,3,2),(3,3,4)},

seqt(xyq) = {(1,4),(2),(3,1,3)}.

Lemma 3.3.14. Let t,s € W,,)(X)\ X, # € var(t) and var(s) N Xy, = {22, ..., 25 }. If

(i1 ey im) € seq'(x) where i1, ...,0m € {21, ..., 2k} then x € var(o4[t]) = var(osog o1) and
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there is (aiy, ..., a;,,) € seq?slt (x) where a;; s a sequence of natural numbers ji, ..., jn such

that (j1, ..., jn) € seq®(xi;) for all j € {1,...,m}.

Proof. Let t = f(t1,...,t,) for some ty,...,t, € W,)(X) and (i1, ...,im) € seq'(x) where
i1y ey i € {21, ..., 2k} Let us proceed by mathematical induction on m. If (i1) € seq!(z)
where i1 € {z1,..., 2}, then x = m;, (t) = t;;, where t;, € {t1,...,t,}. Hence o5[t;,] =

0s[z] = x. Consider
osog o(f) = o5[t] = S™(s,0s[t1], ..., Ts[tn])

Since x;, € var(s) N Xy, © = 04t;,] € var(G4[t]) and there is (a;,) € seq”*!(x) where
aj, is a sequence of natural numbers ji,...,j, such that (ji,...,jn) € seq®(x;). Let m
be a natural number and assume that, for each u € W, (X) \ X, z € var(u) and
(l1,...,1,) € seq"(x) where Ii,...,l, € {z1,..., 2k}, then z € var(cs[u]) = var(os og o)
and there is (az,, ..., a,) € seqs[¥ (z) where ay, is a sequence of natural numbers 71, ..., 75
such that (r1,...,74+) € seq®(wy,) for all ¢ € {1,...,p} is true for all natural numbers
p < m. If (i1, ....im) € seq'(x) where i1, ..., i € {21, ..., 2k} , then x = m; o ...om (t) =
i, © - 0 Ty (tiy), i.e. @ € var(t;)) and (g, ...,im) € seq'i(x). By our assumption, we
get = € var(d,t;,]) and there is (ai,,...,a;, ) € seq®b1l(z) where a;; is a sequence of
natural numbers ji, ..., j; such that (ji,...,jn) € seq®(w;;) for all j € {2,...,m}. Since
zi, € var(s) N Xy, Gs[tiy] € sub(S™(s,Gs[t1], ..., Gs[tn])) = sub(Gs[t]) and seq”*¥(G4[t;,]) =
seq®(z;,). Hence x € wvar(ds[t]) and there is (ai,, @iy, ..., a5,) € seq”*H(x) where ai;
is a sequence of natural numbers ji, ..., jn such that (ji,...,jn) € seq®(z;;) for all j €

{1,2,...,m}. O

Theorem 3.3.15. Lett = f(t1,...,tn) where t;;, = xj,,...,t;,, = xj,, for some i1,...,0n,

i"VL
Jis - Jm € {1,..,n} and var(t) N Xy, = {zj,,...,xj,}. If xj € var(ty) for some l €
{1,..;m} and k € {1, ...;n}\{i1, ...,im } where (k1,...,k,) € seq'*(zj,) for some ki, ..., k, €
{1,...,n} \ {i1} then there exists o5 € Hypg(n) such that og oG oy is not a unit-reqular

element in Hypg(n).

Proof. Assume that the condition holds. Since (ki,...,k,) € seq™(xz;,), we get (k, ki, ...,
kp) € seq'(x;,). Let hy,....hg € {k,k1,....,kp} and hy # h, if | # r. Then ¢ < n. Choose
os € Hypg(n) where s = f(s1,...,s,) such that s1 = xp,,,..., 5, = T, and s441,..., 5 €
Wiy (X) and var(s,) N X, =0 for all r € {g+1,...,n}. Then s; # x; for all i € {1,...,n}.

Consider

(050G o) (f) =as[f(tr,....tn)] = S™(f(S1, .y 8n), Os[t1], ..., Os[tn]) = flur, ..., upn)
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where u; = S™(s;,05[t1], ..., 05[tn]) for all ¢ € {1,...,n}. Since s; # z;,, u; # x;, for all

i€ {l,..,n}. By Lemma 3.3.14, we get xj, € var(os o o) such that x;, € var(u;) where
3

u; € Wiy(X) \ X for some j € {1,...,n}. Hence o0 0y ¢ U R;, so 0s og 0y is not a

i=1
unit-regular element in Hypg(n). O

3

Example 3.3.16. Let 7 = (3) and o, € U R; where t = f(x2, f(f(x4,24,25), x2,T5),
i=1

f(x5,x9,x5)). Choose o5 € R3 where s = f(x2,x3,x4). Consider

(0soga)(f) = 0oslf(wa, f(f(24, 24, 75), T2, T5), f (25, 22, T5))]
= S3(5,x2,f($2,$5,$4),f($2,$5,$4))

= f(f(z2,75,24)), f(22, T5,74), T4).

