
CHAPTER 2

Preliminaries

The purpose of this chapter is to collect notations, terminologies and elementary

results used throughout the thesis.

2.1 Distribution Functions

Definition 2.1.1. Let X be a nonempty set and A ⊆ X. The indicator function of a set

A defined on X will be denoted by 1A, defined by

1A(x) =

1 if x ∈ A,

0 if x /∈ A.

Definition 2.1.2. Let S ⊆ R. A function f : S → R is said to be nondecreasing if

f (x) ≤ f (y)

whenever x ≤ y.

Definition 2.1.3. Let S ⊆ R. A function f : S → R is said to be right-continuous if for

every x ∈ S and every ϵ > 0, there exists δ > 0 such that

|f (x)− f (y)| < ϵ

whenever x ≤ y < x+ δ.

Definition 2.1.4. A function F : R → [0, 1] is called a (cumulative) distribution function

if F satisfies the following properties:

i) F is right-continuous,

ii) F is nondecreasing, and

iii) lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1.

Example 2.1.1. A function F : R → [0, 1] given by

F (x) =


0 if x < 0,

x

1 + x
if x ≥ 0

is a distribution function.
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Proof. We first show that F is right-continuous.

Since the function x 7→ 0 is continuous on (−∞, 0) and the function x 7→ x
1+x is continuous

on (0,∞), we focus only at 0.

Let x = 0 and ϵ > 0. Choose δ = ϵ > 0.

For any y ∈ [x, x+ δ) = [0, δ), we get

|F (y)− F (x)| =
∣∣∣∣ y

1 + y
− 0

∣∣∣∣
=

∣∣∣∣ y

(1 + y)

∣∣∣∣
≤ y

< δ

= ϵ.

Then F is right-continuous.

Next, we show that F is nondecreasing.

It is clear that if x = y, then F (x) = F (y). Suppose x < y.

Case i) x < y ≤ 0.

In this case, we get F (x) = F (y) = 0.

Case ii) x ≤ 0 < y.

In this case, we get

F (x) = 0

<
y

1 + y

= F (y).

Case iii) 0 < x < y.

In this case, we get x+ xy < y + xy.

Then x(1 + y) < y(1 + x).

This implies that
x

1 + x
<

y

1 + y
, that is, F (x) < F (y).

Therefore, F (x) ≤ F (y) whenever x ≤ y.

It is obvious that lim
x→−∞

F (x) = lim
x→−∞

0 = 0 and lim
x→∞

F (x) = lim
x→∞

x

1 + x
= 1.

Hence, F is a distribution function.

Definition 2.1.5. Let A ⊆ R and Θ ⊆ Rn.

For S : A→ R, define ∆b
aS = S(b)− S(a) for a, b ∈ A.
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For any H : Θ×A→ R the difference, denoted by ∆b
aH, is defined by

∆b
aH(θ) = H(θ, b)−H(θ, a)

for all θ ∈ Θ and a, b ∈ R in which a ≤ b.

Definition 2.1.6. Let A ⊆ R and H be a function from An to R.

The volume of H, denoted by VH , is defined by

VH

(
n∏

i=1

(ai, bi]

)
= ∆b1

a1 · · ·∆
bn
anH

where ai, bi ∈ A such that ai < bi for all i = 1, ..., n.

Let A ⊆ R and H be a function from A2 to R.

Given a1, a2, b1, b2 ∈ A in which a1 ≤ a2 and b1 ≤ b2.

Consider

VH ((a1, b1]× (a2, b2]) = △b1
a1 △

b2
a2 H

= △b1
a1

(
△b2

a2H
)

= △b2
a2H (b1)−△b2

a2H (a1)

= (H (b1, b2)−H (b1, a2))− (H (a1, b2)−H (a1, a2))

= H (b1, b2)−H (b1, a2)−H (a1, b2) +H (a1, a2) .

In general, let Ai ⊆ R for all i = 1, . . . , n. For any H :
n∏

i=1
Ai → [0, 1] and all

ai, bi ∈ Ai in which ai ≤ bi,

VH

(
n∏

i=1

(ai, bi]

)
=

∑
v⃗∈

n∏
i=1

{ai,bi}

(−1)N(v⃗)H (v⃗) ,

where N (v⃗) = N ((v1, ..., vn)) is the number of i such that vi = ai.

