
CHAPTER 3

Main Results

3.1 Measure of Complete Dependence Based on Conditional Distribu-

tion Functions

In this chapter, we define the measure of dependence for random vectors using the

conditional distribution functions.

Definition 3.1.1. Let X and Y be random vectors.

The measure of dependence φ of Y given X is defined by

φ(Y |X) =

∫ ∫ ∣∣FY |X(v|u)− FY (v)
∣∣dFX(u)dFY (v)

where FY |X is the conditional distribution function of Y given X.

We will figure out the maximum value of φ using Lemma 3.1.3. The proove of

Lemma 3.1.3 is very complicated. Therefore, we separated parts of its proof into the

following lemmas.

Lemma 3.1.1. Let A be a metric space and µ be a Borel probability measure on A such

that µ(B(x, ϵ) \ B(x, ϵ)) = 0 for all ball B(x, ϵ) centered in x ∈ A and of radius ϵ > 0.

Let y ∈ (0, 1) and Dy = {f : A → [0, 1] | f is measurable and
∫
A f(x)dµ = y}. Then a

function H1 defined by H1(ϵ) =
∫
B(x,ϵ)∩Ec

f
f(z)dµ−

∫
Bc(x,ϵ)∩Ec

f
(1−f(z))dµ is a continuous

function where Ef = {x ∈ A|f(x) > y} and f ∈ Dy.
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Proof. Let y ∈ Dy. Consider

H1(a) =

∫
B(x,a)∩Ec

f

f(z)dµ−
∫
Bc(x,a)∩Ec

f

(1− f(z))dµ

=

∫
B(x,a)∩Ec

f

f(z)dµ−
∫
Bc(x,a)∩Ec

f

1dµ+

∫
Bc(x,a)∩Ec

f

f(z)dµ

=

∫
B(x,a)∩Ec

f

f(z)dµ+

∫
Bc(x,a)∩Ec

f

f(z)dµ−
∫
Bc(x,a)∩Ec

f

1dµ

=

∫
Ec

f

f(z)dµ− µ(Bc(x, a) ∩ Ec
f )

=

∫
Ec

f

f(z)dµ−
(
1− µ(B(x, a)) + µ(Ec

f )− µ(Bc(x, a) ∪ Ec
f )
)

=

∫
Ec

f

f(z)dµ− 1 + µ(B(x, a))− µ(Ec
f ) + µ(Bc(x, a) ∪ Ec

f )

=

∫
Ec

f

f(z)dµ+ µ(B(x, a))− µ(Ec
f ) +

(
−1 + µ(Bc(x, a) ∪ Ec

f )
)

=

∫
Ec

f

f(z)dµ+ µ(B(x, a))− µ(Ec
f )−

(
1− µ(Bc(x, a) ∪ Ec

f )
)

=

∫
Ec

f

f(z)dµ+ µ(B(x, a))− µ(Ec
f )− µ (B(x, a) ∩ Ef ) .

Let bn ↗ a.

Then B(x, bn) ⊆ B(x, a) and
∪
n
B(x, bn) = B(x, a).

So, µ(B(x, bn)) → µ(B(x, a)) and µ(B(x, bn) ∩ Ef ) → µ(B(x, a) ∩ Ef ).

Thus, lim
bn→a−

H1(bn) = H1(a).

If bn ↘ a, then
∩
n
B(x, bn) = B(x, a) and µ

(
B(x, a) \ B(x, a)

)
= 0, we can conclude that

µ(B(x, bn)) ↘ µ(B(x, a)) and µ(B(x, bn) ∩ Ef ) ↘ µ(B(x, a) ∩ Ef ).

Thus, lim
bn→a+

H1(bn) = H1(a).

Hence, H1 is a continuous function.
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Lemma 3.1.2. Let A be a metric space and µ be a Borel probability measure on A such

that µ(B(x, ϵ) \ B(x, ϵ)) = 0 for all ball B(x, ϵ) centered in x ∈ A and of radius ϵ > 0.

Let y ∈ (0, 1) and Dy = {f : A → [0, 1] | f is measurable and
∫
A f(x)dµ = y}. Then a

function H2 defined by H2(ϵ) =
∫
B(x,ϵ)∩Ef

f(z)dµ−
∫
Bc(x,ϵ)∩Ef

(1−f(z))dµ is a continuous

function where Ef = {x ∈ A|f(x) > y} and f ∈ Dy.

Proof. Let y ∈ Dy. Consider

H2(a) =

∫
B(x,a)∩Ef

f(z)dµ−
∫
Bc(x,a)∩Ef

(1− f(z))dµ

=

∫
B(x,a)∩Ef

f(z)dµ−
∫
Bc(x,a)∩Ef

1dµ+

∫
Bc(x,a)∩Ef

f(z)dµ

=

∫
B(x,a)∩Ef

f(z)dµ+

∫
Bc(x,a)∩Ef

f(z)dµ−
∫
Bc(x,a)∩Ef

1dµ

=

∫
Ef

f(z)dµ− µ(Bc(x, a) ∩ Ef )

=

∫
Ef

f(z)dµ− (1− µ(B(x, a)) + µ(Ef )− µ(Bc(x, a) ∪ Ef ))

=

∫
Ef

f(z)dµ− 1 + µ(B(x, a))− µ(Ef ) + µ(Bc(x, a) ∪ Ef )

=

∫
Ef

f(z)dµ+ µ(B(x, a))− µ(Ef ) + (−1 + µ(Bc(x, a) ∪ Ef ))

=

∫
Ef

f(z)dµ+ µ(B(x, a))− µ(Ef )− (1− µ(Bc(x, a) ∪ Ef ))

=

∫
Ef

f(z)dµ+ µ(B(x, a))− µ(Ef )− µ
(
B(x, a) ∩ Ec

f

)
.

Let bn ↗ a.

Then B(x, bn) ⊆ B(x, a) and
∪
n
B(x, bn) = B(x, a).

So, µ(B(x, bn)) → µ(B(x, a)) and µ(B(x, bn) ∩ Ec
f ) → µ(B(x, a) ∩ Ec

f ).

Thus, lim
bn→a−

H2(bn) = H2(a).

If bn ↘ a, then
∩
n
B(x, bn) = B(x, a) and µ

(
B(x, a) \ B(x, a)

)
= 0, we can conclude that

µ(B(x, bn)) ↘ µ(B(x, a)) and µ(B(x, bn) ∩ Ec
f ) ↘ µ(B(x, a) ∩ Ec

f ).

