

CHAPTER 2

Preliminaries

The purpose of this chapter is to collect notations, terminologies and elementary results used throughout the thesis.

2.1 Distribution Functions

Definition 2.1.1. Let X be a nonempty set and $A \subseteq X$. The *indicator function* of a set A defined on X will be denoted by $\mathbf{1}_A$, defined by

$$\mathbf{1}_A(x) = \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{if } x \notin A. \end{cases}$$

Definition 2.1.2. Let $S \subseteq \mathbb{R}$. A function $f : S \rightarrow \mathbb{R}$ is said to be *nondecreasing* if

$$f(x) \leq f(y)$$

whenever $x \leq y$.

Definition 2.1.3. Let $S \subseteq \mathbb{R}$. A function $f : S \rightarrow \mathbb{R}$ is said to be *right-continuous* if for every $x \in S$ and every $\epsilon > 0$, there exists $\delta > 0$ such that

$$|f(x) - f(y)| < \epsilon$$

whenever $x \leq y < x + \delta$.

Definition 2.1.4. A function $F : \mathbb{R} \rightarrow [0, 1]$ is called a *(cumulative) distribution function* if F satisfies the following properties:

i) F is right-continuous,

ii) F is nondecreasing, and

iii) $\lim_{x \rightarrow -\infty} F(x) = 0$ and $\lim_{x \rightarrow \infty} F(x) = 1$.

Example 2.1.1. A function $F : \mathbb{R} \rightarrow [0, 1]$ given by

$$F(x) = \begin{cases} 0 & \text{if } x < 0, \\ \frac{x}{1+x} & \text{if } x \geq 0 \end{cases}$$

is a distribution function.

Proof. We first show that F is right-continuous.

Since the function $x \mapsto 0$ is continuous on $(-\infty, 0)$ and the function $x \mapsto \frac{x}{1+x}$ is continuous on $(0, \infty)$, we focus only at 0.

Let $x = 0$ and $\epsilon > 0$. Choose $\delta = \epsilon > 0$.

For any $y \in [x, x + \delta) = [0, \delta)$, we get

$$\begin{aligned} |F(y) - F(x)| &= \left| \frac{y}{1+y} - 0 \right| \\ &= \left| \frac{y}{(1+y)} \right| \\ &\leq y \\ &< \delta \\ &= \epsilon. \end{aligned}$$

Then F is right-continuous.

Next, we show that F is nondecreasing.

It is clear that if $x = y$, then $F(x) = F(y)$. Suppose $x < y$.

Case i) $x < y \leq 0$.

In this case, we get $F(x) = F(y) = 0$.

Case ii) $x \leq 0 < y$.

In this case, we get

$$\begin{aligned} F(x) &= 0 \\ &< \frac{y}{1+y} \\ &= F(y). \end{aligned}$$

Case iii) $0 < x < y$.

In this case, we get $x + xy < y + xy$.

Then $x(1+y) < y(1+x)$.

This implies that $\frac{x}{1+x} < \frac{y}{1+y}$, that is, $F(x) < F(y)$.

Therefore, $F(x) \leq F(y)$ whenever $x \leq y$.

It is obvious that $\lim_{x \rightarrow -\infty} F(x) = \lim_{x \rightarrow -\infty} 0 = 0$ and $\lim_{x \rightarrow \infty} F(x) = \lim_{x \rightarrow \infty} \frac{x}{1+x} = 1$.

Hence, F is a distribution function. \square

Definition 2.1.5. Let $A \subseteq \mathbb{R}$ and $\Theta \subseteq \mathbb{R}^n$.

For $S : A \rightarrow \mathbb{R}$, define $\Delta_a^b S = S(b) - S(a)$ for $a, b \in A$.

For any $H : \Theta \times A \rightarrow \mathbb{R}$ the *difference*, denoted by $\Delta_a^b H$, is defined by

$$\Delta_a^b H(\theta) = H(\theta, b) - H(\theta, a)$$

for all $\theta \in \Theta$ and $a, b \in \mathbb{R}$ in which $a \leq b$.

Definition 2.1.6. Let $A \subseteq \mathbb{R}$ and H be a function from A^n to \mathbb{R} .

The *volume* of H , denoted by V_H , is defined by

$$V_H \left(\prod_{i=1}^n (a_i, b_i] \right) = \Delta_{a_1}^{b_1} \cdots \Delta_{a_n}^{b_n} H$$

where $a_i, b_i \in A$ such that $a_i < b_i$ for all $i = 1, \dots, n$.

Let $A \subseteq \mathbb{R}$ and H be a function from A^2 to \mathbb{R} .

Given $a_1, a_2, b_1, b_2 \in A$ in which $a_1 \leq a_2$ and $b_1 \leq b_2$.