Definition 2.1.7. Let A ⊆ R.

A function F from An to R is called n−increasing function if the volume of F is non-

negative, that is,

VF

(
n∏

i=1

(ai, bi]

)
≥ 0

for all ai, bi ∈ A in which ai ≤ bi.
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Definition 2.1.8. Let Ai ⊆ R for all i = 1, . . . , n. A function H :
n∏

i=1
Ai → [0, 1] is said

to be continuous from above if, for each k = 1, . . . , n and each ϵ > 0, there exists δ > 0

such that

|H (x1, . . . , xk, . . . , xn)−H (x1, x2, . . . , yk, . . . , xn)| < ϵ

for all (x1, . . . , xn) ∈
n∏

i=1
Ai and all yk ∈ Ak ∩ [xk, xk + δ) .

Definition 2.1.9. Let F : Rn → [0, 1]. Then F is called an n-dimensional distribution

function if it satisfies the following properties:

i) lim
vi→−∞,∃i

F ((v1, ..., vn)) = 0,

ii) lim
vi→∞,∀i

F ((v1, ..., vn)) = 1,

iii) F is n-increasing, and

iv) F is continuous from above.

Let F be an n-dimensional distribution function. For each i = 1, ..., n, the function

Fi : R → [0, 1] defined by Fi (xi) = lim
vj→∞,∀j ̸=i

F ((v1, ..., vn)) is called the (i-th) marginal

distribution function of F.

Remark 2.1.2. Every marginal distribution function of an n-dimensional distribution

function is a distribution function.

Next, we will given an example of a 2-dimensional distribution function and its

marginals.

Example 2.1.3. A function F : R2 → [0, 1] given by

F (x, y) =

1 if x ≥ 0, y ≥ 0,

0 otherwise

is a 2-dimensional distribution function.

Proof. It is easy to see that

lim
x→−∞

F (x, y) = 0,

lim
y→−∞

F (x, y) = 0,

lim
x→∞

lim
y→∞

F (x, y) = 1 and

lim
y→∞

lim
x→∞

F (x, y) = 1.
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We next show that F is a 2-increasing function.

Since VF ((a, b]× (c, d]) = F (b, d) +F (a, c)−F (b, c)−F (a, d) and range of the function F

is {0, 1}, we have three cases to consider, when F (b, c) = 1, F (a, d) = 1 and

F (b, c) = 0 = F (a, d).

If F (b, c) = 0 = F (a, d), then the volume of F is not less than 0, that is, we have only two

cases to consider, when F (b, c) = 1 or F (a, d) = 1.

Case i) F (b, c) = 1. By the definition of F , we obtain that b, c ≥ 0.

Since c ≤ d, we have b, c, d ≥ 0.

If a < 0, then

VF ((a, b]× (c, d]) = F (b, d) + F (a, c)− F (b, c)− F (a, d)

= 1 + 0− 1− 0

= 0.

If a ≥ 0, then

VF ((a, b]× (c, d]) = F (b, d) + F (a, c)− F (b, c)− F (a, d)

= 1 + 1− 1− 1

= 0.

Case ii) F (a, d) = 1. By the definition of F , we obtain that a, d ≥ 0.

Since a ≤ b, we have a, b, d ≥ 0.

If c < 0, then

VF ((a, b]× (c, d]) = F (b, d) + F (a, c)− F (b, c)− F (a, d)

= 1 + 0− 0− 1

= 0.

If c ≥ 0, then

VF ((a, b]× (c, d]) = F (b, d) + F (a, c)− F (b, c)− F (a, d)

= 1 + 1− 1− 1

= 0.

Therefore, VF ((a, b]× (c, d]) ≥ 0.

Finally, we show that F is continuous from above.

Let x, y ∈ R and ϵ > 0. Then we have four cases to consider.
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Case i) x ≥ 0, y ≥ 0.

Choose δ = ϵ > 0.

For any x+ ∈ [x, x+ δ) , |F (x, y)− F (x+, y)| = |1− 1| = 0 < ϵ.

Similarly, |F (x, y+)− F (x, y)| < ϵ for all y+ ∈ [y, y + δ).

Case ii) x < 0, y ≥ 0.

Choose δ1 = −x
2 > 0 and δ2 = ϵ > 0.