Thus, lim
bn→a+

H2(bn) = H2(a).

Hence, H2 is a continuous function.
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Lemma 3.1.3. Let A be a metric space and µ be a Borel probability measure on A such

that µ(B(x, ϵ) \ B(x, ϵ)) = 0 for all ball B(x, ϵ) centered in x ∈ A and of radius ϵ > 0.

Let y ∈ (0, 1) and Dy = {f : A→ [0, 1] | f is measurable and
∫
A f(x)dµ = y}.

The supremum of
∫
A |f(x)− y|dµ over f ∈ Dy happens when f ∈ {0, 1} a.e.

Moreover, max
{f∈Dy}

∫
A |f(x)− y|dµ = 2y(1− y).

Proof. For each y ∈ (0, 1), we can find ball B(x0, ϵ0) ⊆ A such that
∫
B(x0,ϵ0)

dµ = y by

continuity of the function ϵ 7→ µ(B(x, ϵ)) with infimum zero and supremum one. We define

a function f : A→ {0, 1} via

f(x) =

1 if x ∈ B(x0, ϵ0),

0 if x /∈ B(x0, ϵ0).

Since µ(B(x, ϵ) \ B(x, ϵ)) = 0, we can conclude that f is an indicator function in Dy.

Let 1B ∈ Dy be an indicator function of B ⊆ A. We shall show that∫
A
|1B(x)− y| dµ = 2y(1− y).

Since 1B ∈ Dy, we can conclude that µ(B) =
∫
1Bdµ = y. Consider,∫

A
|1B(x)− y| dµ =

∫
B
(1− y)dµ+

∫
Bc

ydµ

= (1− y)µ(B) + yµ(Bc)

= (1− y)y + y(1− y)

= 2y(1− y). (3.1)

Therefore,
∫
A |1B(x)− y|dµ = 2y(1− y).

Let f ∈ Dy be not an indicator function and Ef = {x ∈ A|f(x) > y} .

Since ∫
Ef

ydµ+

∫
Ec

f

ydµ = y

=

∫
A
f(x)dµ

=

∫
Ef

f(x)dµ+

∫
Ec

f

f(x)dµ,

we get ∫
Ec

f

(y − f(x))dµ =

∫
Ef

(f(x)− y)dµ. (3.2)
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Consider ∫
A
|f(x)− y|dµ =

∫
Ef

|f(x)− y|dµ+

∫
Ec

f

|f(x)− y|dµ

=

∫
Ef

(f(x)− y)dµ+

∫
Ec

f

(y − f(x))dµ

= 2

∫
Ef

(f(x)− y)dµ.

Since
∫
Ef

(f(x) − y)dµ =
∫
Ec

f
(y − f(x))dµ and

∫
A |f(x) − y|dµ = 2

∫
Ef

(f(x) − y)dµ, we

can conclude that
∫
A |f(x)− y|dµ = 2

∫
Ec

f
(y − f(x))dµ.

Next, we show that
∫
A |f(x)−y|dµ ≤

∫
A |f∗(x)−y|dµ where F ∗ ∈ Dy is an indicator

function.

Case i)
∫
Ec

f
f(x)dµ > 0.

Let x ∈ Ef be fixed.

Since the functionH1 in Lemma 3.1.1 is continuous and y ≥ f(x) for all x ∈ Ec
f ,

we get

0 > y − 1

≥ f(x)− 1

= −(1− f(x)).

Then H1(0) = −
∫
Ec

f
(1− f(z))dµ < 0 and H1(∞) =

∫
Ec

f
f(z)dµ > 0.

Thus, there exists ϵ0 ∈ (0,∞) such that H1(ϵ0) = 0.

Define a new function f∗ by f∗ = f1Ef
+ 1Ec

f∩Bc(x,ϵ0).

We show that f∗ ∈ Dy.

Since H1(ϵ0) = 0, we have

0 =

∫
B(x,ϵ0)∩Ec

f

f(z)dµ−
∫
Bc(x,ϵ0)∩Ec

f

(1− f(z))dµ

=

∫
B(x,ϵ0)∩Ec

f

f(z)dµ−
∫
Bc(x,ϵ0)∩Ec

f

1dµ+

∫
Bc(x,ϵ0)∩Ec

f

f(z)dµ.

Therefore, ∫
Ec

f

f(z)dµ =

∫
Bc(x,ϵ0)∩Ec

f

1dµ. (3.3)
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Then ∫
A
f∗(x)dµ =

∫
A
f1Ef

(x)dµ+

∫
A
1Bc(x,ϵ0)∩Ec

f
(x)dµ

=

∫
Ef

f(x)dµ+

∫
Bc(x,ϵ0)∩Ec

f

dµ

=

∫
Ef

f(x)dµ+

∫
Ec

f

f(z)dµ

=

∫
A
f(x)dµ

= y.

Hence, f∗ ∈ Dy.

Next, we show that
∫
A |f(x)− y|dµ <

∫
A |f∗(x)− y|dµ.

Since y ∈ (0, 1) and equation(3.3), we obtain that∫
B(x,ϵ0)∩Ec

f

ydµ+

∫
Ec

f

f(x)dµ =

∫
B(x,ϵ0)∩Ec

f

ydµ+

∫
Bc(x,ϵ0)∩Ec

f

dµ

>

∫
B(x,ϵ0)∩Ec

f

ydµ+

∫
Bc(x,ϵ0)∩Ec

f

ydµ

=

∫
Ec

f

ydµ.

Therefore,
∫
B(x,ϵ0)∩Ec

f
ydµ+

∫
Ec

f
f(x)dµ >

∫
Ec

f
ydµ.