Consider

$$\begin{aligned} V_H((a_1, b_1] \times (a_2, b_2]) &= \Delta_{a_1}^{b_1} \Delta_{a_2}^{b_2} H \\ &= \Delta_{a_1}^{b_1} (\Delta_{a_2}^{b_2} H) \\ &= \Delta_{a_2}^{b_2} H(b_1) - \Delta_{a_2}^{b_2} H(a_1) \\ &= (H(b_1, b_2) - H(b_1, a_2)) - (H(a_1, b_2) - H(a_1, a_2)) \\ &= H(b_1, b_2) - H(b_1, a_2) - H(a_1, b_2) + H(a_1, a_2). \end{aligned}$$

In general, let $A_i \subseteq \mathbb{R}$ for all $i = 1, \dots, n$. For any $H : \prod_{i=1}^n A_i \rightarrow [0, 1]$ and all $a_i, b_i \in A_i$ in which $a_i \leq b_i$,

$$V_H \left(\prod_{i=1}^n (a_i, b_i] \right) = \sum_{\vec{v} \in \prod_{i=1}^n \{a_i, b_i\}} (-1)^{N(\vec{v})} H(\vec{v}),$$

where $N(\vec{v}) = N((v_1, \dots, v_n))$ is the number of i such that $v_i = a_i$.

Definition 2.1.7. Let $A \subseteq \mathbb{R}$.

A function F from A^n to \mathbb{R} is called *n-increasing function* if the volume of F is non-negative, that is,

$$V_F \left(\prod_{i=1}^n (a_i, b_i] \right) \geq 0$$

for all $a_i, b_i \in A$ in which $a_i \leq b_i$.

Definition 2.1.8. Let $A_i \subseteq \mathbb{R}$ for all $i = 1, \dots, n$. A function $H : \prod_{i=1}^n A_i \rightarrow [0, 1]$ is said to be *continuous from above* if, for each $k = 1, \dots, n$ and each $\epsilon > 0$, there exists $\delta > 0$ such that

$$|H(x_1, \dots, x_k, \dots, x_n) - H(x_1, x_2, \dots, y_k, \dots, x_n)| < \epsilon$$

for all $(x_1, \dots, x_n) \in \prod_{i=1}^n A_i$ and all $y_k \in A_k \cap [x_k, x_k + \delta]$.

Definition 2.1.9. Let $F : \mathbb{R}^n \rightarrow [0, 1]$. Then F is called an *n-dimensional distribution function* if it satisfies the following properties:

- i) $\lim_{v_i \rightarrow -\infty, \forall i} F((v_1, \dots, v_n)) = 0$,
- ii) $\lim_{v_i \rightarrow \infty, \forall i} F((v_1, \dots, v_n)) = 1$,
- iii) F is n -increasing, and
- iv) F is continuous from above.

Let F be an n -dimensional distribution function. For each $i = 1, \dots, n$, the function $F_i : \mathbb{R} \rightarrow [0, 1]$ defined by $F_i(x_i) = \lim_{v_j \rightarrow \infty, \forall j \neq i} F((v_1, \dots, v_n))$ is called the (i -th) *marginal distribution function* of F .

Remark 2.1.2. Every marginal distribution function of an n -dimensional distribution function is a distribution function.

Next, we will give an example of a 2-dimensional distribution function and its marginals.

Example 2.1.3. A function $F : \mathbb{R}^2 \rightarrow [0, 1]$ given by

$$F(x, y) = \begin{cases} 1 & \text{if } x \geq 0, y \geq 0, \\ 0 & \text{otherwise} \end{cases}$$

is a 2-dimensional distribution function.

Proof. It is easy to see that

$$\lim_{x \rightarrow -\infty} F(x, y) = 0,$$

$$\lim_{y \rightarrow -\infty} F(x, y) = 0,$$

$$\lim_{x \rightarrow \infty} \lim_{y \rightarrow \infty} F(x, y) = 1 \text{ and}$$

$$\lim_{y \rightarrow \infty} \lim_{x \rightarrow \infty} F(x, y) = 1.$$

We next show that F is a 2-increasing function.

Since $V_F((a, b] \times (c, d]) = F(b, d) + F(a, c) - F(b, c) - F(a, d)$ and range of the function F is $\{0, 1\}$, we have three cases to consider, when $F(b, c) = 1, F(a, d) = 1$ and $F(b, c) = 0 = F(a, d)$.

If $F(b, c) = 0 = F(a, d)$, then the volume of F is not less than 0, that is, we have only two cases to consider, when $F(b, c) = 1$ or $F(a, d) = 1$.

Case i) $F(b, c) = 1$. By the definition of F , we obtain that $b, c \geq 0$.

Since $c \leq d$, we have $b, c, d \geq 0$.

If $a < 0$, then

$$\begin{aligned} V_F((a, b] \times (c, d]) &= F(b, d) + F(a, c) - F(b, c) - F(a, d) \\ &= 1 + 0 - 1 - 0 \\ &= 0. \end{aligned}$$

If $a \geq 0$, then

$$\begin{aligned} V_F((a, b] \times (c, d]) &= F(b, d) + F(a, c) - F(b, c) - F(a, d) \\ &= 1 + 1 - 1 - 1 \\ &= 0. \end{aligned}$$

Case ii) $F(a, d) = 1$. By the definition of F , we obtain that $a, d \geq 0$.

