CHAPTER 2

Preliminaries

The purpose of this chapter is to collect notations, terminologies and elementary

results used throughout the thesis.

2.1 Distribution Functions

Definition 2.1.1. Let X be a nonempty set and A C X. The indicator function of a set
A defined on X will be denoted by 14, defined by
1 ifzxe A,
lA(:E) =
0 ifx¢ A
Definition 2.1.2. Let S C R. A function f : S — R is said to be nondecreasing if
f@) < f)

whenever z < y.

Definition 2.1.3. Let S C R. A function f :.S — R is said to be right-continuous if for

every € S and every € > 0, there exists o > 0 such that

[f(z) = fy)l <e

whenever z <y < z 4 4.

Definition 2.1.4. A function F : R — [0, 1] is called a (cumulative) distribution function

if F' satisfies the following properties:
i) F is right-continuous,
ii) F' is nondecreasing, and

iii) lim F(zx)=0and lim F(x)=1.
Tr——00 T—00
Example 2.1.1. A function F': R — [0, 1] given by

0 ifx <0,
F(z) =

ifx>0
14z

is a distribution function.



Proof. We first show that F' is right-continuous.

Since the function  — 0 is continuous on (—oc, 0) and the function z — { is continuous
n (0,00), we focus only at 0.

Let = 0 and € > 0. Choose § =€ > 0.

For any y € [z,2 4+ §) = [0,0), we get

S )
F(y) - (o) \Hy \

- ‘ (1+) ‘
Sy
<9é
=€
Then F' is right-continuous.
Next, we show that F' is nondecreasing.
It is clear that if x =y, then F'(z) = F(y). Suppose x < y.

Casei) z <y <0.

In this case, we get F'(z) = F(y) = 0.

Case ii) x <0 < y.

In this case, we get

Case iii) 0 < x < y.
In this case, we get = + 2y < y + zy.
Then z(1 4+ y) < y(l + ).

This implies that 52 <1, + , that is, F(x) < F(y).
Therefore, F(z) < F(y) Whenever x <y.
It is obvious that lim F(z)= lim 0=0and lim F(z)= lim = 1.
T——00 T——00 T—00 z—oo 1 + 2
Hence, F' is a distribution function. ]

Definition 2.1.5. Let A C R and © C R".
For S : A — R, define A2S = S(b) — S(a) for a,b € A.



For any H : © x A — R the difference, denoted by Al H, is defined by
AYH(9) = H(0,b) — H(H,a)
for all 6 € © and a,b € R in which a < .

Definition 2.1.6. Let A C R and H be a function from A" to R.
The volume of H, denoted by Vi, is defined by

Vir <H(ai,bi]) = Al Ab
=1

where a;,b; € A such that a; < b; foralli=1,....n.

Let A C R and H be a function from A2 to R.
Given a1, a,b1,by € A in which a; < as and by < bs.

Consider

Vig ((a1,b1] x (ag,ba)) = AL A2 H
=l (alkn)
= AR (b) — AR H (a1)
= (H (b1, b2) — H (b1, az)) — (H (a1,b2) — H (a1, a2))
= H (by,be) — H (by,a2) — H (a1,b2) + H (a1, a2) .
In general, let A; € R for all i = 1,...,n. For any H : ﬁAi — [0,1] and all

=1
ai,b; € A; in which a; < b;,

al
i=1

where N (¥) = N ((v1, ...,v,)) is the number of ¢ such that v; = a;.

(az-,bi])z SN RVITE A1,

n
’UG H {(Li,bi}
i=1

Definition 2.1.7. Let A C R.
A function F' from A™ to R is called n—increasing function if the volume of F' is non-
negative, that is,
n
Vi (H(ai;bi]> >0
i=1
for all a;,b; € A in which a; < b;.



n
Definition 2.1.8. Let A4; C R for all i =1,...,n. A function H : [[A4; — [0,1] is said

=1
to be continuous from above if, for each k = 1,...,n and each ¢ > 0, there exists § > 0
such that
|H (21, Tk .oy xy) — H (z1,22, ., Yky - -+, Tn)| < €
n
for all (z1,...,2,) € [[Ai and all y, € A N [z, xr +9) .
i=1

Definition 2.1.9. Let F' : R" — [0,1]. Then F is called an n-dimensional distribution

function if it satisfies the following properties:

i) lim _ F((v1,...,vn)) =0,

v;——00,31

i) lim F((viy..,vp)) =1,

v;—00,Vi

iii) F' is n-increasing, and
iv) F' is continuous from above.