Thus, ∫
B(x,ϵ0)∩Ec

f

ydµ >

∫
Ec

f

(y − f(x))dµ. (3.4)
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Consider∫
A
|f∗(x)− y|dµ =

∫
Ef

|f∗(x)− y|dµ+

∫
Ec

f

|f∗(x)− y|dµ

=

∫
Ef

|f1Ef
(x) + 1Bc(x,ϵ0)∩Ec

f
(x)− y|dµ

+

∫
Ec

f

|f1Ef
(x) + 1Bc(x,ϵ0)∩Ec

f
(x)− y|dµ

=

∫
Ef

|f(x)− y|dµ+

∫
Ec

f

|1Bc(x,ϵ0)∩Ec
f
(x)− y|dµ

=

∫
Ef

|f(x)− y|dµ+

∫
Bc(x,ϵ0)∩Ec

f

(1− y)dµ+

∫
B(x,ϵ0)∩Ec

f

ydµ

=

∫
Ef

f(x)dµ−
∫
Ef

ydµ+

∫
Ec

f

f(x)dµ

−
∫
Bc(x,ϵ0)∩Ec

f

ydµ+

∫
B(x,ϵ0)∩Ec

f

ydµ

=

∫
A
f(x)dµ−

∫
Ef

ydµ−
∫
Bc(x,ϵ0)∩Ec

f

ydµ+

∫
B(x,ϵ0)∩Ec

f

ydµ

= y −
∫
Ef

ydµ−
∫
Bc(x,ϵ0)∩Ec

f

ydµ+

∫
B(x,ϵ0)∩Ec

f

ydµ

=

∫
B(x,ϵ0)∩Ec

f

ydµ+

∫
B(x,ϵ0)∩Ec

f

ydµ

= 2

∫
B(x,ϵ0)∩Ec

f

ydµ.

By inequality (3.4) and equality (3.1), we can conclude that∫
A
|f∗(x)− y|dµ = 2

∫
B(x,ϵ0)∩Ec

f

ydµ

> 2

∫
Ec

f

(y − f(x))dµ

=

∫
A
|f(x)− y|dµ.

Hence,
∫
A |f∗(x)− y|dµ >

∫
A |f(x)− y|dµ.

Case ii)
∫
Ec

f
f(x)dµ = 0 and

∫
Ef

(1− f(x))dµ > 0.

The function H2 in Lemma 3.1.2 is continuous on (0,∞).
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Consider

H2(0) =

∫
B(x,0)∩Ef

f(z)dµ−
∫
Bc(x,0)∩Ef

(1− f(z))dµ

= 0−
∫
Bc(x,0)∩Ef

(1− f(z))dµ

= −
∫
Ef

(1− f(z))dµ

=

∫
Ef

(f(z)− 1)dµ

< 0.

We next show that H2(∞) > 0. Consider

H2(∞) =

∫
B(x,∞)∩Ef

f(z)dµ−
∫
Bc(x,∞)∩Ef

(1− f(z))dµ

=

∫
B(x,∞)∩Ef

f(z)dµ

=

∫
Ef

f(z)dµ

> 0.

Then there is ϵ0 ∈ (0, 1) such that H2(ϵ0) = 0. Consider

0 = H2(ϵ0)

=

∫
B(x,ϵ0)∩Ef

f(z)dµ−
∫
Bc(x,ϵ0)∩Ef

(1− f(z))dµ

=

∫
B(x,ϵ0)∩Ef

f(z)dµ−
∫
Bc(x,ϵ0)∩Ef

1dµ+

∫
Bc(x,ϵ0)∩Ef

f(z)dµ

=

∫
Ef

f(z)dµ−
∫
Bc(x,ϵ0)∩Ef

1dµ.

Hence, ∫
Bc(x,ϵ0)∩Ef

1dµ =

∫
Ef

f(z)dµ

= y. (3.5)

We define a new function f∗ = f1Ec
f
+ 1Bc(x,ϵ0)∩Ef

. We show that f∗ ∈ Dy.
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Consider ∫
A
f∗(x)dµ =

∫
A
f1Ec

f
dµ+

∫
A
1Bc(x,ϵ0)∩Ef

dµ

=

∫
Ec

f

f(x)dµ+

∫
Bc(x,ϵ0)∩Ef

1dµ

= 0 +

∫
Bc(x,ϵ0)∩Ef

1dµ

=

∫
Bc(x,ϵ0)∩Ef

1dµ

= y.

Thus, f∗ ∈ Dy.

We next show that
∫
A |f(x)− y|dµ <

∫
A |f∗(x)− y|dµ. By inequality (3.2) and
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∫
Ec

f
f(x)dµ = 0, we obtain that∫

A
|f∗(x)− y|dµ =

∫
A
|f1Ec

f
(x) + 1Bc(x,ϵ0)∩Ef

(x)− y|dµ

=

∫
Ef

|1Bc(x,ϵ0)∩Ef
(x)− y|dµ+

∫
Ec

f

|f(x)− y|dµ

=

∫
Bc(x,ϵ0)∩Ef

(1− y) dµ+

∫
B(x,ϵ0)∩Ef

ydµ+

∫
Ec

f

(y − f(x)) dµ

=

∫
Bc(x,ϵ0)∩Ef

1dµ−
∫
Bc(x,ϵ0)∩Ef

ydµ+

∫
B(x,ϵ0)∩Ef

ydµ

+

∫
Ec

f

ydµ−
∫
Ec

f

f(x)dµ

= y −
∫
Bc(x,ϵ0)∩Ef

ydµ+

∫
B(x,ϵ0)∩Ef

ydµ+

∫
Ec

f

ydµ− 0

=

∫
Ec

f

ydµ+

∫
B(x,ϵ0)∩Ef

ydµ+

∫
B(x,ϵ0)∩Ef

ydµ+

∫
Ec

f

ydµ

= 2

(∫
Ec

f

ydµ+

∫
B(x,ϵ0)∩Ef

ydµ

)

> 2

∫
Ec

f

ydµ

= 2

∫
Ec

f

(y − f(x))dµ

=

∫
Ef

(f(x)− y)dµ+

∫
Ec

f

(y − f(x))dµ

=

∫
Ef

f(x)dµ−
∫
Ef

ydµ+

∫
Ec

f

ydµ−
∫
Ec

f

f(x)dµ

=

∫
Ef

|f(x)− y|dµ+

∫
Ec

f

|f(x)− y|dµ

=

∫
A
|f(x)− y|dµ.

Thus,
∫
A |f(x)− y|dµ <

∫
A |f∗(x)− y|dµ. Therefore, the supremum of∫

A |f(x)− y|dµ over f ∈ Dy happens when f ∈ {0, 1} a.e.
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Lemma 3.1.4. Let Y be a continuous random vector with dimension n. Then

FY |Y (y⃗|x⃗) =


1 if xi < yi ; i = 1, ..., n

0 otherwise.

Proof. Let Y be a continuous random vector of dimension n, we have two cases to consider

Case i) x⃗ < y⃗.

Then VFY,Y
((x− h, x+ h]× (−∞, y]) = VFY

((x− h, x+ h]) where h is suffi-

ciently small. Therefore,

FY |Y (y|x) = lim
h↘0

VFY,Y
((x− h, x+ h]× (−∞, y])

VFY
((x− h, x+ h])

= lim
h↘0

VFY
((x− h, x+ h])

VFY
((x− h, x+ h])

= 1.