Since $a \leq b$, we have $a, b, d \geq 0$.

If $c < 0$, then

$$\begin{aligned} V_F((a, b] \times (c, d]) &= F(b, d) + F(a, c) - F(b, c) - F(a, d) \\ &= 1 + 0 - 0 - 1 \\ &= 0. \end{aligned}$$

If $c \geq 0$, then

$$\begin{aligned} V_F((a, b] \times (c, d]) &= F(b, d) + F(a, c) - F(b, c) - F(a, d) \\ &= 1 + 1 - 1 - 1 \\ &= 0. \end{aligned}$$

Therefore, $V_F((a, b] \times (c, d]) \geq 0$.

Finally, we show that F is continuous from above.

Let $x, y \in \mathbb{R}$ and $\epsilon > 0$. Then we have four cases to consider.

Case i) $x \geq 0, y \geq 0$.

Choose $\delta = \epsilon > 0$.

For any $x^+ \in [x, x + \delta]$, $|F(x, y) - F(x^+, y)| = |1 - 1| = 0 < \epsilon$.

Similarly, $|F(x, y^+) - F(x, y)| < \epsilon$ for all $y^+ \in [y, y + \delta]$.

Case ii) $x < 0, y \geq 0$.

Choose $\delta_1 = -\frac{x}{2} > 0$ and $\delta_2 = \epsilon > 0$.

For any $x^+ \in [x, x + \delta_1]$, $|F(x, y) - F(x^+, y)| = |0 - 0| = 0 < \epsilon$

and for any $y^+ \in [y, y + \delta_2]$, $|F(x, y^+) - F(x, y)| = |0 - 0| = 0 < \epsilon$.

Case iii) $x \geq 0, y < 0$.

Choose $\delta_1 = \epsilon > 0$ and $\delta_2 = -\frac{y}{2} > 0$.

For any $x^+ \in [x, x + \delta_1]$, $|F(x, y) - F(x^+, y)| = |0 - 0| = 0 < \epsilon$

and for any $y^+ \in [y, y + \delta_2]$, $|F(x, y^+) - F(x, y)| = |0 - 0| = 0 < \epsilon$.

Case iv) $x < 0, y < 0$.

Choose $\delta_1 = -\frac{x}{2} > 0$ and $\delta_2 = -\frac{y}{2} > 0$.

For any $x^+ \in [x, x + \delta_1]$, $|F(x, y) - F(x^+, y)| = |0 - 0| = 0 < \epsilon$

and for any $y^+ \in [y, y + \delta_2]$, $|F(x, y^+) - F(x, y)| = |0 - 0| = 0 < \epsilon$.

Hence, F is a continuous from above function.

Therefore, F is a 2-dimensional distribution function.

If $F_1 : \mathbb{R} \rightarrow [0, 1]$ is defined by

$$F_1(x) = \begin{cases} 1 & \text{if } x \geq 0, \\ 0 & \text{if } x < 0 \end{cases}$$

and $F_2 : \mathbb{R} \rightarrow [0, 1]$ is defined by

$$F_2(y) = \begin{cases} 1 & \text{if } y \geq 0, \\ 0 & \text{if } y < 0, \end{cases}$$

then F_1 and F_2 are marginal distribution functions of F . □

2.2 Probability Measures

Definition 2.2.1. Let Ω be a nonempty set and 2^Ω denote the power set of Ω . A class $\Sigma \subseteq 2^\Omega$ is called a σ -algebra on Ω if it satisfies the following properties:

- i) $\emptyset \in \Sigma$,

- ii) if $E \in \Sigma$, then $E^C = \Omega \setminus E \in \Sigma$, and
- iii) if $E_1, E_2, E_3, \dots \in \Sigma$, then $\bigcup_{k=1}^{\infty} E_k \in \Sigma$.

The ordered pair (Ω, Σ) is called a *measurable space* and the elements of Σ are called *measurable sets*.

Let Ω be a nonempty set. For any $\Lambda \subseteq 2^{\Omega}$, denote the intersection of all σ -algebras containing Λ by $\sigma(\Lambda)$. Note that $\sigma(\Lambda)$ is the smallest σ -algebra containing Λ .

Definition 2.2.2. Let (X, Σ_X) and (Y, Σ_Y) be two measurable spaces.

A function $f : X \rightarrow Y$ is said to be *measurable function* if $f^{-1}(E) \in \Sigma_X$ for all $E \in \Sigma_Y$.