3
We see that o505 0, ¢ U R;. So 050 0y is not a unit-regular element in Hypg(3). Hence
i=1

3
U R; is not closed under og.
i=1
3
Therefore U R; is not unit-regular submonoid and it is not regular submonoid of

=1
Hypa(n).

3.4 All Completely Regular Elements in Hypg(n)

In semigroup theory, the principle special study of a regular element are inverse
of an element and a completely regular element with a great diversity of their various
generalization.

In the monoid of all generalized hypersubstitutions, a regular element was studied
by W. Puninagool and S. Leeratanavalee in 2010 [21]. The main tool used to study a
regular element of the monoid of all generalized hypersubstitutions is the concept of a
regular element of the monoid of all hypersubstitutions. The concept of a regular element
of the monoid of all hypersubstitutions originated by Th. Changphas and K. Denecke [7].

In this section, we used the concepts of regular element as tools to determine the
set of all completely regular elements of the monoid of all generalized hypersubstitutions
of type 7 = (n) and we have that a completely regular element is both left regular and

right regular element of the monoid of all generalized hypersubstitutions of type 7 = (n).
3

Denote R, Ro, R3 and E as in Section 3.3. Then U R; is the set of all regular ele-
=1
ments in Hypg(n). By the definition of completely regular we get the set of all completely
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3
regular elements is a subset of U R;.

=1
In 2010, W. Puninagool and S. Leeratanavalee showed that E(Hypg(n)) = Rl U
Ry U E is the set of all idempotent elements in Hypg(n) such that E(Hypg(n U R;

[21].

Theorem 3.4.1. For each o € E(Hypg(n)), o is a completely regular element in
Hype(n).

Proof. The proof is obvious. Ol

Let S, be the set of all permutations of {1,2,...,n} and let o, € Hypg(n). By

Section 3.1, we have

U(Hypc(n)) := {0t € Hypa(n)|t = f(Tr1)s - Tr(n)) Where m € Sy}

3
is the set of all unit elements in Hypa(n). We see that U(Hypg(n)) C Rs C U R;.
i=1

Theorem 3.4.2. For each ov € U(Hypa(n)), o+ is a completely reqular element in
Hypa(n).

Proof. Let 0 € U(Hypa(n)). Then there exists o;-1 € U(Hypa(n)) € Hypg(n) such

that oy og 04-1 = 0jg = 04—1 0 0y and oy o 041 oG gy = 0. ]

Let oy € Hypg(n), we denote
CR(R3) :=={oy|t = f(t1,...,tn) and t;; = x

7(i1)s o Lign = Tr(iy,) Where 7 is a bijective
map on {i1, ..., i} for some i1, ... i, € {1,...;n} and var(t) NV Xy, = {Tx@,)s - Tr(in) } -

Then we have (E UU(Hypa(n))) € CR(R3) C Rs.

Example 3.4.3. Let 7 = (5) and ¢t = f(t1,t2,t3,t4,t5) where t1 = x3,to = f(w¢, s,
x3,Te,%6), t3 = x4, t4 = w1 and t; = x3. Let 7 be a bijective map on {1,3,4} where
m(l) = 3,m(3) = 4 and 7(4) = 1. Then t1 = 2,0y, t3 = Tr3) and t4 = 2,4). So
or € CR(R3).

Theorem 3.4.4. For each oy € CR(R3), o, is a completely reqular element in Hypg(n).

Proof. Let oy € CR(R3). Then t = f(t1,...,tn) and t;; = Tr(,)s - tin, = Tr(,,) Where
7 is a bijective map on {iy,...,in} for some iy,... i, € {1,...,n} and var(t) N X, =
{Tr@y)s o Ty )+ Let s € Wiy (X) where s = f(s1,...,8,) such that s;;) = T4, ...,

Sa(im) = Tim- Let tp € sub(t;) and s € sub(s;) for all j € {1,..,n} \ {i1,...;in} and
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k e {1,..,n}. If var(ty) N X, = (0 then we choose s = tx. And, if ¢, = Tr(iy) and
n(ip) = 4 for some ip,4; € {i1,..,im} we choose s = x;,. By Lemma 3.3.3, we have