Case ii) x ≮ y.

If xi > yi for some i = 1, ..., n, then lim
h↘0

VFY,Y
((x− h, x+ h]× (−∞, y]) = 0.

Assume xi ≤ yi for all i = 1, ..., n and xj = yj for some j = 1, ..., n.

Since Y is a continuous random vector, we get

lim
h↘0

VFY,Y
((x− h, x+ h]× (−∞, y]) = 0.

Recall the definition of φ from Definition 3.1.1,

φ(Y |X) =

∫ ∫ ∣∣FY |X(v|u)− FY (v)
∣∣dFX(u)dFY (v).

Lemma 3.1.5. Let Y be a continuous random vector. Then

φ(Y |Y ) = 2

∫
(1− FY (y))FY (y)dFY (y).

Proof.

φ(Y |Y ) =

∫ ∫
|FY |Y (y|x)− FY (y)|dFY (x)dFY (y)

=

∫ ∫
{x<y}

(1− FY (y)) dFY (x)dFY (y) +

∫ ∫
{x�y}

FY (y)dFY (x)dFY (y)

=

∫ (
(1− FY (y))

∫
{x<y}

dFY (x)

)
dFY (y) +

∫ (
FY (y)

∫
{x≮y}

dFY (x)

)
dFY (y)

=

∫
(1− FY (y))FY (y)dFY (y) +

∫
(1− FY (y))FY (y)dFY (y)

= 2

∫
(1− FY (y))FY (y)dFY (y).
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Lemma 3.1.6. Let X = (X1, ..., Xn) be a continuous random vector.

Then P(X ∈ B(x, ϵ) \ B(x, ϵ)) = 0 for all x ∈ Rn and ϵ > 0.

Proof. Let x = (x01, ..., x
0
n). We set Ai = (x1, ..., xi−ϵ, ..., xn) and Bi = (x1, ..., xi+ϵ, ..., xn)

where xj ∈ [x0j − ϵ, x0j + ϵ] for all j ̸= i. Thus, B(x, ϵ) \ B(x, ϵ) =
n∪

i=1
(Ai ∪ Bi). Since a

random vectorX is continuous, we get P(Ai∪Bi) ≤ P(Rj−1×{xji}×Rn−j) = 0. Therefore,

P(X ∈ B(x, ϵ) \ B(x, ϵ)) = 0.

Theorem 3.1.7. Let X and Y be continuous random vectors.

Then 0 ≤ φ(Y |X) ≤ φ(Y |Y ).

Proof. It is easy to see that 0 ≤ φ(Y |X). Next, we show that φ(Y |X) ≤ φ(Y |Y ).

By Lemma 3.1.3, we obtain that

2

∫
(1− FY (y))FY (y)dFY (y) ≥

∫ ∫
|FY |X(y|x)− FY (y)|dFX(x)dFY (y).

By Lemma 3.1.5, we have

φ(Y |Y ) = 2

∫
(1− FY (y))FY (y)dFY (y)

≥
∫

|FY |X(y|x)− FY (y)|dFX(x)dFY (y)

= φ(Y |X).

Theorem 3.1.8. Let X and Y be continuous random vectors. Then φ(Y |X) = 0 if and

only if X and Y are independent.

Proof. Assume that φ(Y |X) = 0. Then
∫ ∫ ∣∣FY |X(v|u)− FY (v)

∣∣dFX(u)dFY (v) = 0.

Thus, FY |X(v|u)− FY (v) = 0. Hence, FY |X(v|u) = FY (v).

Therefore, X and Y are independent.

Conversely, assume X and Y are independent.

We get FY |X(v|u) = FY (v). Thus,

φ(Y |X) =

∫ ∣∣FY |X(v|u)− FY (v)
∣∣dFX(u)dFY (v)

=

∫
|FY (v)− FY (v)|dFX(u)dFY (v)

= 0.
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Theorem 3.1.9. Let X and Y be continuous random vectors.

Then φ(Y |X) = φ(Y |Y ) if and only if Y is a function of X.

Proof. Assume that φ(Y |X) = φ(Y |Y ).

Then
∫ ∫

|FY |X(y|x)− FY (y)|dFX(x)dFY (y) =
∫
2(1− FY (y))FY (y)dFY (y).

Since
∫
|FY |X(y|x)− FY (y)|dFX ≤ 2(1− FY (y))FY (y), we can conclude that∫

|FY |X(y|x)− FY (y)|dFX = 2(1− FY (y))FY (y).

By Lemma 3.1.3 and Lemma 2.2.4, we have FY |X ∈ {0, 1} a.e.

Since FY |X(·|x) is a distribution function, we obtain that the set {y|FY |X(y|x) = 1} is

closed under the pointwise minimum and closed under Euclidean topology.

Therefore, {y|FY |X(y|x) = 1} has a minimum, we say f(x).

Then FY |X(·|x) = 1[f(x),∞]. Thus, P(Y = f(X)) = 1.

Hence, Y is a function of X.

In fact, φ(Y |X) is not generally less than one so, we normalize it into the form

φ(Y |X)

φ(Y |Y )
=

∫ ∣∣FY |X(y|x)− FY (y)
∣∣dFX(x)dFY (y)

2
∫
FY (y)(1− FY (y))dFY (y)

.

For any random vectors X and Y with the joint distribution function FX,Y , we

denote φ(FX,Y |X) = φ(Y |X).

Let F and G be joint distribution functions with the same marginals, then the

convex combination tF + (1− t)G also has the same marginals as F and G.

Theorem 3.1.10. Let F and G be joint distribution functions with the same marginals.

Let (X1, Y1), (X2, Y2) and (Xt, Yt) have the distribution functions F,G and tF +(1− t)G,

respectively. Then φ(Yt|Xt) ≤ tφ(Y1|X1) + (1− t)φ(Y2|X2).

Proof. Let H = tF + (1− t)G.

Then HYt|Xt
= tFY1|X1

+ (1− t)GY2|X2
and HYt = tFY1 + (1− t)GY2 . Thus,

φ(H|Xt) =

∫
|HYt|Xt

(y|x)−HYt(y)|dFX(x)dFY (y)

=

∫
|tFY1|X1

(y|x) + (1− t)GY2|X2
(y|x)− tFY1(y)− (1− t)GY2(y)|dFX(x)dFY (y)

=

∫
|t(FY1|X1

(y|x)− FY1(y)) + (1− t)(GY2|X2
(y|x)−GY2(y))|dFX(x)dFY (y)

≤ t

∫
|FY1|X1

(y|x)− FY1(y)|dFX(x)dFY (y)

+ (1− t)

∫
|GY2|X2

(y|x)−GY2(y)|dFX(x)dFY (y)

= tφ(F |X1) + (1− t)φ(G|X2).
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By Theorem 3.1.10, we get φ(tFX,Y +(1−t)GX,Y |X) ≤ max{φ(FX,Y |X), φ(GX,Y |X)}

for all joint distributions FX,Y and GX,Y with the same marginals FX and FY .