Definition 2.2.3. Let $\Omega \subseteq \mathbb{R}^n$ where $n \in \mathbb{N}$ and \mathcal{O} be the set of all open subsets of Ω . Then $\sigma(\mathcal{O})$ is called *the Borel σ -algebra on Ω* which specifically is denoted by $\mathcal{B}(\Omega)$. The elements of $\mathcal{B}(\Omega)$ are called *Borel sets*.

Definition 2.2.4. Let Ω be a nonempty set, Σ be a σ -algebra on Ω and $\mathcal{I} \subseteq \mathbb{N}$. A function $\mu : \Sigma \rightarrow [0, 1]$ is called a *probability measure* if it satisfies the following properties:

- i) $\mu(\Omega) = 1$, and
- ii) for any countable collection $\{E_i\}_{i \in \mathcal{I}}$ of elements in Σ such that $E_j \cap E_k = \emptyset$ when $j, k \in \mathcal{I}$ and $j \neq k$, $\mu\left(\bigcup_{i \in \mathcal{I}} E_i\right) = \sum_{i \in \mathcal{I}} \mu(E_i)$.

A *probability space* is a triplet (Ω, Σ, μ) .

Definition 2.2.5. Let $\mathcal{B}([0, 1])$ be the Borel σ -algebra on $[0, 1]$,

$$\Gamma = \{(a, b] \subseteq [0, 1] \mid 0 \leq a < b \leq 1\} \cup \{\emptyset\},$$

and $\tau : \Gamma \rightarrow [0, 1]$ be defined by $\tau(A) = \begin{cases} b - a & \text{if } A = (a, b], \\ 0 & \text{if } A = \emptyset. \end{cases}$

A function $\lambda : \mathcal{B}([0, 1]) \rightarrow [0, 1]$ defined by

$$\lambda(A) = \inf \left\{ \sum_{n=1}^{\infty} \tau(D_n) \mid A \subseteq \bigcup_{n=1}^{\infty} D_n, (D_n)_{n=1}^{\infty} \subset \Gamma \right\}$$

is called the *Lebesgue measure on $[0, 1]$* .

Remark 2.2.1. λ is a probability measure on $[0, 1]$.

Theorem 2.2.2. Let Ω be a nonempty set and $\Lambda \subseteq 2^{\Omega}$ be nonempty and closed under finite intersections. If P_1 and P_2 are probability measures on $\sigma(\Lambda)$ such that $P_1 = P_2$ on Λ , then $P_1 = P_2$ on $\sigma(\Lambda)$.

Definition 2.2.6. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. A *random variable* is a Borel measurable function from Ω to \mathbb{R} . A *random vector* is a Borel measurable function from Ω to \mathbb{R}^n .

Definition 2.2.7. For any random variable X defined on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$, its *distribution function* is a function F_X defined by

$$F_X(x) = \mathbb{P}(X \leq x)$$

for all $x \in \mathbb{R}$.

Definition 2.2.8. For any random vector (X_1, \dots, X_n) defined on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$, its *(joint) distribution function* is a function H defined by

$$H(x_1, \dots, x_n) = \mathbb{P}(X_1 \leq x_1, \dots, X_n \leq x_n)$$

for all $x_i \in \mathbb{R}$ where $i = 1, \dots, n$.

Here and henceforth, we define $(x_1, \dots, x_n) < (y_1, \dots, y_n)$ if $x_i < y_i$ for all $i = 1, \dots, n$ and $(x_1, \dots, x_n) \leq (y_1, \dots, y_n)$ if $x_i \leq y_i$ for all $i = 1, \dots, n$.

Denote also $(\vec{a}, \vec{b}] = (a_1, b_1] \times \dots \times (a_n, b_n]$ where $\vec{a} = (a_1, \dots, a_n)$ and $\vec{b} = (b_1, \dots, b_n)$.

Definition 2.2.9. Let X be a random vector with the F_X .

A random vector X is said to be *(absolutely) continuous* if there is a function f_X such that $F_X(x) = \int_{(-\infty, x]} f_X d\lambda$ for all $x \in \mathbb{R}$. A function f_X is called the density function of F_X .

Definition 2.2.10. An n -dimensional random vector U is said to be *uniform* if its distribution function F_U is the product function Π , that is,

$$F_U(\vec{u}) = \Pi(\vec{u}) = \prod_{i=1}^n u_i$$

for all $\vec{u} = (u_1, \dots, u_n) \in [0, 1]^n$.

Proposition 2.2.3. Let X and Y be random vectors with distribution functions F_X and F_Y , respectively. Then the three following properties are equivalent:

- i) X and Y are independent,
- ii) $\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A)\mathbb{P}(Y \in B)$ for all measurable sets A and B , and
- iii) $F_{X,Y}(\vec{x}, \vec{y}) = F_X(\vec{x})F_Y(\vec{y})$ for all $\vec{x}, \vec{y} \in \mathbb{R}^n$.

Definition 2.2.11. A random vector Y is said to be *completely dependent* on a random vector X if Y takes only one value for each value of X with probability one, that is, there is a measurable function f such that $Y = f(X)$ almost everywhere.