For any x+ ∈ [x, x+ δ1) , |F (x, y)− F (x+, y)| = |0− 0| = 0 < ϵ

and for any y+ ∈ [y, y + δ2) , |F (x, y+)− F (x, y)| = |0− 0| = 0 < ϵ.

Case iii) x ≥ 0, y < 0.

Choose δ1 = ϵ > 0 and δ2 = −y
2 > 0.

For any x+ ∈ [x, x+ δ1) , |F (x, y)− F (x+, y)| = |0− 0| = 0 < ϵ

and for any y+ ∈ [y, y + δ2) , |F (x, y+)− F (x, y)| = |0− 0| = 0 < ϵ.

Case iv) x < 0, y < 0.

Choose δ1 = −x
2 > 0 and δ2 = −y

2 > 0.

For any x+ ∈ [x, x+ δ1) , |F (x, y)− F (x+, y)| = |0− 0| = 0 < ϵ

and for any y+ ∈ [y, y + δ2) , |F (x, y+)− F (x, y)| = |0− 0| = 0 < ϵ.

Hence, F is a continuous from above function.

Therefore, F is a 2-dimensional distribution function.

If F1 : R → [0, 1] is defined by

F1 (x) =

1 if x ≥ 0,

0 if x < 0

and F2 : R → [0, 1] is defined by

F2 (y) =

1 if y ≥ 0,

0 if y < 0,

then F1 and F2 are marginal distribution functions of F.

2.2 Probability Measures

Definition 2.2.1. Let Ω be a nonempty set and 2Ω denote the power set of Ω. A class

Σ ⊆ 2Ω is called a σ-algebra on Ω if it satisfies the following properties:

i) ∅ ∈ Σ,
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ii) if E ∈ Σ, then EC = Ω \ E ∈ Σ, and

iii) if E1, E2, E3, . . . ∈ Σ, then
∞∪
k=1

Ek ∈ Σ.

The ordered pair (Ω,Σ) is called a measurable space and the elements of Σ are called

measurable sets.

Let Ω be a nonempty set. For any Λ ⊆ 2Ω, denote the intersection of all σ-algebras

containing Λ by σ (Λ) . Note that σ (Λ) is the smallest σ-algebra containing Λ.

Definition 2.2.2. Let (X,ΣX) and (Y,ΣY ) be two measurable spaces.

A function f : X → Y is said to be measurable function if f−1(E) ∈ ΣX for all E ∈ ΣY .

Definition 2.2.3. Let Ω ⊆ Rn where n ∈ N and O be the set of all open subsets of Ω.

Then σ (O) is called the Borel σ-algebra on Ω which specifically is denoted by B (Ω) . The

elements of B (Ω) are called Borel sets.

Definition 2.2.4. Let Ω be a nonempty set, Σ be a σ-algebra on Ω and I ⊆ N. A function

µ : Σ → [0, 1] is called a probability measure if it satisfies the following properties:

i) µ (Ω) = 1, and

ii) for any countable collection {Ei}i∈I of elements in Σ such that Ej ∩ Ek = ∅ when

j, k ∈ I and j ̸= k, µ

(
∪

i∈I
Ei

)
=
∑
i∈I

µ (Ei) .

A probability space is a triplet (Ω,Σ, µ).

Definition 2.2.5. Let B ([0, 1]) be the Borel σ-algebra on [0, 1],

Γ = {(a, b] ⊆ [0, 1] |0 ≤ a < b ≤ 1 } ∪ {∅} ,

and τ : Γ → [0, 1] be defined by τ(A) =

b− a if A = (a, b],

0 if A = ∅.
A function λ : B ([0, 1]) → [0, 1] defined by

λ (A) = inf

{ ∞∑
n=1

τ (Dn) |A ⊆
∞
∪

n=1
Dn, (Dn)

∞
n=1 ⊂ Γ

}
is called the Lebesgue measure on [0, 1].

Remark 2.2.1. λ is a probability measure on [0, 1].

Theorem 2.2.2. Let Ω be a nonempty set and Λ ⊆ 2Ω be nonempty and closed under

finite intersections. If P1 and P2 are probability measures on σ (Λ) such that P1 = P2 on

Λ, then P1 = P2 on σ (Λ) .

9



Definition 2.2.6. Let (Ω,A,P) be a probability space. A random variable is a Borel

measurable function from Ω to R. A random vector is a Borel measurable function from

Ω to Rn.