Let F' be an n-dimensional distribution function. For each ¢ = 1, ..., n, the function
F; : R — [0,1] defined by F; (z;) = lim  F ((v1,...,vy)) is called the (i-th) marginal
v —00,VjF#i
distribution function of F.

Remark 2.1.2. FEvery marginal distribution function of an n-dimensional distribution

function is a distribution function.

Next, we will given an example of a 2-dimensional distribution function and its

marginals.

Example 2.1.3. A function F : R? — [0, 1] given by

1 ifz>0,y>0,
F(z,y) =

0 otherwise

is a 2-dimensional distribution function.
Proof. 1t is easy to see that
lim F(z,y) =0,

T——00

lim F(x,y) =0,

Yy——00

lim lim F (z,y) =1 and

T—00Y—>00

lim lim F (z,y) = 1.

Y—00L—»00



We next show that F' is a 2-increasing function.

Since Vg ((a,b] x (¢,d]) = F(b,d)+ F(a,c) — F(b,c) — F(a,d) and range of the function F’
is {0, 1}, we have three cases to consider, when F'(b,c¢) =1, F(a,d) = 1 and

F(b,c) =0= F(a,d).

If F(b,c) =0 = F(a,d), then the volume of F' is not less than 0, that is, we have only two

cases to consider, when F'(b,c) =1 or F(a,d) = 1.

Case i) F'(b,c) = 1. By the definition of F', we obtain that b,c¢ > 0.
Since ¢ < d, we have b,c,d > 0.

If a < 0, then

Ve((a,b] x (¢,d]) = F(b,d) + F(a,c) — F(b,c) — F(a,d)
—140-1-0
= 0.

If a > 0, then

Vr((a,b] x (c,d]) = F(b,d) + F(a,c) — F(b,c) — F(a,d)
—14+1-1-1
=0.

Case ii) F(a,d) = 1. By the definition of F', we obtain that a,d > 0.
Since a < b, we have a,b,d > 0.

If ¢ < 0, then

Vi((a,b] x (c,d]) = F(b,d) + F(a,c) — F(b,c) — F(a,d)
=140 001
=0.

If ¢ > 0, then
VF((aab] X (C’ d]) = F(ba d) + F(a’a C) - F(bv C) - F(CL, d)
=14+1-1-1
=0.
Therefore, Vi ((a,b] x (¢,d]) > 0.

Finally, we show that F' is continuous from above.

Let z,y € R and € > 0. Then we have four cases to consider.



Casei) 2 >0,y > 0.
Choose 6 =€ > 0.
For any zt € [z, +9), |F (z,y) — F(zT,y)| =1 -1 =0<e.
Similarly, |F (z,y") — F (z,y)| < € for all y* € [y,y + 9).

Case ii) x <0,y > 0.
Choose 61 = —5 > 0 and dy = € > 0.
For any z* € [z,z + &1), |F (z,y) — F (z,y)|=10-0/=0< ¢
and for any y* € [y,y + d2), |F (z,y") — F (z,y)|=10-0] =0 <.

Case iii) >0,y < 0.
Choose 61 = € > 0 and §y = —§ > 0.
For any o € [z,2 + 61), |F (z,y) — F (z7,y)| =10 -0 =0 < ¢
and for any y* € [y,y + ), |F (z,y") — F(z,y)|=10-0]=0 <.

Case iv) = < 0,y < 0.
Choose 6; = —§ >0 and d2 = =% > 0.
For any zt € [z,x + 01), |F (z,y) — F(z1,y)| =0 -0/ =0< ¢
and for any y* € [y,y + d2), |F (z,y") — F (z,y)| =10 -0 =0 < e.

Hence, F' is a continuous from above function.
Therefore, F' is a 2-dimensional distribution function.