Theorem 3.1.11. Let X and Y be random vectors.

Then φ(Y |f(X)) ≤ φ(Y |X) for all measurable functions f .

Proof. Let f(X) = Z. We get

φ(Y |X) =

∫ ∫
|FY |X(y|x)− FY (y)|dFX(x)dFY (y)

=

∫ ∫ ∫
|FY |X(y|x)− FY (y)|dFX|Z(x|z)dFZ(z)dFY (y)

≥
∫ ∫

|
∫
FY |X(y|x)dFX|Z(x|z)− FY (y)|dFZ(z)dFY (y)

=

∫ ∫
|FY |Z(y|z)− FY (y)|dFZ(z)dFY (y)

= φ(Y |Z).

Hence, φ(Y |f(X)) ≤ φ(Y |X) for all measurable functions f .

Theorem 3.1.12. Let X,Y and Z be random vectors. Then φ(Y, Y, Z|X) = φ(Y, Z|X).

Proof. For any random vectors X,Y and Z we have

φ(Y, Y, Z|X) =

∫ ∫
|FY,Y,Z|X(y, w, z|x)− FY,Y,Z(y, w, z)|dFY,Y,Z(y, w, z)dFX(x)

=

∫ ∫
|FY,Z|X(y, z|x)− FY,Z(y, z)|dFY,Z(y, z)dFX(x)

= φ(Y, Z|X).

Therefore, φ(Y, Y, Z|X) = φ(Y, Z|X).

3.2 Measure of Complete Dependence Based on Linkages

Definition 3.2.1. Let X and Y be absolutely continuous random vectors of dimensions

m and n, respectively and p ∈ [1,∞).

We define the measure ζp of complete dependence by

ζp(Y |X) =

[∫
[0,1]m

∫
[0,1]n

∣∣∣∣ ∂∂uCX,Y (u⃗, v⃗)−Π(v⃗)

∣∣∣∣p du⃗dv⃗
] 1

p

where CX,Y is the linkage associated with (X,Y ).
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Theorem 3.2.1. Let X and Y be two absolutely continuous random vectors and f be a

measurable function such that f(X) has an absolutely continuous distribution function.

Then ζp(Y |f(X)) ≤ ζp(Y |X).

Proof. Since ζp(Y |X) = ζp(ΨFY
(Y )|ΨFX

(X)), we may as well assume that X and Y are

uniformly distributed. Similarly, the fact that ζp(Y |f(X)) = ζp(Y |ΨFf(X)
(f(X)) allows

us to assume that Z = f(X) has uniform distribution also. Now,

∂

∂z⃗
CZ,Y (z⃗, y⃗) = FY |Z(y⃗|z⃗)

=

∫
FY |X(y⃗|x⃗)dFX|Z(x⃗|z⃗)

=

∫
∂

∂x⃗
CX,Y (x⃗, y⃗)dFX|Z(x⃗|z⃗).

By Jensen’s inequality, we have∫ ∫ ∣∣∣∣ ∂∂z⃗CZ,Y (z⃗, y⃗)−Π(y⃗)

∣∣∣∣p dz⃗dy⃗ =

∫ ∫ ∣∣∣∣∫ ∂

∂x⃗
CX,Y (x⃗, y⃗)dFX|Z(x⃗|z⃗)−Π(y⃗)

∣∣∣∣p dz⃗dy⃗
=

∫ ∫ ∣∣∣∣∫ ( ∂

∂x⃗
CX,Y (x⃗, y⃗)−Π(y⃗)

)
dFX|Z(x⃗|z⃗)

∣∣∣∣p dz⃗dy⃗
≤
∫ ∫ ∫ ∣∣∣∣ ∂∂x⃗CX,Y (x⃗, y⃗)−Π(y⃗)

∣∣∣∣p dFX|Z(x⃗|z⃗)dz⃗dy⃗

=

∫ ∫ ∣∣∣∣ ∂∂x⃗CX,Y (x⃗, y⃗)−Π(y⃗)

∣∣∣∣p dFX(x⃗)dy⃗,

that is, ζp(Y |Z) ≤ ζp(Y |X).

Lemma 3.2.2. Let X and Y be two absolutely continuous random vectors.

Then the three following properties are equivalent:

i) ζp(Y |X) = 0,

ii)
∂

∂u⃗
CX,Y (u⃗, v⃗) = Π(v⃗), and

iii) CX,Y (u⃗, v⃗) = Π(u⃗)Π(v⃗).

Proof. i) ⇒ ii). Assume that ζp(Y |X) = 0.

Then
[∫

[0,1]m

∫
[0,1]n

∣∣ ∂
∂u⃗CX,Y (u⃗, v⃗)−Π(v⃗)

∣∣p du⃗dv⃗] 1
p
= 0.

Thus,
∫
[0,1]m

∫
[0,1]n

∣∣ ∂
∂u⃗CX,Y (u⃗, v⃗)−Π(v⃗)

∣∣p du⃗dv⃗ = 0.

Hence,
∣∣ ∂
∂u⃗CX,Y (u⃗, v⃗)−Π(v⃗)

∣∣ = 0.

Therefore, ∂
∂u⃗CX,Y (u⃗, v⃗) = Π(v⃗).
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ii) ⇒ iii). Assume that
∂

∂u⃗
CX,Y (u⃗, v⃗) = Π(v⃗). Thus,

CX,Y (⃗a, b⃗) =

∫
[⃗0,⃗a]

∂

∂u⃗
CX,Y (u⃗, b⃗)du⃗

=

∫
[⃗0,⃗a]

Π(⃗b)du⃗

= Π(⃗a)Π(⃗b).

iii) ⇒ i). Assume that CX,Y (u⃗, v⃗) = Π(u⃗)Π(v⃗). Then

ζp(Y |X) =

[∫
[0,1]m

∫
[0,1]n

∣∣∣∣ ∂∂u⃗CX,Y (u⃗, v⃗)−Π(v⃗)

∣∣∣∣p du⃗dv⃗
] 1

p

=

[∫
[0,1]m

∫
[0,1]n

∣∣∣∣ ∂∂u⃗Π(u⃗)Π(v⃗)−Π(v⃗)

∣∣∣∣p du⃗dv⃗
] 1

p

=

[∫
[0,1]m

∫
[0,1]n

|Π(v⃗)−Π(v⃗)|p du⃗dv⃗

] 1
p

= 0.