Definition 2.2.12. Let X and Y be random vectors.

The *conditional distribution function* $F_{Y|X}$ of Y given X is defined by

$$\begin{aligned} F_{Y|X}(y|x) &= \lim_{h \searrow 0} \frac{\mathbb{P}(x-h < X \leq x+h, Y \leq y)}{\mathbb{P}(x-h < X \leq x+h)} \\ &= \lim_{h \searrow 0} \frac{V_{F_{X,Y}}((x-h, x+h] \times (-\infty, y])}{V_{F_X}((x-h, x+h])}. \end{aligned}$$

Lemma 2.2.4. Let X and Y be random vectors. Given the distribution function F_Y of Y and the conditional distribution function $F_{Y|X}$ of Y given X . Then

$$\int F_{Y|X}(y|x)dF_X(x) = F_Y(y).$$

Proof. Denote $\mu_y(A) = \mathbb{P}(Y \leq y | X \in A)$ and $\mu(A) = \mathbb{P}(X \in A)$.

Then μ_y is absolutely continuous with respect to μ .

By Lebesgue point theorem, $\lim_{h \searrow 0} \frac{1}{\mu(\mathcal{B}(x, \epsilon))} \int_{\mathcal{B}(x, \epsilon)} \frac{d\mu_y}{d\mu} d\mu = \frac{\mu_y(\mathcal{B}(x, \epsilon))}{\mu(\mathcal{B}(x, \epsilon))}$ converges to $\frac{d\mu_y}{d\mu}(x)$.

Thus, $F_{Y|X}(y|x) = \frac{d\mu_y}{d\mu}(x)$. Therefore,

$$\begin{aligned} \int F_{Y|X}(y|t)dF_X(t) &= \int \frac{d\mu_y}{d\mu}(t)d\mu(t) \\ &= \mu(\mathbb{R}^n) \\ &= F_Y(y). \end{aligned}$$

□

Lemma 2.2.5. Let X and Y be random vectors. Given the distribution function F_Y of Y and the conditional distribution function $F_{Y|X}$ of Y given X . Then X and Y are independent if and only if $F_{Y|X} = F_Y$ a.e. with respect to the product of the distribution of X and Y .

Proof. Let X and Y be independent random vectors, we have

$$\begin{aligned} F_{Y|X}(y|x) &= \lim_{h \searrow 0} \frac{V_{F_{X,Y}}((x-h, x+h] \times (-\infty, y])}{V_{F_X}((x-h, x+h])} \\ &= \lim_{h \searrow 0} \frac{V_{F_X}(x-h, x+h] V_{F_Y}(-\infty, y]}{V_{F_X}((x-h, x+h])} \\ &= \lim_{h \searrow 0} V_{F_Y}(-\infty, y] \\ &= F_Y(y). \end{aligned}$$

Conversely, we show that X and Y are independent when $F_{Y|X} = F_Y$.

Let $F_{Y|X} = F_Y$ and $t \in \mathbb{R}$. Consider

$$\begin{aligned}
 F_{X,Y}(x, t) &= \mathbb{P}(X \leq x, Y \leq t) \\
 &= \int_{(-\infty, t]} \mathbb{P}(Y \leq y | X = x) dF_X(x) \\
 &= \int_{(-\infty, t]} F_{Y|X}(y | x) dF_X(x) \\
 &= \int_{(-\infty, t]} F_Y(y) dF_X(x) \\
 &= F_X(x) F_Y(t) \quad \text{a.e.}
 \end{aligned}$$

By Proposition 2.2.3, we obtain that X and Y are independent. \square

2.3 Copulas

Definition 2.3.1. An n -dimensional copula or n -copula is a continuous function $C : [0, 1]^n \rightarrow [0, 1]$ satisfying the following properties:

- i) C is an n -increasing,
- ii) C is grounded, that is, $C(u_1, \dots, u_n) = 0$ whenever $u_i = 0$ for some $i = 1, \dots, n$, and
- iii) C has uniform marginals, that is, $C(u_1, \dots, u_n) = u_i$ whenever $u_j = 1$ for all $j \neq i$.

Example 2.3.1. Let $\vec{u} = (u_1, \dots, u_n) \in [0, 1]^n$. The function $\Pi^n : [0, 1]^n \rightarrow [0, 1]$ defined by $\Pi^n(u_1, \dots, u_n) = u_1 \cdots u_n$ is an n -copula.

Proof. Let $\vec{u} = (u_1, \dots, u_n) \in [0, 1]^n$.

- i) If \vec{u} has at least one coordinate which is equal to 0, then $\Pi^n(\vec{u}) = 0$.
- ii) If all coordinates of \vec{u} are equal to 1 except possibly u_k , then $\Pi^n(\vec{u}) = u_k$.
- iii) Next, we show that Π^n is n -increasing.

Let $(\vec{a}, \vec{b}] = (a_1, b_1] \times \cdots \times (a_n, b_n]$.