If F1 : R —[0,1] is defined by

1 ifz >0,
£y (z) =
0 ifzx<O
and Fy : R — [0, 1] is defined by
1 ify >0,
B (y) =
0 ify <0,
then F; and F5 are marginal distribution functions of F. ]

2.2 Probability Measures

Definition 2.2.1. Let Q be a nonempty set and 2 denote the power set of Q. A class

¥ C 29 is called a o-algebra on € if it satisfies the following properties:

i) 0eX,



ii) if £ €%, then E = Q\ F € ¥, and

o0
111) if By, Eo, Fs,... €3, then U Ep e .
k=1
The ordered pair (€2, X)) is called a measurable space and the elements of ¥ are called
measurable sets.

Let © be a nonempty set. For any A C 2%, denote the intersection of all o-algebras

containing A by o (A). Note that o (A) is the smallest o-algebra containing A.

Definition 2.2.2. Let (X,Xx) and (Y, Xy) be two measurable spaces.
A function f: X — Y is said to be measurable function if f~'(E) € Xx for all E € Xy

Definition 2.2.3. Let 2 C R™ where n € N and & be the set of all open subsets of €.
Then o (0) is called the Borel o-algebra on 2 which specifically is denoted by Z (€2) . The

elements of Z () are called Borel sets.

Definition 2.2.4. Let ) be a nonempty set, ¥ be a g-algebra on 2 and .# C N. A function

X —[0,1] is called a probability measure if it satisfies the following properties:
i) p(Q) =1, and

ii) for any countable collection {E;};. , of elements in ¥ such that Ej N Ej = () when
&S =
A probability space is a triplet (£2, %, p).
Definition 2.2.5. Let Z ([0, 1]) be the Borel o-algebra on [0, 1],
I'={(a,b] C[0,1][0<a<b<1}U{D},
b—a ifA=(a,b],
and 7 : T' — [0, 1] be defined by 7(A) =
0 if A=0.
A function X : A ([0, 1]) — [0, 1] defined by

=i c U 00
A(A) = inf {;T (Dn)|AC U Dy, (Dn)yZ,y C r}
is called the Lebesgue measure on [0, 1].

Remark 2.2.1. X is a probability measure on [0, 1].

Theorem 2.2.2. Let Q be a nonempty set and A C 2 be nonempty and closed under
finite intersections. If Py and Py are probability measures on o (A) such that Py = Py on

A, then Py = Py on o (A).



Definition 2.2.6. Let (2,.4,P) be a probability space. A random wvariable is a Borel
measurable function from 2 to R. A random vector is a Borel measurable function from

Q to R™.

Definition 2.2.7. For any random variable X defined on a probability space (2,4, P),

its distribution function is a function F'x defined by
Fx (z) =P(X <x)
for all x € R.

Definition 2.2.8. For any random vector (Xi,...,X,) defined on a probability space
(Q, A, P), its (joint) distribution function is a function H defined by

H(z1,...,2y) =P (X3 <z1,..., X, <)
for all x; € R where i =1,...,n.

Here and henceforth, we define (x1,...,2,) < (y1,...,yn) if z; < y; foralli=1,...,n

and (21, ..., Tn) < (Y1, yn) f z; <y foralli =1,...,n.

Denote also (@,b] = (a1, b1] X ... X (an, by] where @ = (a1, ..., an) and b = (by, ..., by).

Definition 2.2.9. Let X be a random vector with the F'x.

A random vector X is said to be (absolutely) continuous if there is a function fx such
that Fy(z) = f(—oo ] fxd\ for all z € R. A function fx is called the density function of
Fx.

Definition 2.2.10. An n-dimensional random vector U is said to be uniform if its dis-

tribution function Fy is the product function II, that is,
Fy () = (1) = IGZ u;
for all @ = (u1,...,u,) € [0, 1]™.

Proposition 2.2.3. Let X and Y be random vectors with distribution functions Fx and

Fy, respectively. Then the three following properties are equivalent:
i) X andY are independent,
it) P(X € A,Y € B) =P(X € A)P(Y € B) for all measurable sets A and B, and

iii) FX’y(f, g) = FX(f)Fy(gj) for all T, € R™.

10



Definition 2.2.11. A random vector Y is said to be completely dependent on a random
vector X if Y takes only one value for each value of X with probability one, that is, there

is a measurable function f such that ¥ = f(X) almost everywhere.