Lemma 3.2.3. Let X and Y be two absolutely continuous random vectors. Then X and

Y are independent if and only if ΨFX
(X) and ΨFY

(Y ) are independent.

Proof. Since X and Y are absolutely continuous random vectors, we have ΨFX
and ΨFY

are invertible functions. Thus,

P(ΨFX
(X) ∈ A,ΨFY

(Y ) ∈ B) = P(X ∈ Ψ−1
FX

(A), Y ∈ Ψ−1
FY

(B))

= P(X ∈ Ψ−1
FX

(A))P(Y ∈ Ψ−1
FY

(B))

= P(ΨFX
(X) ∈ A)P(ΨFY

Y ∈ (B)).

Therefore, ΨFX
(X) and ΨFY

(Y ) are independent.

Conversely, suppose that ΨFX
(X) and ΨFY

(Y ) are independent. Consider

P(X ∈ A, Y ∈ B) = P(X ∈ Ψ−1
FX

(ΨFX
(A)), Y ∈ Ψ−1

FY
(ΨFY

(B)))

= P(ΨFX
(X) ∈ ΨFX

(A),ΨFY
(Y ) ∈ ΨFY

(B))

= P(ΨFX
(X) ∈ ΨFX

(A))P(ΨFY
(Y ) ∈ ΨFY

(B))

= P(X ∈ A)P(Y ∈ B).

Hence, X and Y are independent.
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Theorem 3.2.4. Let X and Y be two absolutely continuous random vectors.

Then ζp(Y |X) = 0 if and only if X and Y are independent.

Proof. Assume that ζp(Y |X) = 0. By Lemma 3.2.2, we have CX,Y (u⃗, v⃗) = Π(u⃗)Π(v⃗).

Since CX,Y is the joint distribution of ΨFX
(X) and ΨFY

(Y ), we obtain that ΨFX
(X) and

ΨFY
(Y ) are independent. By Lemma 3.2.3, we get X and Y are independent.

Conversely, let X and Y be independent. By Lemma 3.2.2, we get ΨFX
(X) and

ΨFY
(Y ) are independent. Thus, CX,Y = Π(u⃗)Π(v⃗). By Lemma 3.2.3, we can conclude

that ζp(Y |X) = 0.

Lemma 3.2.5. Let A be a metric space and µ be a Borel probability measure on A such

that µ(B(x, ϵ)\B(x, ϵ)) = 0 for all ball B(x, ϵ) with centered in x ∈ A and of radius ϵ > 0.

Let y ∈ (0, 1) and Dy = {f : A → [0, 1] | f is measurable and
∫
A f(x)dµ = y}. Then

f maximizes the function f̂ 7→
∫ ∣∣∣f̂(x)− y

∣∣∣p dµ on Dy if and only if f is an indicator

function. Moreover, max
{f∈Dy}

∫
A |f(x)− y|pdµ = yp(1− y) + y(1− y)p.

Proof. By symmetry, we may assume 0 < y ≤ 1

2
. By following the proof of Lemma3.1.3,

we have Dy contains an indicator function.

Let B ⊆ A and 1B ∈ Dy be an indicator function of B. We shall show that∫
A
|1B(x)− y|p dµ = (1− y)py + yp(1− y).

Since 1B ∈ Dy, we can conclude that µ(B) =
∫
1Bdµ = y. Consider∫

A
|1B(x)− y|p dµ =

∫
B
(1− y)pdµ+

∫
Bc

ypdµ

= (1− y)pµ(B) + ypµ(Bc)

= (1− y)py + yp(1− y).

Therefore,
∫
A |1B(x)− y|p dµ = (1− y)py + yp(1− y).

Let f ∈ Dy and Ef = {x ∈ A|f(x) > y}.

Assume that f is not an indicator function.

We will construct another function f∗ ∈ Dy such that
∫
A |f(x)−y|pdµ <

∫
A |f∗(x)−y|pdµ.

Hence, f can not maximize f̂ 7→
∫
|f̂(x)− y|pdµ on Dy.

Since f ∈ Dy,
∫
Ec

f
(y − f(x))dµ =

∫
Ef

(f(x)− y)dµ.

If
∫
Ec

f
f(x)dµ = 0, then

∫
Ef
f(x)dµ = y and hence, f = y a.e. which immediately implies

f is not the maximizer.

Thus, we may assume
∫
Ec

f
f(x)dµ > 0.
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For any ϵ > 0, define H(ϵ) =
∫
B(x,ϵ)∩Ec

f
f(z)dµ−

∫
Bc(x,ϵ)∩Ec

f
(1− f(z))dµ.

Since 0 > y − 1 ≥ −(1− f(x)), we get H(0) = −
∫
Ec

f
(1− f(z))dµ < 0.

Clearly, lim
ϵ→∞

H(ϵ) =
∫
Ec

f
f(z)dµ > 0.

By the assumption of µ, the function H is continuous.

Thus, there exists ϵ0 ∈ (0,∞) such that H(ϵ0) = 0.

Define a new function f∗ by letting f∗ = f1Ef
+ 1Ec

f∩Bc(x,ϵ0).

First, we show that f∗ ∈ Dy. Since H(ϵ0) = 0, we have

0 =

∫
B(x,ϵ0)∩Ec

f

f(z)dµ−
∫
Bc(x,ϵ0)∩Ec

f

(1− f(z))dµ

=

∫
B(x,ϵ0)∩Ec

f

f(z)dµ−
∫
Bc(x,ϵ0)∩Ec

f

1dµ+

∫
Bc(x,ϵ0)∩Ec

f

f(z)dµ.

Therefore, ∫
Ec

f

f(z)dµ =

∫
Bc(x,ϵ0)∩Ec

f

1dµ. (3.6)

Then ∫
A
f∗(x)dµ =

∫
A
f1Ef

(x)dµ+

∫
A
1Ec

f∩Bc(x,ϵ0)(x)dµ

=

∫
Ef

f(x)dµ+

∫
Ec

f∩Bc(x,ϵ0)
1dµ

=

∫
Ef

f(x)dµ+

∫
Ec

f

f(z)dµ

=

∫
A
f(x)dµ

= y.