010G 05 0 0 = o¢. Next, we will show that oy og 05 = 05 og 0¢. Consider
(orog as)(f) = S"(f(t1,....tn), t[s1], .., Ot[Sn]) = flwr, ..., wp)
where w; = S™(t;, 6¢[s1], ..., d¢[sn]) for all i € {1,..,n}. And consider
(050G ot)(f) = S"(f (515 -y 8n), Os[ta], s Ostn]) = f(ur, ..., un)

where u; = S™(s;, ds[t1], ..., ds[tn]) for all i € {1,..,n}.
Case 1: i; € {i1,...,im}-
Since 7 is a bijective map on {i1,...,%y, }, there exists i, € {i1,.., %y} such that 7 (i,) = 1.
Then
u;, = S"(siy, Gs[t], -y Os[tn]) = S™ (@i, Os[t1], -y Fs[tn]) = Os[ti,] = (i) = 74,
and

w;, = Sn(til,ét[sl], AR a}[sn]) — Sn(l'ﬂ.(il),(ft[sl], o a}[sn]) = OA't[Sﬂ.(il)] = Ty, -

So u;, = w;, for all [ € {1,...,m}.

Case 2: je{1,.,n}\{i1,...,im}

Let t;, € sub(t;) and s € sub(s;) for all k € {1,...,n}. Then w; = S™(t;,0¢[s1], ..., 5¢[sn])
and u; = S"(s;j,0s[t1], ..., 0s[tn]). We put wj, = S"(tg, 5¢[s1], ..., 6¢[sn]) and uj, = S™(sy,
Oslt1], ..., 0s[ty]) for all k € {1,...,n}. If var(ty) N X, =0, then w), = t; and uj = s = .
If t), = 2, (;,) and 7(ip) = i, then

wy, = S"™(ty, G[s1], ..., Gelsn]) = S™(@r (), Gels1], s Gelsn]) = Gelsriy] = 4,
and

uy, = S"(sk, Tst1], -, Osltn]) = S™(zi,, Oslta], -, Os[tn]) = Islti,] = Tr(iy) = iy

So w; = wuj for all j € {1,..,n}\ {i1,....0m}.
Hence f(wy,...,wy) = f(ui,...,uy), so oy 0g 05 = 05 oG 0. Therefore oy is a

completely regular element in Hypg(n). O]

Lemma 3.4.5. Let t = f(t1,...,t,) where t;; = xj,,....t;, = xj, for some i1,... in,
Jis-- o dm € {1, ...,n} and var(t) N X, = {xj,,...,xj,. }. If there exists | € {1,...,m} such
that t;, = xj, where iy & {j1, ..., jm}, then oy # 05 0g oF for all o5 € Hypa(n).

Proof. Assume that the condition holds. Consider

(or oG o) (f) = auft] = S™(f(t1, . tn), Otlt1], -, Tt[tn]) = flug, ...y uy)
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where u; = S™(t;, 0¢[t1],...,0¢[tn]) for all ¢ € {1,...,n}. We have u; = S"(t;,d4[t1],
s Otltn]) € {zj,,...,xj,, } if and only if t; = x;, for some k € {1,...,m}. Since i; ¢
{1, s Jm}s ti # @, for all i € {1,...,n}. So u; # zj,. Hence o?(f) = f(u1,...,u,) where
u; # x; for all i € {1,...,n}. Let 05 € Hypg(n). Next, we will show that oy # o50¢07. If
s = x; where z; € X, then (0506 07)(f) = z; # o¢(f) for some z; € X. If s = f(s1,..., )

where s1, ..., s € Wiy)(X), then

(osocof)(f) = Gslf(ut, ... un)]
= S"™(f(s1y-Sn), Tslu1], ..., Tslun))

= flwy,...,wy)

where w; = S" (s, 05[u1], ..., ds[uy]) forall i € {1,...,n}. Since u; # x;, foralli € {1,...,n},
Oslui] # xj,. So w; # xj for all i € {1,...,n}. Hence f(w1,...,wn) # f(ti,...,tn), s0

ot # 05 0¢ at2. ]

Theorem 3.4.6. Let CR(Hypg(n)) := CR(R3) U Ry U Ry. Then CR(Hypg(n)) is the

set of all completely reqular elements in Hypg(n).