Definition 2.2.12. Let X and Y be random vectors.

The conditional distribution function Fy|x of Y given X is defined by

7 _ Px—h<X<z+4+hY <y)
vix(le) = i = X <o+ )
— lim VFX,Y ((l’ - h,:l:—i—h} X (—oo,y])‘
RN\ Vi ((x — h,z + h])

Lemma 2.2.4. Let X and Y be random vectors. Given the distribution function Fy of

Y and the conditional distribution function Fy x of Y given X. Then

/ Fyx (ul2)dFx (@) = Fy (9).

Proof. Denote py(A) =P(Y < y|X € A) and u(A4) =P(X € A).
Then p, is absolutely continuous with respective to p.
By Lebesgue point theorem, ;lli{‘%mfl?(xve) dd%du = %% converges to ‘%y(a:).

Thus, Fyx(y|z) = %(m) Therefore,

[ Foxtinarso = [ %’ﬁ@)dmw
= p(R")
= Fy (y).

d

Lemma 2.2.5. Let X and Y be random vectors. Given the distribution function Fy
of Y and the conditional distribution function Fy|x of Y given X. Then X andY are
independent if and only if Fy|x = Fy a.e. with respect to the product of the distribution
of X and Y.

Proof. Let X and Y be independent random vectors, we have

F ( ‘x) — hm VFX,Y ((':U - hvx + h] X (_Oo,y])
YIXWE) = 0% Vi (z — h,z + h])
o Viy (@ — h,x + h)VE, (—o0, y]
= lim
AN) Vi ((x — h,z + h])

= 1i —
h{% VFy( 00, y]

= Fy(y).

11



Conversely, we show that X and Y are independent when Fy | x = Fy.

Let Fy|x = Fy and ¢ € R. Consider

By Proposition 2.2.3, we obtain that X and Y are independent. O

2.3 Copulas

Definition 2.3.1. An n-dimensional copula or n-copula is a continuous function

C :]0,1]" — [0, 1] satisfying the following properties:

i) C is an n-increasing,

ii) C is grounded, that is, C'(uq, ..., u,) = 0 whenever u; = 0 for some i = 1, ...,n, and
ili) C has uniform marginals, that is, C'(u1, ..., u,) = u; whenever u; = 1 for all j # 1.

Example 2.3.1. Let @ = (u1,...,un) € [0,1]". The function II" : [0,1]" — [0, 1] defined

by I1"(uq, ..., un) = uj - - - uy, is an n-copula.
Proof. Let @ = (u1,...,u,) € [0,1]".
i) If 4 has at least one coordinate which is equal to 0, then II" (@) = 0.
ii) If all coordinates of @ are equal to 1 except possibly uy, then I1" (@) = u.

iii) Next, we show that II" is n-increasing.

Let ((1’, b] (a1,b1] X -+ X (an, by).

12



Since b; —a; > 0 for all i = 1,...,n and

(b1 —a1) (by —az) -~ (b — an) = > UL

Vi=1,...,n;v;€{bi,—a;}

= Z " (vy, -+, vn)

Vi=1,...,n;v;€{b;,—a; }

= Z " (7)
Eeigl{bi’_ai}

= Y M)

n
’UE H {bl ,(li}
=\

it follows that Vi ((&', I_)]) = (b1 —a1) (ba —ag) - (bn — an) > 0.

Hence, II" is n-increasing.
By i)—iii), we obtain that II" is an n-copula. O

Theorem 2.3.2. [6]/ Let H be an n-dimensional distribution function of a random vector

(X1, ..., Xp) with marginals Fi, ..., F,. Then there exists an n-copula C' such that
H(zy,...,zn) = C(F1(21), ..., Fr(zp)) (2.1)

for all x1,...,xz, € R.
Any copula C satisfying equation (2.1) is said to be associated with (X7, ..., X,).

If Fy, ..., F, are all continuous, then C'is unique; otherwise, C'is uniquely determined
on Ran(Fy) x ... x Ran(F},) where Ran(F) is the range of F'.

Conversely, if C is an n-copula and F, ..., F,, are distribution functions, then the
function H defined by (2.1) is an n-dimensional distribution.

A joint distribution function of uniform random vectors is called a linkage.