Definition 2.2.7. For any random variable X defined on a probability space (Ω,A,P),

its distribution function is a function FX defined by

FX (x) = P (X ≤ x)

for all x ∈ R.

Definition 2.2.8. For any random vector (X1, . . . , Xn) defined on a probability space

(Ω,A,P), its (joint) distribution function is a function H defined by

H (x1, . . . , xn) = P (X1 ≤ x1, . . . , Xn ≤ xn)

for all xi ∈ R where i = 1, . . . , n.

Here and henceforth, we define (x1, ..., xn) < (y1, ..., yn) if xi < yi for all i = 1, ..., n

and (x1, ..., xn) ≤ (y1, ..., yn) if xi ≤ yi for all i = 1, ..., n.

Denote also (⃗a, b⃗] = (a1, b1]× ...× (an, bn] where a⃗ = (a1, ..., an) and b⃗ = (b1, ..., bn).

Definition 2.2.9. Let X be a random vector with the FX .

A random vector X is said to be (absolutely) continuous if there is a function fX such

that FX(x) =
∫
(−∞,x] fXdλ for all x ∈ R. A function fX is called the density function of

FX .

Definition 2.2.10. An n-dimensional random vector U is said to be uniform if its dis-

tribution function FU is the product function Π, that is,

FU (u⃗) = Π(u⃗) = Πn
i=1ui

for all u⃗ = (u1, ..., un) ∈ [0, 1]n.

Proposition 2.2.3. Let X and Y be random vectors with distribution functions FX and

FY , respectively. Then the three following properties are equivalent:

i) X and Y are independent,

ii) P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B) for all measurable sets A and B, and

iii) FX,Y (x⃗, y⃗) = FX(x⃗)FY (y⃗) for all x⃗, y⃗ ∈ Rn.
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Definition 2.2.11. A random vector Y is said to be completely dependent on a random

vector X if Y takes only one value for each value of X with probability one, that is, there

is a measurable function f such that Y = f(X) almost everywhere.

Definition 2.2.12. Let X and Y be random vectors.

The conditional distribution function FY |X of Y given X is defined by

FY |X(y|x) = lim
h↘0

P(x− h < X ≤ x+ h, Y ≤ y)

P(x− h < X ≤ x+ h)

= lim
h↘0

VFX,Y
((x− h, x+ h]× (−∞, y])

VFX
((x− h, x+ h])

.

Lemma 2.2.4. Let X and Y be random vectors. Given the distribution function FY of

Y and the conditional distribution function FY |X of Y given X. Then∫
FY |X(y|x)dFX(x) = FY (y).

Proof. Denote µy(A) = P(Y ≤ y|X ∈ A) and µ(A) = P(X ∈ A).

Then µy is absolutely continuous with respective to µ.

By Lebesgue point theorem, lim
h↘0

1
µ(B(x,ϵ))

∫
B(x,ϵ)

dµy

dµ dµ =
µy(B(x,ϵ))
µ(B(x,ϵ)) converges to

dµy

dµ (x).

Thus, FY |X(y|x) = dµy

†µ (x.) Therefore,∫
FY |X(y|t)dFX(t) =

∫
dµy
dµ

(t)dµ(t)

= µ(Rn)

= FY (y).

Lemma 2.2.5. Let X and Y be random vectors. Given the distribution function FY

of Y and the conditional distribution function FY |X of Y given X. Then X and Y are

independent if and only if FY |X = FY a.e. with respect to the product of the distribution

of X and Y .

Proof. Let X and Y be independent random vectors, we have

FY |X(y|x) = lim
h↘0

VFX,Y
((x− h, x+ h]× (−∞, y])

VFX
((x− h, x+ h])

= lim
h↘0

VFX
(x− h, x+ h]VFY

(−∞, y]

VFX
((x− h, x+ h])

= lim
h↘0

VFY
(−∞, y]

= FY (y).
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Conversely, we show that X and Y are independent when FY |X = FY .

Let FY |X = FY and t ∈ R. Consider

FX,Y (x, t) = P(X ≤ x, Y ≤ t)

=

∫
(−∞,t]

P(Y ≤ y|X = x)dFX(x)

=

∫
(−∞,t]

FY |X(y|x)dFX(x)

=

∫
(−∞,t]

FY (y)dFX(x)

= FX(x)FY (t) a.e.