Since $b_i - a_i \geq 0$ for all $i = 1, \dots, n$ and

$$\begin{aligned}
(b_1 - a_1)(b_2 - a_2) \cdots (b_n - a_n) &= \sum_{\forall i=1, \dots, n; v_i \in \{b_i, -a_i\}} v_1 \cdots v_n \\
&= \sum_{\forall i=1, \dots, n; v_i \in \{b_i, -a_i\}} \Pi^n(v_1, \dots, v_n) \\
&= \sum_{\vec{v} \in \prod_{i=1}^n \{b_i, -a_i\}} \Pi^n(\vec{v}) \\
&= \sum_{\vec{v} \in \prod_{i=1}^n \{b_i, a_i\}} (-1)^{N(\vec{v})} \Pi^n(\vec{v}) \\
&= V_{\Pi^n} \left(\left[\vec{a}, \vec{b} \right] \right),
\end{aligned}$$

it follows that $V_{\Pi^n} \left(\left[\vec{a}, \vec{b} \right] \right) = (b_1 - a_1)(b_2 - a_2) \cdots (b_n - a_n) \geq 0$.

Hence, Π^n is n -increasing.

By i)–iii), we obtain that Π^n is an n -copula. \square

Theorem 2.3.2. [6] Let H be an n -dimensional distribution function of a random vector (X_1, \dots, X_n) with marginals F_1, \dots, F_n . Then there exists an n -copula C such that

$$H(x_1, \dots, x_n) = C(F_1(x_1), \dots, F_n(x_n)) \quad (2.1)$$

for all $x_1, \dots, x_n \in \mathbb{R}$.

Any copula C satisfying equation (2.1) is said to be associated with (X_1, \dots, X_n) .

If F_1, \dots, F_n are all continuous, then C is unique; otherwise, C is uniquely determined on $\text{Ran}(F_1) \times \dots \times \text{Ran}(F_n)$ where $\text{Ran}(F)$ is the range of F .

Conversely, if C is an n -copula and F_1, \dots, F_n are distribution functions, then the function H defined by (2.1) is an n -dimensional distribution.

A joint distribution function of uniform random vectors is called a *linkage*.

Note that a linkage is always a copula.

For each distribution function F_X of an absolutely continuous random vector $X = (X_1, \dots, X_n)$, define a *transformation* $\Psi_{F_X} : \mathbb{R}^n \rightarrow [0, 1]^n$ by letting

$$\Psi_{F_X}(x_1, \dots, x_n) = (F_{X_1}(x_1), F_{X_2|X_1}(x_2|x_1), \dots, F_{X_n|(X_1, \dots, X_{n-1})}(x_n|(x_1, \dots, x_{n-1})))$$

for all $(x_1, \dots, x_n) \in \mathbb{R}^n$. It is known that $U = \Psi_{F_X}(X)$ has uniform distribution (see in [5]). H. Li, M. Scarsini, and M. Shaked [5] showed that for each random variables X_1, \dots, X_n with an absolutely continuous joint distribution F , these random variables U_1, \dots, U_n are independent uniform $[0, 1]$ whenever $(U_1, \dots, U_n) = \Psi_F(X_1, \dots, X_n)$. Similarly,

if the univariate random variable X has the continuous distribution function F , then $F(X)$ is a uniform $[0, 1]$ random variable.

By inverting, Ψ_F can express the X 's as functions of the independent uniform random variables U_1, \dots, U_n . Denote

$$x_1 = F^{-1}(u_1) \quad (2.2)$$

and, by induction,

$$x_i = F_{i|1, \dots, i-1}^{-1}(u_i|x_1, \dots, x_{i-1}), \quad i = 2, \dots, n. \quad (2.3)$$

Consider the transformation $\Psi^* : [0, 1]^n \rightarrow \mathbb{R}^n$ defined by (here the x_i 's are functions of the u_i 's as given in (2.2) and (2.3))

$$\Psi_F^*(u_1, \dots, u_n) = (x_1, \dots, x_n), \quad (u_1, \dots, u_n) \in [0, 1]^n.$$

Let

$$(\hat{X}_1, \dots, \hat{X}_n) = \Psi_F^*(U_1, \dots, U_n).$$

Then $(\hat{X}_1, \dots, \hat{X}_n)$ has the same distribution as (X_1, \dots, X_n) .

In fact, it is well known, if F is absolutely continuous, then

$$\Psi_F^* \Psi_F(X_1, X_2, \dots, X_n) =_{\text{a.s.}} (X_1, X_2, \dots, X_n),$$

where $=_{\text{a.s.}}$ denotes an equality almost surely under the probability measure associated with F .

Since $U_i = \Psi_i(X_i)$ is uniform, the joint distribution of U_1, \dots, U_k is a linkage.

We called this linkage, the *linkage associated with X_1, \dots, X_k* and will be denoted by C_{X_1, \dots, X_k} .