Hence, f∗ ∈ Dy. Next, we show that
∫
A |f(x)− y|pdµ <

∫
A |f∗(x)− y|pdµ. Consider∫

A
|f∗(x)− y|pdµ =

∫
Ef

|f∗(x)− y|pdµ+

∫
Ec

f

|f∗(x)− y|pdµ

=

∫
Ef

|f1Ef
(x) + 1Ec

f∩Bc(x,ϵ0)(x)− y|pdµ

+

∫
Ec

f

|f1Ef
(x) + 1Bc(x,ϵ0)∩Ec

f
(x)− y|pdµ

=

∫
Ef

|f(x)− y|pdµ+

∫
Ec

f

|1Bc(x,ϵ0)∩Ec
f
(x)− y|pdµ

=

∫
Ef

|f(x)− y|pdµ+

∫
Bc(x,ϵ0)∩Ec

f

(1− y)pdµ+

∫
B(x,ϵ0)∩Ec

f

ypdµ.

Clearly, |f(x)− y| ≤ y ≤ 1− y for all x ∈ Ec. Thus,∫
Ec

f

|f(x)− y|pdµ ≤
∫
Bc(x,ϵ0)∩Ec

f

(1− y)pdµ+

∫
B(x,ϵ0)∩Ec

f

ypdµ
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and both sides are equal only when y =
1

2
and in this case |f(x)− y| = y on Ec

f , that is,

f = 0 on Ec
f . This contradicts the fact

∫
Ec

f
f(x)dµ > 0. Thus,∫

Ec
f

|f(x)− y|pdµ <
∫
Bc(x,ϵ0)∩Ec

f

(1− y)pdµ+

∫
B(x,ϵ0)∩Ec

f

ypdµ.

Finally, we show that∫
A
|f(x)− y|pdµ = (1− y)py + yp(1− y)

whenever f ∈ Dy is an indicator function. Consider∫
A
|f(x)− y|pdµ =

∫
Ef

|f(x)− y|pdµ+

∫
Ec

f

|f(x)− y|pdµ

=

∫
Ef

(1− y)pdµ+

∫
Ec

f

ypdµ

= (1− y)pµ(Ef ) + ypµ(Ec
f )

= (1− y)py + yp(1− y).

Corollary 3.2.6. For any absolutely continuous random vector Y,

ζp(Y |Y ) =

[∫
[0,1]n

(Π(v⃗) (1−Π(v⃗))p + (Π(v⃗))p (1−Π(v⃗))) dv⃗

] 1
p

.

Proof. Since
∂

∂u⃗
CY,Y (u⃗, v⃗) = CY |Y (v⃗|u⃗) = 1{(u⃗,v⃗)|v⃗≤u⃗} is an indicator function,

∫
[0,1]m

∣∣∣∣ ∂∂u⃗CY,Y (u⃗, v⃗)−Π(v⃗)

∣∣∣∣p du⃗ = Π(v⃗) (1−Π(v⃗))p + (Π(v⃗))p (1−Π(v⃗)) ,

by Lemma 3.2.5. Thus,

ζp(Y |Y ) =

[∫
[0,1]n

(Π(v⃗) (1−Π(v⃗))p + (Π(v⃗))p (1−Π(v⃗))) dv⃗

] 1
p

.

Lemma 3.2.7. Let Y be an absolutely continuous m−dimensional random vector and p

be a positive integer. Then

ζp(Y |Y )p =

p∑
k=0

(
p

k

)
(−1)k

1

(k + 2)m
+

1

(p+ 1)m
− 1

(p+ 2)m
.
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Proof. Consider

ζp(Y |Y )p =

∫ 1

0
...

∫ 1

0
(Π(y)(1−Π(y))p +Π(y)p(1−Π(y))) dy1...dym

=

∫ 1

0
...

∫ 1

0

(
Π(y)

p∑
k=0

(
p

k

)
(−Π(y))k +Π(y)p −Π(y)p+1

)
dy1...dym

=

∫ 1

0
...

∫ 1

0

(
p∑

k=0

(
p

k

)
(−1)kΠ(y)k+1 +Π(y)p −Π(y)p+1

)
dy1...dym

=

p∑
k=0

(
p

k

)
(−1)k

1

(k + 2)m
+

1

(p+ 1)m
− 1

(p+ 2)m
.

Remark 3.2.8. Let Y be a random vector with dimension m, by Lemma 3.2.7, we get

ζ1(Y |Y ) =

1∑
k=0

(
1

k

)
(−1)k

1

(k + 2)m
+

1

(1 + 1)m
− 1

(1 + 2)m

=

(
1

0

)
1

2m
−
(
1

1

)
1

3m
+

1

2m
− 1

3m

=
1

2m
− 1

3m
+

1

2m
− 1

3m

=
2

2m
− 2

3m

and

ζ22 (Y |Y ) =

2∑
k=0

(
2

k

)
(−1)k

1

(k + 2)m
+

1

(2 + 1)m
− 1

(2 + 2)m

=

(
2

0

)
1

2m
−
(
2

1

)
1

3m
+

(
2

2

)
1

4m
+

1

3m
− 1

4m

=
1

2m
− 2

3m
+

1

4m
+

1

3m
− 1

4m

=
1

2m
− 1

3m
.

Therefore, ζ1(Y |Y ) =
2

2m
− 2

3m
and ζ2(Y |Y ) =

√
2

2m
− 2

3m
.

Theorem 3.2.9. Let X and Y be two absolutely continuous random vectors.

Then 0 ≤ ζp(Y |X) ≤ ζp(Y |Y ).

Proof. Clearly, 0 ≤ ζp(Y |X). Next, we show that ζp(Y |X) ≤ ζp(Y |Y ).

By Lemma 3.2.5,∫ ∣∣∣∣ ∂∂u⃗CX,Y (u⃗, v⃗)−Π(v⃗)

∣∣∣∣p du⃗ ≤ (Π(v⃗))p(1−Π(v⃗)) + Π(v⃗)(1−Π(v⃗))p.
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Therefore,

ζp(Y |X) =

(∫ ∫ ∣∣∣∣ ∂∂u⃗CX,Y (u⃗, v⃗)−Π(v⃗)

∣∣∣∣p du⃗dv⃗) 1
p

≤
(∫

[(Π(v⃗))p(1−Π(v⃗)) + Π(v⃗)(1−Π(v⃗))p] dv⃗

) 1
p

= ζp(Y |Y ).