By Proposition 2.2.3, we obtain that X and Y are independent.

2.3 Copulas

Definition 2.3.1. An n-dimensional copula or n-copula is a continuous function

C : [0, 1]n → [0, 1] satisfying the following properties:

i) C is an n-increasing,

ii) C is grounded, that is, C(u1, ..., un) = 0 whenever ui = 0 for some i = 1, ..., n, and

iii) C has uniform marginals, that is, C(u1, ..., un) = ui whenever uj = 1 for all j ̸= i.

Example 2.3.1. Let u⃗ = (u1, ..., un) ∈ [0, 1]n. The function Πn : [0, 1]n → [0, 1] defined

by Πn(u1, ..., un) = u1 · · ·un is an n-copula.

Proof. Let u⃗ = (u1, . . . , un) ∈ [0, 1]n.

i) If u⃗ has at least one coordinate which is equal to 0, then Πn (u⃗) = 0.

ii) If all coordinates of u⃗ are equal to 1 except possibly uk, then Πn (u⃗) = uk.

iii) Next, we show that Πn is n-increasing.

Let
(
a⃗, b⃗
]
= (a1, b1]× · · · × (an, bn].
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Since bi − ai ≥ 0 for all i = 1, ..., n and

(b1 − a1) (b2 − a2) · · · (bn − an) =
∑

∀i=1,...,n;vi∈{bi,−ai}

v1 · · · vn

=
∑

∀i=1,...,n;vi∈{bi,−ai}

Πn (v1, · · · , vn)

=
∑

v⃗∈
n
Π
i=1

{bi,−ai}

Πn (v⃗)

=
∑

v⃗∈
n
Π
i=1

{bi,ai}

(−1)N(v⃗)Πn (v⃗)

= VΠn

((
a⃗, b⃗
])
,

it follows that VΠn

((
a⃗, b⃗
])

= (b1 − a1) (b2 − a2) · · · (bn − an) ≥ 0.

Hence, Πn is n-increasing.

By i)−iii), we obtain that Πn is an n-copula.

Theorem 2.3.2. [6] Let H be an n-dimensional distribution function of a random vector

(X1, ..., Xn) with marginals F1, ..., Fn. Then there exists an n-copula C such that

H(x1, ..., xn) = C(F1(x1), ..., Fn(xn)) (2.1)

for all x1, ..., xn ∈ R.

Any copula C satisfying equation (2.1) is said to be associated with (X1, ..., Xn).

If F1, ..., Fn are all continuous, then C is unique; otherwise, C is uniquely determined

on Ran(F1)× ...×Ran(Fn) where Ran(F ) is the range of F .

Conversely, if C is an n-copula and F1, ..., Fn are distribution functions, then the

function H defined by (2.1) is an n-dimensional distribution.

A joint distribution function of uniform random vectors is called a linkage.

Note that a linkage is always a copula.

For each distribution function FX of an absolutely continuous random vector

X = (X1, ..., Xn), define a transformation ΨFX
: Rn → [0, 1]n by letting

ΨFX
(x1, ..., xn) =

(
FX1(x1), FX2|X1

(x2|x1), ..., FXn|(X1,...,Xn−1)(xn|(x1, ..., xn−1))
)

for all (x1, ..., xn) ∈ Rn. It is known that U = ΨFX
(X) has uniform distribution (see

in [5]). H. Li, M. Scarsini, and M. Shaked [5] showed that for each random variables

X1, ..., Xn with an absolutely continuous joint distribution F, these random variables

U1, ..., Un are independent uniform [0, 1] whenever (U1, ..., Un) = ΨF (X1, ..., Xn). Similarly,
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if the univariate random variable X has the continuous distribution function F, then F (X)

is a uniform [0, 1] random variable.

By inverting, ΨF can express the X’s as functions of the independent uniform

random variables U1, ..., Un. Denote

x1 = F−1(u1) (2.2)

and, by induction,

xi = F−1
i|1,...,i−1(ui|x1, ..., xi−1), i = 2, ..., n. (2.3)

Consider the transformation Ψ∗ : [0, 1]n → Rn defined by (here the xi’s are functions of

the ui’ s as given in (2.2) and (2.3))

Ψ∗
F (u1, ..., un) = (x1, ..., xn), (u1, ..., un) ∈ [0, 1]n.