We will also denote $C_{X_k|X_1, \dots, X_{k-1}}$ the conditional distribution function of U_k given (U_1, \dots, U_{k-1}) .

For further information on linkages, see [5].

Example 2.3.3. Let X and Y be random vectors with dimensions m and n , respectively, with FGM-copula

$$C_\theta(\vec{u}, \vec{v}) = \Pi(\vec{u})\Pi(\vec{v}) + \theta\Pi(\vec{u})\Pi(\vec{v})\Pi(\vec{1} - \vec{u})\Pi(\vec{1} - \vec{v})$$

where $\theta \in [-1, 1]$ as their joint distribution.

Then the marginals F_X and F_Y of C_θ are defined by $F_X(\vec{u}) = \Pi(\vec{u})$ and $F_Y(\vec{v}) = \Pi(\vec{v})$. Therefore, X and Y are uniform random vectors, that is, C_θ is the linkage.

Measure of Complete Dependence

Let X and Y be two random variables. The random variable Y is *completely dependent* on X if there is a Borel measurable function f such that $\mathbb{P}(Y = f(X)) = 1$. If Y is completely dependent on X , and X is completely dependent on Y , then X and Y are called *mutually completely dependent* (m.c.d.).

In 2010, Siburg and Stoimenov [1] defined a measure of dependence

$$\begin{aligned}\omega(X, Y) &= \sqrt{3 \int_{[0,1]^2} \left[\left(\frac{\partial}{\partial x} C_{X,Y}(x, y) - y \right)^2 + \left(\frac{\partial}{\partial y} C_{X,Y}(x, y) - x \right)^2 \right] dx dy} \\ &= \sqrt{3 \int_{[0,1]^2} \left[\left(\frac{\partial}{\partial x} C_{X,Y}(x, y) \right)^2 + \left(\frac{\partial}{\partial y} C_{X,Y}(x, y) \right)^2 \right] dx dy - 2}\end{aligned}$$

for any continuous random variables X and Y . In their works, it was shown that, for any random variables X and Y with continuous distribution functions, $\omega(X, Y)$ has the following properties:

- i) $\omega(X, Y) = \omega(Y, X)$,
- ii) $0 \leq \omega(X, Y) \leq 1$,
- iii) $\omega(X, Y) = 0$ if and only if X and Y are independent,
- iv) $\omega(X, Y) = 1$ if and only if X and Y are m.c.d.,
- v) $\omega(X, Y) \in (\sqrt{2}/2, 1]$ if Y is completely dependent on X (or vice versa),
- vi) If $f, g : \mathbb{R} \rightarrow \mathbb{R}$ are strictly monotone functions, then $\omega(f(X), g(Y)) = \omega(X, Y)$, and
- vii) If $(X_n, Y_n)_{n \in \mathbb{N}}$ is a sequence of pairs of random variables with continuous marginal distribution functions and copulas $(C_n)_{n \in \mathbb{N}}$ and if $\lim_{n \rightarrow \infty} \|C_n - C\| = 0$, then $\lim_{n \rightarrow \infty} \omega(X_n, Y_n) = \omega(X, Y)$ where $\|\cdot\|$ is a modified Sobolev norm and C is a copula associated with random variables X and Y .

Let \mathfrak{F} be the set of all bivariate distribution functions with continuous marginal distribution functions, as well as \mathfrak{X} be the set of all bivariate random vectors with distribution functions in \mathfrak{F} . Dette et al. [2] defined a measure $r : \mathfrak{X} \rightarrow [0, 1]$ via the following formula

$$r(X, Y) = 6 \int_0^1 \int_0^1 F_{V|U}(v|u)^2 dv du - 2.$$

Since $F_{V|U}(v|u) = \frac{\partial}{\partial u} C_{X,Y}(u, v)$, we obtain that

$$r(X, Y) = 6 \left\| \frac{\partial}{\partial u} C_{X,Y} \right\|_2^2 - 2$$

where $\|\cdot\|$ denotes the L^2 -norm.

In their works, it was shown that, if $f, g : \mathbb{R} \rightarrow \mathbb{R}$ are strictly monotone functions, then $r(f(X), g(Y)) = r(X, Y)$.

Moreover, r can be viewed as a functional on the set of copulas \mathfrak{C} , and we write $r(C_{X,Y}) = r(X, Y)$ which can be considered as an asymmetric version of $\omega(X, Y)$, that is, $\omega(X, Y) = \sqrt{\frac{r(X, Y) + r(Y, X)}{2}}$.

Let \mathcal{C} be the set of all two-dimensional copulas and \mathcal{C}_d be the class of all completely dependent copulas. During the same period, Trutschnig [3] also defined a measure of complete dependence ζ_1 based on the Markov kernel associated with X and Y .