Proof. By Theorem 3.4.1 and Theorem 3.4.4, every element in CR(Hypg(n)) is completely
regular. Let oy be a regular element where o, ¢ CR(Hypg(n)). Then o, € R3 \ CR(R3).
By Lemma 3.4.5, 0, # 05 og o2 for all o5 € Hypg(n). Then o, # (07 og oy) og 07
where 07 og 0, € Hypg(n). By Theorem 2.1.3, gy is not a completely regular element
in Hypg(n). Therefore CR(Hypa(n)) is the set of all completely regular elements in
Hypg(n). O

Corollary 3.4.7. Let oy € CR(Hypg(n)). Then a; is both left reqular and right regular

element in Hypg(n), and oy is an intra-regular element in Hypg(n).
Corollary 3.4.8. If oy € R3\ CR(R3), then o, is not a left reqular element in Hypg(n).

Example 3.4.9. Let 7 = (3) and let 0y € Hyp(3) where t = f(x3, f(x4, 24, 24), x5) then
ot € R3\ CR(Hypi(3)). Consider

(otogor)(f) = Gilf(xs, flza, x4, 24),25)]
= 53(t7 at [1‘3], at [f(ﬂ?g, f($4, Ly, 554)7 935)} ) at [$5])
= Sg(t,ZCg,Sg(t,85[1‘4],3t[$4],3t[$4]),1‘5)

- SB(t7 €3, Ss(f($37 f($47 x4, .’E4), 135), T4,T4, 374)7 .T5)
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= S%(t, 23, f (24, f (24,24, 74),25), T5)

= S%(f(w3, f(x4, 74, 24), 05), 73, f (24, f (22, 24, 24), 75), T5)

= f(xs, f(4,74,24), 25).
Let 0, € Hypg(3), if s € X then 6?ogos € X and o,0q02ogos € X for all o, € Hypa(3).
If s € W5)(X) \ X then of og 05 = 0f # 0y and 0, oG 07 og 05 = 0y oG 07 # oy for all
oy € Hypa(3). So oy is not a right regular element and it is not an intra-regular element

in Hypc(3) -

By Corollary 3.4.8 and Example 3.4.9, there exist regular elements in Hypg(7) such

that it is not left regular, right regular and intra-regular elements in Hypg(7).

Example 3.4.10. Let 7 = (3) and let 04,05, € Hypg(3) where t = f(x3,25,21), s =
f(z4, 23, x2) then 04,05 € CR(Hypg(3)). Consider

(0106 03)(f) = ulf(4, 23, 22)]
= S(t,5¢[xa), Ge[x3], Gt [w2])
= S3(f(x3,x5,21), T4, T3, T2)

= f(.%'g,x5,$4).
We see that o, oq 05 ¢ CR(Hypa(3)). So CR(Hypa(3)) is not closed under og.

Therefore CR(Hypg(7)) is not a submonoid of Hypg(T).

3.5 All Intra-regular Elements in Hypg(2)

By Theorem 2.1.4, we conclude that a completely regular element is an intra-regular
element. In general, an intra-regular element need not be a completely regular element.
In this section, we use the concept in Section 3.4 to show that an intra-regular element of
the monoid of all generalized hypersubstitutions of type 7 = (2) is a completely regular
element. Moreover, we have a relationship of completely regular, left regular, right regular
and intra-regular elements of the monoid of all generalized hypersubstitutions of type

T =(2).

3.5.1 Sequence of Terms

At first, we construct some tools used to characterize all intra-regular elements
in Hypg(2). These tools are called the sequence of a term and the depth of a term,

respectively.
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Let t € W, (X) \ X, and #; € sub(t). It can be possible that #; occurs in the term
t more than once, we denote

tgj ):= subterm t; occurring in the j'* order of ¢ (from the left).

Definition 3.5.1. Let t € W,,y(X)\ X where t = f(t1, ..., 1) for some t1, ..., £, € W, (X)
and let m; @ W) (X) \ X — Wi (X) with 7, (t) = 7, (f(t1, ..., tn)) = ;. Maps 7, are
defined for i, = 1,2, ...,n. For each s) ¢ sub(t) for some j € N, we denote the sequence of

sU) in t by seq!(s1)) and denote the depth of s in t by depth!(s9)). If s¥) = m; o...om;, (t)

for some m € N, then
seqt(sU)) = (iy,....im) and deptht(sU)) = m.

Example 3.5.2. Let 7 = (3) and let t € W3y (X) \ X where t = f(t1,t2,?3) such that

tr = w5, ta = f(xs, f(za, f(x2,27,210),25),x5) and t3 = f(f(zs5, 24, f(x2, 27, 210)), 1, Z6).