Let

(X̂1, ..., X̂n) = Ψ∗
F (U1, ..., Un).

Then (X̂1, ..., X̂n) has the same distribution as (X1, ..., Xn).

In fact, it is well known, if F is absolutely continuous, then

Ψ∗
FΨF (X1, X2, ..., Xn) =a.s. (X1, X2, ..., Xn),

where =a.s. denotes an equality almost surely under the probability measure associated

with F .

Since Ui = Ψi(Xi) is uniform, the joint distribution of U1, ..., Uk is a linkage.

We called this linkage, the linkage associated with X1, ..., Xk and will be denoted by

CX1,...,Xk
.

We will also denote CXk|X1,...,Xk−1
the conditional distribution function of Uk given

(U1, ..., Uk−1).

For further information on linkages, see [5].

Example 2.3.3. Let X and Y be random vectors with dimensions m and n, respectively,

with FGM-copula

Cθ(u⃗, v⃗) = Π(u⃗)Π(v⃗) + θΠ(u⃗)Π(v⃗)Π(⃗1− u⃗)Π(⃗1− v⃗)

where θ ∈ [−1, 1] as their joint distribution.

Then the marginals FX and FY of Cθ are defined by FX(u⃗) = Π(u⃗) and FY (v⃗) = Π(v⃗).

Therefore, X and Y are uniform random vectors, that is, Cθ is the linkage.
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Measure of Complete Dependence

Let X and Y be two random variables. The random variable Y is completely de-

pendent on X if there is a Borel measurable function f such that P(Y = f(X)) = 1. If Y

is completely dependent on X, and X is completely dependent on Y , then X and Y are

called mutually completely dependent (m.c.d.).

In 2010, Siburg and Stoimenov [1] defined a measure of dependence

ω(X,Y ) =

√√√√3

∫
[0,1]2

[(
∂

∂x
CX,Y (x, y)− y

)2

+

(
∂

∂y
CX,Y (x, y)− x

)2
]
dxdy

=

√√√√3

∫
[0,1]2

[(
∂

∂x
CX,Y (x, y)

)2

+

(
∂

∂y
CX,Y (x, y)

)2
]
dxdy − 2

for any continuous random variables X and Y . In their works, it was shown that, for

any random variables X and Y with continuous distribution functions, ω(X,Y ) has the

following properties:

i) ω(X,Y ) = ω(Y,X),

ii) 0 ≤ ω(X,Y ) ≤ 1,

iii) ω(X,Y ) = 0 if and only if X and Y are independent,

iv) ω(X,Y ) = 1 if and only if X and Y are m.c.d.,

v) ω(X,Y ) ∈ (
√
2/2, 1] if Y is completely dependent on X (or vice versa),

vi) If f, g : R → R are strictly monotone functions, then ω(f(X), g(Y )) = ω(X,Y ), and

vii) If (Xn, Yn)n∈N is a sequence of pairs of random variables with continuous marginal

distribution functions and copulas (Cn)n∈N and if lim
n→∞

||Cn − C|| = 0, then

lim
n→∞

ω(Xn, Yn) = ω(X,Y ) where ||.|| is a modified Sobolev norm and C is a copula

associated with random variables X and Y .

Let F be the set of all bivariate distribution functions with continuous marginal

distribution functions, as well as X be the set of all bivariate random vectors with distri-

bution functions in F. Dette et al. [2] defined a measure r : X → [0, 1] via the following

formula

r(X,Y ) = 6

∫ 1

0

∫ 1

0
FV |U (v|u)2dvdu− 2.
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Since FV |U (v|u) = ∂
∂uCX,Y (u, v), we obtain that

r(X,Y ) = 6

∣∣∣∣∣∣∣∣ ∂∂uCX,Y

∣∣∣∣∣∣∣∣2
2

− 2

where || · || denotes the L2−norm.

In their works, it was shown that, if f, g : R → R are strictly monotone functions,

then r(f(X), g(Y )) = r(X,Y ).

Moreover, r can be viewed as a functional on the set of copulas C, and we write

r(CX,Y ) = r(X,Y ) which can be considered as an asymmetric version of ω(X,Y ), that is,

ω(X,Y ) =

√
r(X,Y ) + r(Y,X)

2
.