When written using the copula $C_{X,Y}$ associated with X and Y ,

$$\zeta_1(Y|X) = 3 \int \int \left| \frac{\partial}{\partial x} C_{X,Y}(x, y) - y \right| dx dy$$

and showed that for every $C \in \mathcal{C}$, $\zeta_1(C) \in [0, 1]$. Furthermore, $\zeta_1(C) = 1$ if and only if $C \in \mathcal{C}_d$, that is, all completely dependent copulas have a maximum dependence measure.

Both r and ζ_1 are similar in the sense that both measures reach the maximum value if and only if the random variable Y is a measurable function of the random variable X .

Recently, Tasena and Dhompongsa [4] also defined measures of complete dependence

$$\omega_k(Y|X) = \left[\int \int \left| F_{Y|X}(y|x) - \frac{1}{2} \right|^k dF_X(x) dF_Y(y) \right]^{\frac{1}{k}}$$

and

$$\bar{\omega}_k(Y|X) = \left[\frac{\omega_k^k(Y|X) - \hat{\omega}_k(Y)}{\omega_k^k(Y|Y) - \hat{\omega}_k(Y)} \right]^{\frac{1}{k}}$$

where $\hat{\omega}_k(Y) = \int \left| F_Y(y) - \frac{1}{2} \right|^k dF_Y(y)$ for any random vectors X and Y .

In their works, it was shown that ω_k has the following properties:

- i) $\omega_k(Y^\perp|X^\perp) \leq \omega_k(Y|X) \leq \omega_k(Y|Y)$ where (Y^\perp, X^\perp) have the same marginals as (Y, X) but X^\perp and Y^\perp are independent,
- ii) $\omega_k(Y^\perp|X^\perp) = 0$ and $\omega_k(Y|Y) = 1$,
- iii) $\omega_k(Y^\perp|X^\perp) = \omega_k(Y|X)$ if and only if X and Y are independent,
- iv) $\omega_k(Y|X) = \omega_k(Y|Y)$ if and only if Y is a function of X ,

- v) $\omega_k(Y, Y, Z|X) = \omega_k(Y, Z|X)$ for all random vectors X, Y , and Z ,
- vi) $\omega_k(Y|X, X, Z) = \omega_k(Y|X, Z)$ for all random vectors X, Y , and Z ,
- vii) $\omega_k(Y|X, Z) \geq \omega_k(Y|X)$ for all random vectors X, Y , and Z ,
- viii) $\omega_k(Y, f(X)|X) \geq (Y|X)$ for all measurable functions f and random vectors X and Y ,
- ix) $\omega_k(Y|f(X)) \leq \omega_k(Y|X)$ for all measurable functions f and random vectors X and Y ,

while $\bar{\omega}_k(Y|X)$ satisfies the properties:

- i) $\bar{\omega}_k(Y^\perp|X^\perp) \leq \bar{\omega}_k(Y|X) \leq \bar{\omega}_k(Y|Y)$ where (Y^\perp, X^\perp) have the same marginals as (Y, X) but X^\perp and Y^\perp are independent,
- ii) $\bar{\omega}_k(Y^\perp|X^\perp) = 0$ and $\bar{\omega}_k(Y|Y) = 1$,
- iii) $\bar{\omega}_k(Y^\perp|X^\perp) = \bar{\omega}_k(Y|X)$ if and only if X and Y are independent,
- iv) $\bar{\omega}_k(Y|X) = \bar{\omega}_k(Y|Y)$ if and only if Y is a function of X ,
- v) $\bar{\omega}_k(Y, Y, Z|X) = \bar{\omega}_k(Y, Z|X)$ for all random vectors X, Y , and Z ,
- vi) $\bar{\omega}_k(Y|X, X, Z) = \bar{\omega}_k(Y|X, Z)$ for all random vectors X, Y , and Z ,
- vii) $\bar{\omega}_k(Y|X, Z) \geq \bar{\omega}_k(Y|X)$ for all random vectors X, Y , and Z , and
- viii) $\bar{\omega}_k(Y|f(X)) \leq \bar{\omega}_k(Y|X)$ for all measurable functions f and random vectors X and Y . Moreover, if f is invertible, then $\bar{\omega}_k(Y|f(X)) = \bar{\omega}_k(Y|X)$.

Moreover,

$$\bar{\omega}_2(Y|X) = \sqrt{\frac{\int \int (F_{Y|X}(y|x) - F_Y(y))^2 dF_X(x)dF_Y(y)}{\int F_Y(y)(1 - F_Y(y))dF_Y(y)}}.$$

It can be easily seen that both ω_k and $\bar{\omega}_k$ depend on F_Y except only for the case Y is a continuous random variable. In this case, we can use the change of variable formula to nullify the effect of F_Y . Also,

$$\bar{\omega}_k(Y|X) \neq \left[\frac{\int \int |F_{Y|X}(y|x) - F_Y(y)|^k dF_X(x)dF_Y(y)}{\omega_k^k(Y|Y) - \hat{\omega}_k(Y)} \right]^{\frac{1}{k}}$$

in general.