Then

seqt(xél)) =1 {] fmel deptht(acé ) =1;

seqi(@®) = (2,2,3) and depth!(z$)) = 3;

seqt(wé?’)) =(2,3) and deptht(acgg)) 2 9

seq' (@) = (3,1,1) and deptht(zl!) = 3;
seqt (f(xe, x7,210)M) = (2,2,2) and  depth!(f (s, x7,210)Y) = 3;
) (f (w2, 27, 210)?) = 3;

seq’ (f(z2,z7,210) V) = (1,3) and depth' (f(xg, x7,10)) = 2;

seq ($§0)> 2%

and depth'(x

(
1
and  depth! (xg

)
)
)
)
)
seq' (f(z2, 27, 210)?) = (3,1,3) and depth!
)
)
seq' (2$3)) = (3,1,3,3)
)

seq®(2\t)) = (1,3,3) and depth’(2\}) =

Let ¢, 81,52, ..., 8k € Wiy)(X) \ X and z; € var(t). We donote

5] )= the variable x; occurring in the j* order of ¢ (from the left);

5] 91).= the variable :U( 2 occurring in the j* order of &, [t] (from the left );

( 79132),— the variable :E(] 91 occurring in the jib order of Gy, [T, [t]] (from the left ).
Similarly,

x(J,sz, »Jk) (F:J155Jk—1)

) occurring in the ji" order of G, [Gs, _, [...[0s,[0s, [t]].-.]

= the variable x;

(from the left ).

Theorem 3.5.3. Let t,s € W, (X)\ X and x(]) € var(t) for some i,5 € N and let

seq'(x (])) (11, ey im). Then z;,, ..., z;, € var(s)NX, if and only if:ngj’jl) € var(ost]) =
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as[t]( ( 7]1)) _

var(os og o¢) for some j1 € N and seq (@iys ..., ai,,) where a;, is a sequence

of natural number p1,...,p, such that (p1,...,pq) = seqs(:v?l’) for some h; € N and for all

le{l,..,m}.

Proof. (=). The proof similar to Lemma 3.3.14.

(«<). Assume that :E(Ml) € var(0s[t]) = var(osogoy) for some j; € N and seq® []( G 7]1))

(@i, ..., ai,,) where a;, is a sequence of natural number py, ..., p, such that (p1,...,pq) =

seq ( !) for some by € N and for all [ € {1,...,m}. Then
vb7l] (xgj)) = vb®(z,) X vb®(x4,) X ... X VO*(x;,,).

Suppose that z;, ¢ var(s) N X, for some 1 <k < m, so vb*(z;,) = 0, i.e. vb7s!l (xgj)) =0,

which contradicts to our assumption. Hence z;,, ..., x;,, € var(s) N X,. O
Example 3.5.4. Let 7 = (3) and let ¢t = f(x, f(x4,25,22), f(z2,26,27)) and s =
f(wg,w1,w3). Then seq'(zy)) = (1), seq'(a§”) = (2,3), seq'(a§”) = (3,1) and seq'(a}")) =
(3,3). By Theorem 3.5.3, there exist xé ), (3, kl),1‘(3’k2),w(71’l1),x$1’l2),x(71’l3), xgl’m €

var(ost]) for some h, k1, ka,1l1,12,3,l4 € N and

seq™ (@i ") = (2) = seqasw §%) where seq*(21) = (2);
seqs!t] (xég’kl)) = (Y} 2)= seqsl1] ($2 ) where seq®(z5 ( )) = (1) and Seqs(xgl)) = (2);
seq®= 0 (a$F2)) = (3,2) = seq?: 1 (25>Y) where seq®(2{?) = (3) and seq*(z\") = (2);
seq7sl! (33(71’11)) =(1,1) = seq’1 (xgl’l)) where seqs(a:gl)) = (1) and seqs(xgl)) = (1);
seq?s (xgl’lz)) = (1,3) = seq”!! (xgm)) where seqs(xgl)) = (1) and seqs(xi(f)) = (3);
seq?s (x(717l3)) = (3,1) = seq”*!! (3:(71’3)) where seqs(wgf)) = (3) and seqs(xi())l)) = (1),
seq?s (x(717l4)) = (3,3) = seq?+l (3:(71’4)) where seqs(xz(f)) = (3) and seqs(ng)) = (3).

Since x9 ¢ var(s), so x§2’i) ¢ var(os[t]) for all 7 € N. Consider,

Golt] = Gulf@l), flaa,ms, ), f28) a6, 280))]
= S3(f(wg,w1,w9), Gl Gl f (e, 25, 257)], G f (2 e, o))

= U 2y a0 e )

= f(f(27,22,27), 22, f(x7, 22, 77)).