Let C be the set of all two-dimensional copulas and Cd be the class of all completely

dependent copulas. During the same period, Trutschnig [3] also defined a measure of

complete dependence ζ1 based on the Markov kernel associated with X and Y .

When written using the copula CX,Y associated with X and Y ,

ζ1(Y |X) = 3

∫ ∫ ∣∣∣∣ ∂∂xCX,Y (x, y)− y

∣∣∣∣dxdy
and showed that for every C ∈ C, ζ1(C) ∈ [0, 1]. Furthermore, ζ1(C) = 1 if and only if

C ∈ Cd, that is, all completely dependent copulas have a maximum dependence measure.

Both r and ζ1 are similar in the sense that both measures reach the maximum value

if and only if the random variable Y is a measurable function of the random variable X.

Recently, Tasena and Dhompongsa [4] also defined measures of complete dependence

ωk(Y |X) =

[∫ ∫ ∣∣∣∣FY |X(y|x)− 1

2

∣∣∣∣k dFX(x)dFY (y)

] 1
k

and

ωk(Y |X) =

[
ωk
k(Y |X)− ω̂k(Y )

ωk
k(Y |Y )− ω̂k(Y )

] 1
k

where ω̂k(Y ) =
∫ ∣∣∣∣FY (y)−

1

2

∣∣∣∣k dFY (y) for any random vectors X and Y .

In their works, it was shown that ωk has the following properties:

i) ωk(Y
⊥|X⊥) ≤ ωk(Y |X) ≤ ωk(Y |Y ) where (Y ⊥, X⊥) have the same marginals as

(Y,X) but X⊥ and Y ⊥ are independent,

ii) ωk(Y
⊥|X⊥) = 0 and ωk(Y |Y ) = 1,

iii) ωk(Y
⊥|X⊥) = ωk(Y |X) if and only if X and Y are independent,

iv) ωk(Y |X) = ωk(Y |Y ) if and only if Y is a function of X,
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v) ωk(Y, Y, Z|X) = ωk(Y, Z|X) for all random vectors X,Y, and Z,

vi) ωk(Y |X,X,Z) = ωk(Y |X,Z) for all random vectors X,Y, and Z,

vii) ωk(Y |X,Z) ≥ ωk(Y |X) for all random vectors X,Y, and Z,

viii) ωk(Y, f(X)|X) ≥ (Y |X) for all measurable functions f and random vectors X and

Y ,

ix) ωk(Y |f(X)) ≤ ωk(Y |X) for all measurable functions f and random vectors X and

Y ,

while ωk(Y |X) satisfies the properties:

i) ωk(Y
⊥|X⊥) ≤ ωk(Y |X) ≤ ωk(Y |Y ) where (Y ⊥, X⊥) have the same marginals as

(Y,X) but X⊥ and Y ⊥ are independent,

ii) ωk(Y
⊥|X⊥) = 0 and ωk(Y |Y ) = 1,

iii) ωk(Y
⊥|X⊥) = ωk(Y |X) if and only if X and Y are independent,

iv) ωk(Y |X) = ωk(Y |Y ) if and only if Y is a function of X,

v) ωk(Y, Y, Z|X) = ωk(Y, Z|X) for all random vectors X,Y, and Z,

vi) ωk(Y |X,X,Z) = ωk(Y |X,Z) for all random vectors X,Y, and Z,

vii) ωk(Y |X,Z) ≥ ωk(Y |X) for all random vectors X,Y, and Z, and

viii) ωk(Y |f(X)) ≤ ωk(Y |X) for all measurable functions f and random vectors X and

Y . Moreover, if f is invertible, then ωk(Y |f(X)) = ωk(Y |X).

Moreover,

ω2(Y |X) =

√∫ ∫ (
FY |X(y|x)− FY (y)

)2
dFX(x)dFY (y)∫

FY (y)(1− FY (y))dFY (y)
.

It can be easily seen that both ωk and ωk depend on FY except only for the case Y

is a continuous random variable. In this case, we can use the change of variable formula

to nullity the effect of FY . Also,

ωk(Y |X) ̸=

[∫ ∫ ∣∣FY |X(y|x)− FY (y)
∣∣k dFX(x)dFY (y)

ωk
k(Y |Y )− ω̂k(Y )

] 1
k

in general.
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