Note that a linkage is always a copula.

For each distribution function F'x of an absolutely continuous random vector

X = (Xy,...,Xy), define a transformation ¥p, : R™ — [0, 1]" by letting

Upy (@1, o) = (Fx, (1), Fyxy x, (T2]21), s Fx (X0, X0 1) (@0l (@1, 0 Tas1))

for all (x1,...,x,) € R"™ It is known that U = Up, (X) has uniform distribution (see
in [5]). H. Li, M. Scarsini, and M. Shaked [5] showed that for each random variables
X1,...,X, with an absolutely continuous joint distribution F, these random variables

Ui, ..., Uy, are independent uniform [0, 1] whenever (U, ...,U,) = Y p(X1, ..., X;,). Similarly,

13



if the univariate random variable X has the continuous distribution function F, then F(X)
is a uniform [0, 1] random variable.
By inverting, ¥y can express the X’s as functions of the independent uniform

random variables Uy, ..., U,. Denote
21 = F~(u) (22)
and, by induction,

Ti = ﬂﬁ{...,iil(ui]xl, ---,-Ti—l), 1= 2, ey N (2.3)

Consider the transformation ¥* : [0, 1]" — R” defined by (here the z;’s are functions of

the u;’ s as given in (2.2) and (2.3))
U (U, ey tp) = (21, ey T, (U1, ..., up) € [0,1]".

Let
(X1, X)) = U (Uy, ..., Uy).

Then (X1, ..., X,,) has the same distribution as (X1, ..., X,).

In fact, it is well known, if F' is absolutely continuous, then
W}\PF(X].’ X27 ceey XTL) :a.s. (X17 X2) b 4] Xn):

where =, denotes an equality almost surely under the probability measure associated
with F.

Since U; = ¥;(X;) is uniform, the joint distribution of Uy, ..., Uy is a linkage.
We called this linkage, the linkage associated with X1, ..., X; and will be denoted by
Cx,,..x-

We will also denote Cy,|x,... x,_, the conditional distribution function of Uy given
(U1, .., Ug—1).

For further information on linkages, see [5].

Example 2.3.3. Let X and Y be random vectors with dimensions m and n, respectively,

with FGM-copula
Cy(it, ) = (@)II(T) + OTL(@)IL(F)II(T — @)II(T — 7)

where 0 € [—1,1] as their joint distribution.
Then the marginals F'x and Fy of Cy are defined by Fx (@) = II(@) and Fy (¥) = IL(9).

Therefore, X and Y are uniform random vectors, that is, Cy is the linkage.

14



Measure of Complete Dependence

Let X and Y be two random variables. The random variable Y is completely de-
pendent on X if there is a Borel measurable function f such that P(Y = f(X))=1. If Y
is completely dependent on X, and X is completely dependent on Y, then X and Y are
called mutually completely dependent (m.c.d.).

In 2010, Siburg and Stoimenov [1] defined a measure of dependence

V&) N 2
X,Y) = < - < -
w(X,Y) 3/[0’1]2 _(amCXy(x,y) y) + (ayCXy(x,y) :c) ]dxdy

V) 7 o 2
= 3\/[;71]2 _<a$CX7Y(x7y)) + <’8TyCX7Y(fE,y)> dxdy—Z

for any continuous random variables X and Y. In their works, it was shown that, for

any random variables X and Y with continuous distribution functions, w(X,Y’) has the

following properties:
) w(X,Y) = w(Y, X),
i) 0<w(X,Y) <1,
iii) w(X,Y) =0 if and only if X and Y are independent,
iv) w(X,Y) =1if and only if X and Y are m.c.d.,
v) w(X,Y) € (v2/2,1] if Y is completely dependent on X (or vice versa),
vi) If f,g: R — R are strictly monotone functions, then w(f(X),¢(Y)) = w(X,Y), and

vii) If (X, Yn)nen is a sequence of pairs of random variables with continuous marginal
distribution functions and copulas (C),)nen and if li_}In ||C, — C|| =0, then
n—oo
lim w(X,,Y,) = w(X,Y) where ||.|| is a modified Sobolev norm and C' is a copula
n—oo

associated with random variables X and Y.