Corollary 3.5.5. Let t,s € W) (X)\ X and xz(j) € wvar(t) for some i,j € N such
that seqt(:cl(j)) = 01,12, ..., b fOr SOME 01,02, ...,0m € {1,..,n} and z; € var(s) for all

1 <k <m. Then there exists j1 € N such that

depth?s!! (;pl(.j’jl)) = depths(:nz(-il)) + depths(xgg)) ..+ depth®(x (lm))
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for some l1,1a, ..., L, €N, and
vb7s[t] (ml(-j)) = vb®(x;y) X vb*(24,) X ... X Vb (x;,,).
Let vb(x;) = d.
If z; € X, then vb%H(z;) = zd:vbasm (:1;53))
i=1 )

If z; € X \ X,, where x; ¢ var(s), then vb%¥(z;) = vaas[t] (xij)).
j=1

Example 3.5.6. For each 7 = (3). Let t,s € W(3)(X) \ X where

t = f(f(xs, @5, 24), x5, f(z2,25,24)) and s = f(x2, f(x2,x3,x3), 23)

Then
seqt(xd) = (1,1) = vb®(2d) = vb*(z1) x vb*(x1) =0 x 0 = 0;
seqt(xd) = (1,2) = vb®(2d) = vb*(z1) x Vb (22) =0 x 2 =0;
sed'(2) = (2) = ubP1(ad) < ub*(as) = 2
seqt(xd) = (3,2) = vb%U(xd) = vb®(23) x vb*(z2) = 3 x 2 = 6;
seqt(z}) = (1,3) = vb%M(z}) = vb*(z1) x vb*(x3) =0 x 3 =0;
seqt(z3) = (3,3) = vb%(2?) = vb®(23) x vb*(23) =3 x 3 =9;
seqt(zd) = (3,1) = vb%(zd) = vb*(x3) x vVb*(x1) =3 x 0 =
Consider
osogor = Os[f(f(x3,25,24), 5, f(22, 75, 4))]

= 5°(s,05[f (23, 5, 24)), 05 [25), 5[ f (w2, 25, 24)])

= 5%(s,8%(s,0s[w3], Tslas), Ts[wa)], a5, 5° (5, Tslwa], Fs[w5], Ts[2a)])
= S3(s, f(xs, f(x5, 24, 74), 24), T5, f (x5, f (25,24, T4), T4))

= [f(@s, (@5, f(5, f(25, 24, 24), 34), f (5, f(25, 4, 4), 74)),

f(xf)a f(:c5,a;4,x4),m4)).

3.5.2 All Intra-regular Elements in Hypg(2)

In this section, we characterize the set of all intra-regular elements of the monoid
of all generalized hypersubstitutions of type 7 = (2). Finally, we show that the set of all
completely regular elements and the set of all intra-regular elements in Hypg(2) are the
same.

We recall first the characterization of all completely regular elements in Hypg(2).
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Let 7 = (2) be a type with a binary operation symbol f. By the definition of Ry, Ry
and Rs in Section 3.3 and the definition of CR(R3) in Section 3.4, we get

Ry :={oy,|zi € X};

Ry = {oy|t € W(9)(X)\ X and var(t) N Xo = 0};

Ry = {o4]t € W(9)(X) \ X and t = f(t1,t2) where t; = z; for some 4,5 € {1,2} and
var(t) N Xo = {2;}}U {0f(21,20)) Of(azian) }3

CR(R3) := {0t € W2)(X)\ X and t = f(t1,t2) where t; = x; for some i € {1,2}
and var(t) N X = {x;}}u {0 t(@1,20)s Tf(wa,1) )

Then we have U R; is the set of all regular elements in Hypg(2) [21]. By Theorem

i=1
3.4.6 and by Corollary 3.4.7, we have CR(Hypg(2)) := CR(R3)UR1URy = E(Hypg(2))U
{0 f(2s,21)} 1s the set of all completely regular elements in Hypg(2) and every element in

CR(Hypc(2)) is intra-regular. In Lemma 3.5.7 - Lemma 3.5.11, we determine some
elements in Hypg(2) \ CR(Hypa(2)) which are not intra-regular.

Lemma 3.5.7. Ift = f(t1,71) where t1 € W9 (X) \ Xa then oy is not intra-regular in
Hypc(2).

Proof. Let t = f(t1, 1) where t; € W5)(X)\ X2. For each u € X, we get 0,0¢ 07 oG 0y #
o and 0, 0q0F oG oy # oy for all v € Wig)(X). Let u,v € Wo)(X)\ X where u = f(uy, uz)
and v = f(v1,v2) for some i, uz, v1,v2 € W) (X), we will show that o, o¢ otog oy, # 0.
If t; € X\ X then 2o ¢ var(t). By Theorem 3.5.3, 1 ¢ var(cy[t]) = var(o?), i.e.
var(of) N Xy = 0. Hence oy, o¢ 07 oG 0y # 0r. If t1 € W9)(X) \ X, then

ot (f) = Gut] = S*(f (tr; 21); Gelta], @1) = f(wn,w2)
where wy = S%(t1,0¢[t1], 71) and wy = S%(x1,5¢[t1], 71) = G¢[t1] and denote w = f (w1, ws).
Since t; ¢ X, so w; ¢ X and we = ¢[t1] ¢ X. Consider
0t oG 0u(f) = Gwlv] = S*(f(w1, w2),Gw[v1], Guw(va]) = f(s1,52)
where s; = S%(w;, G [v1], Gw[ve]) for all i € {1,2}. Since w; ¢ X for all i € {1,2}, s, ¢ X
for all 4 € {1,2}. Then 7,[s;] ¢ X for all i € {1,2}. Consider
0w oG 07 oG 0u(f) = S (f(u,u2), Guls1], Guls2]) = f(r1,72)

where 7; = S%(ui, Gu[s1], Gulsa]) for all i € {1,2}. If ug € Wo)(X) \ X or up € X then
ro ¢ X. If up € X \ Xo then ug = ro. So 79 # x1. Therefore o, og 07 oG 0, # 0y Hence

oy is not intra-regular in Hypg(2). Ol
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Lemma 3.5.8. Ift = f(x2,t2) where ta € W(9)(X) \ Xa then oy is not intra-regular in
Hypa(2).

Proof. The proof is similar to the proof of Lemma 3.5.7. OJ

Lemma 3.5.9. Ift = f(x1,t2) where ta € W9)(X) \ X2 and w2 € var(t) then o, is not

intra-regular in Hypa(2).

Proof. Assume that t = f(z1,t2) where tg € Wy)(X) \ X2 and 29 € var(t). Let m =
maa:{deptht(:ng))\mg) € var(t) for some i € N} (x), then there exists h € N such that

seqt(xgh)) = (41,92, ..., i) Where iy, 9, ..., 7 € {1,2}. It means xéh) = m,, 0T, _,0...0m;, (t)
where maps 7, ..., 7, _,, T, are defined on W) (X) \ X2 to Wy (X). Since l’éh) €
var(ta), m, (t) = to, i.e. iy = 2. So seqt(xgh)) = (2,12, ...,%m). By Theorem 3.5.3, there is
xgh’hl) € var(G4[t]) = var(o?) for some h; € N such that

seq“t2 (xgh’hl)) =T, i N i, )
where (2,42, ..., 9, ) = seq’ (:cgh)) and a;, is a sequence of natural numbers such that (a;,) =
seqs(ngiZ)) for some h;, € N and for all 2 < z < m. [Note: a:éh) is a variable x2 occurring

in the A" order of t (from the left) and :céh’hl) is a variable a:éh) occurring in the ht" order
of o7 (from the left)]. Instead of a sequence aj,, ..., a;,,, we write a sequence of natural
numbers wy, ..., wy for some d € N and wy, ..., wq € {1,2}. Then

5 (hh : .
seq°t (mé 1)) = (2,02, ey lpy Wiy eeey Wq)-

Suppose that there exist u,v € Wg)(X) such that oy, og 0l og oy = oy (%%), ie. u =

f(z1,us) and v = f(z1,va) for some ug, vy € Wa(X) where z2 € var(uz)Nvar(vs). Choose

l‘gj) € var(v) for some j € N. Then seq”(ng)) = (2,p1,...,pq) for some p1,...,p, € {1,2}
and for some ¢ € N. By Theorem 3.5.3, there is a:éj’jl) € var(o} og o,) for some j; € N
such that
2 1.7 . B
5eqt oG (asg“l)) = (2,82, ey fny W1y ooy W, Apy 5 ey ip, )

. . 2 h,h .
where (2,9, ...,9m, W1, ..., wq) = seq’i (mé 1)) and a,_ is a sequence of natural numbers

such that (ap,) = seqs(azgj)) for some I, € Nand forall 1 < z < ¢. [Note: xéj) is a variable

x5 occurring in the j% order of v (from the left) and xgj 91 §s a variable xgj ) occurring

in the ji* order of 07 og 0, (from the left)]. Instead of a sequence ay, , ..., ap, we write a

sequence of natural numbers wgy1, ..., wy for some k € N and wg1, ..., wx € {1,2}. Then

2 (4,91) . .
5eq7t°C (15 ) = (2,102, oy Ty Wy evey Wiy Wit 1 5 vy W)
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By Theorem 3.5.3, we have :céj’jl’]é) € var(o, og o7 og 0,,) for some js € N. By Corollary
3.5.5, we have
depth”"oGUfQOGU” (acgj’jl"b)) = depth“(xébl)) + depth“(:vl(-?)) + ...+ depth“(xl(-fnm))

+depth®(zmV)) + .. + depth“(:vq(f;””))
+depth"(m1(5;’ﬁd“)) + .ot depth"(a:g,’f*k))

> m

for some by, ..., by, b1y ooy bntds bnadats -5 bk € N, which contradicts to (x) and ().