Let § be the set of all bivariate distribution functions with continuous marginal
distribution functions, as well as X be the set of all bivariate random vectors with distri-
bution functions in §. Dette et al. [2] defined a measure r : X — [0, 1] via the following

formula

11
r(X,Y) = 6/0 /0 FV|U(v]u)2dvdu —2.

15



Since Fy i (vlu) = 2 Cxy(u,v), we obtain that

0
T(X, Y) = 6 HauCX’Y

2
-2
2

where || - || denotes the L?—norm.
In their works, it was shown that, if f,¢g : R — R are strictly monotone functions,

then r(f(X),g(Y)) =r(X,Y).
Moreover, r can be viewed as a functional on the set of copulas €, and we write

r(Cx,y) = r(X,Y) which can be considered as an asymmetric version of w(X,Y), that is,

XY
W(X,Y) = \/7’( )X
Let C be the set of all two-dimensional copulas and Cy4 be the class of all completely

dependent copulas. During the same period, Trutschnig [3] also defined a measure of

complete dependence (7 based on the Markov kernel associated with X and Y.

When written using the copula C'x y associated with X and Y,

a(¥|X)=3 / / ‘a%cx,y(:c,y)—y dady

and showed that for every C' € C, (;(C) € [0, 1]. Furthermore, (;(C') = 1 if and only if
C € (g, that is, all completely dependent copulas have a maximum dependence measure.
Both r and (; are similar in the sense that both measures reach the maximum value

if and only if the random variable Y is a measurable function of the random variable X.

Recently, Tasena and Dhompongsa [4] also defined measures of complete dependence
1
k

1 k
dFx (z)dFy (y)

a(Y]X) = [ | [ |Frixtole) -

and :
ey [0 < e E

= [ —am)

LIk
where @y, (Y) = [ |Fy (y) — 3 dFy (y) for any random vectors X and Y.

In their works, it was shown that wy has the following properties:

i) we(YHXY) < wp(Y[X) < wi(Y]Y) where (Y1, X1) have the same marginals as
(Y, X) but X+ and Y+ are independent,

i) we(YH|X1) =0and wp(Y|Y) =1,
iii) w(Y+)X+) = wp(Y]X) if and only if X and Y are independent,

iv) wr(Y|X) = wi (YY) if and only if Y is a function of X,
16



v) wi(Y,Y, Z|X) = wi(Y, Z| X) for all random vectors X, Y, and Z,
vi) wp(Y|X, X, Z) =wi(Y|X, Z) for all random vectors X,Y, and Z,
vil) wi(Y|X,Z) > wi(Y|X) for all random vectors X, Y, and Z,

viil) wg (Y, f(X)|X) > (Y|X) for all measurable functions f and random vectors X and
Y,

ix) wr(Y|f(X)) < wi(Y]X) for all measurable functions f and random vectors X and
Y,

while @y (Y| X) satisfies the properties:

i) (Y1 X1) < Wp(Y]X) < W (YY) where (Y4, X+) have the same marginals as
(Y, X) but X+ and Y are independent,

i) Wp(YHXL) =0and @,(Y]Y) =1,

iii) @ (Y+|X1) =@ (Y]X) if and only if X and Y are independent,
iv) Wp(YX) =wi(Y[Y) if and only if Y is a function of X,

v) wp(Y,Y, Z|X) = wi(Y, Z|X) for all random vectors X, Y, and Z,
vi) Wi (YX, X, Z) =wi(Y|X, Z) for all random vectors X, Y, and Z,
vii) Wi(Y1X, Z) > wg(Y|X) for all random vectors X,Y, and Z, and

viil) wg(Y|f(X)) < @wi(Y]X) for all measurable functions f and random vectors X and
Y. Moreover, if f is invertible, then wy(Y|f(X)) = wi(Y]X).

Moreover,

I [ (Frix(lz) = Py () dFx(z)dFy (y)
[ Fy(y)(1 — Fy(y))dFy (y)

It can be easily seen that both wy and @y depend on Fy except only for the case Y

wa(Y]X) =

is a continuous random variable. In this case, we can use the change of variable formula

to nullity the effect of Fy. Also,

I 1Py ix (wlz) — By (y)|* dFx (2)dFy (y)
E(YTY) = an(Y)

wp(Y[X) #

in general.
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