Therefore oy is not intra-regular in Hypg(2). O

Lemma 3.5.10. If t = f(t1,x2) where t; € W3 (X) \ X2 and x1 € var(t) then oy is not

intra-regular in Hypg(2).
Proof. The proof is similar to the proof of Lemma 3.5.9. Ol

Lemma 3.5.11. Ift = f(t1,t2) where t1,t2 € W2)(X) \ X2 and var(t) N Xo # 0 then oy

is not intra-regular in Hypa(2).

Proof. Let t = f(t1,t2) where t1,12 € Wig)(X) \ X2 and var(t) N Xa # (.

Casel: var(t) N Xo = {x;} for some ¢ € {1,2}. Let j € {1,2} where i # j.
(h)

%

If j is occurring in seq!(z; ) for all xz(h) € wvar(t) then var(o?) N Xy = 0, ie.
0y oG 02 og 0y # oy for all u,v € W) (X).

(h)

7

(h)

)

€ var(t) then seqt(avl(-h)) = (91,12 -y im)

If j is not occurring in seq’(z,"”) for some x
where i1, 12, ...,4m € {i} for some m € N. We can prove similar to the proof of Lemma
3.5.9, then o, oG 07 og 0, # oy for all u,v € Wig)(X).

Case2: var(t) N X9 = X5. We can prove similar to the proof of Lemma 3.5.9, then
0y oG 0F oG 0y # 0y for all u,v € Wig)(X).

Therefore oy is not intra-regular in Hypg(2). O
Theorem 3.5.12. CR(Hypa(2)) is the set of all intra-regular elements in Hypg(2).
Proof. By Corollary 3.4.7 and by Lemma 3.5.7 - Lemma 3.5.11. O

In 2014, S. Sudsanit, S. Leeratanavalee and W. Puninagool [24] characterized left-

right regular elements in the monoid generalized hypersustitutions of type 7 = (2).
Proposition 3.5.13 ([24]). If oy is idempotent, then oy is left(right) regqular.

Proposition 3.5.14 ([24]). 0 (4, 4,) s left(right) regular in Hypg(2).
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By Proposition 3.5.13 and Proposition 3.5.14, S. Sudsanit, S. Leeratanavalee and
W. Puninagool showed that every element in CR(Hypg(2)) is left(right) regular.

Proposition 3.5.15 ([24]). (3, 4,,) where m € N with m > 2 is not left(right) regular
in Hypg(2).
Proposition 3.5.16 ([24]). 04, 2,) where m € N with m > 2 is not left(right) reqular
in Hyp(2).

Proposition 3.5.17 ([24]). Lett € W9 (X)\ X. Then the following statements hold:
(i) If xo € var(t), then oy, 4 is not left(right) regular;

(ii) If x1 € var(t), then o z9) is not left(right) regular;

(ii1) O f(t01) and O f(z,4) are not left(right) regular;

(iv) If 1 € var(t) or vy € var(t) then oy, ¢y and T4, are not left(right) regular
where m € N with m > 2.

Proposition 3.5.18 ([24]). Let t1,t3 € W9 (X) \ X. If x1 € var(t1) Uvar(ta) or x2 €
var(t1) Uvar(tz) then o, 1,) s not left(right) regular.

By Proposition 3.5.15 - Proposition 3.5.18, S. Sudsanit, S. Leeratanavalee and W.
Puninagool showed that every element in Hypa(2) \ CR(Hypa(2)) is not left(right) reg-
ular, i.e. CR(Hypa(2)) is the set of all left(right) regular elements in Hypg(2).

By Section 3.4, we have the set of all completely regular elements, the set of all left

regular and the set of all right regular elements in Hypg(2) are the same. Then

Theorem 3.5.19. Let o1 € Hypa(2). The following statements are equivalent:
(i) oy is completely regular;
(ii) oy is left reqular;

(iii) oy is right regular;

(iv) oy is intra-regular.
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