Theorem 3.2.10. Let X and Y be two absolutely continuous random vectors.

The three following properties are equivalent:

i) Y is a measurable function of X,

ii) ΨFY
(Y ) is a measurable function of ΨFX

(X), and

iii) ζp(Y |X) = ζp(Y |Y ).

Proof. First, we show that i) and ii) are equivalent. Assume Y is a measurable function

of X, that is, Y = f(X) for some measurable function f .

Thus,

ΨFY
(Y ) = ΨFf(X)

(f(X)) = ΨFf(X)
f(Ψ−1

Ff(X)
(ΨFf(X)

(X)),

that is, ΨFY (Y ) is a measurable function of ΨFX
(X).

Conversely, assume ΨFY
(Y ) is a measurable function of ΨFX

(X).

Then ΨFY
(Y ) = g(ΨFX

(X)) for some measurable function g. So, Y = Ψ−1
FY

(g(ΨFX
(X))).

Finally, we show that i) and iii) are equivalent.

Assume Y is a measurable function of X, that is, Y = f(X) for some measurable func-

tion f . The fact that ζp(Y |X) = ζp(Y |Y ) immediately follows from Theorem 3.2.1 and

Theorem 3.2.9.

Conversely, assume ζp(Y |X) = ζp(Y |Y ).

Then
∫ ∣∣∣∣ ∂∂u⃗CX,Y (u⃗, v⃗)−Π(v⃗)

∣∣∣∣p du⃗dv⃗ =
∫
[(Π(v⃗))p(1−Π(v⃗)) + Π(v⃗)(1−Π(v⃗))p]dv⃗.

Thus,
∫ ∣∣∣∣ ∂∂u⃗CX,Y (u⃗, v⃗)−Π(v⃗)

∣∣∣∣p du⃗ = (Π(v⃗))p(1−Π(v⃗)) + Π(v⃗)(1−Π(v⃗))p.

By Lemma 3.2.5,
∂

∂u⃗
CX,Y is an indicator function.

Since
∂

∂u⃗
CX,Y (u⃗, ·) = CY |X(·|u⃗) is a distribution function, the set

{
v⃗| ∂
∂u⃗
CX,Y (u⃗, v⃗) = 1

}
is closed under the pointwise minimum and closed under Euclidean topology.

Therefore,

{
v⃗| ∂
∂u⃗
CX,Y (u⃗, v⃗) = 1

}
has a minimum, say f(u⃗).
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Then
∂

∂u⃗
CX,Y (u⃗, v⃗) = 1[f(u⃗),∞)(v⃗).

Thus, P(Y = f(X) = 1), that is, Y is a measurable function of X.

Theorem 3.2.11. Let X, Y, and Z be absolutely continuous random vectors in which Z

has the dimension k and (X,Y ) and Z are independent,

ζp(Y, Z|X) =

(
1

p+ 1

) k
p

ζp(Y |X).

In particular, ζp(Y, Z|X) < ζp(Y |X).

Proof. Since (X,Y ) and Z are independent, we have CX,(Y,Z)(u⃗, (v⃗, w⃗)) = CX,Y (u⃗, v⃗)Π(w⃗).

Thus,

(ζp(Y, Z|X))p =

∫ ∫ ∫ ∣∣∣∣ ∂∂u⃗CX,(Y,Z)(u⃗, (v⃗, w⃗))−Π(v⃗)Π(w⃗)

∣∣∣∣p du⃗dv⃗dw⃗
=

∫ ∫ ∫ ∣∣∣∣ ∂∂u⃗CX,Y (u⃗, v⃗)Π(w⃗)−Π(v⃗)Π(w⃗)

∣∣∣∣p du⃗dv⃗dw⃗
=

∫
(Π(w⃗))pdw⃗

∫ ∫ ∣∣∣∣ ∂∂u⃗CX,Y (u⃗, v⃗)−Π(v⃗)

∣∣∣∣p du⃗dv⃗
=

(
1

p+ 1

)k

ζp(Y |X)p.

Therefore, ζp(Y,Z|X) =
(

1
p+1

) k
p
ζp(Y |X).

Corollary 3.2.12. Let X,Y and Z be absolutely continuous random vectors such that

(X,Y ) and Z are independent. Then
ζk(Y, Z|X)

ζk(Y, Z|Y, Z)
<
ζk(Y |X)

ζk(Y |Y )
.

Proof. Assume that Y has the dimension m and Z has the dimension n. Consider

ζkp (Y,Z|Y, Z) =
∫
[0,1]m

∫
[0,1]n

[
Π(u⃗, v⃗)(1−Π(u⃗, v⃗))k +Πk(u⃗, v⃗)(1−Π(u⃗, v⃗))

]
dv⃗du⃗

=

∫
[0,1]m

∫
[0,1]n

[
Π(u⃗)Π(v⃗)(1−Π(u⃗)Π(v⃗))k +Πk(u⃗)Πk(v⃗)(1−Π(u⃗)Π(v⃗)

]
dv⃗du⃗

>

∫
[0,1]m

∫
[0,1]n

[
Π(u⃗)Πk(v⃗)(1−Π(u⃗))k +Πk(u⃗)Πk(v⃗)(1−Π(u⃗))

]
dv⃗du⃗

=
1

(p+ 1)n

∫
[0,1]m

[
Π(u⃗)(1−Π(u⃗))k +Πk(u⃗)(1−Π(u⃗))

]
du⃗

=
1

(p+ 1)n
ζkp (Y |Y ).

Thus, ζp(Y, Z|Y, Z) > 1

(p+1)
n
p
ζp(Y |Y ).

By Theorem 3.2.11, we can conclude that
ζp(Y, Z|X)

ζp(Y, Z|Y,Z)
<
ζp(Y |X)

ζp(Y |Y )
.

Finally, we prove the next theorem which is a generalization of Theorem 1 in [7].
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Theorem 3.2.13. For any ϵ > 0, there are absolutely continuous random vectors X and

Y of arbitrary marginals but with the same dimension such that Y is completely dependent

on X but ζp(X|Y ) ≤ ϵ.

Proof. Since ζp only depends on linkages, it is sufficient to prove the result for a uniform

distribution.

First, we prove the result in the case of random variables. Let Y = kX mod 1

where X has a uniform distribution. Then Y is also uniformly distributed. Clearly,

ζp(Y |X) = ζp(Y |Y ) since Y is a function of X. Also,

∂

∂u
CY,X(u, v) = P(X ≤ v|Y = u)

=


1

k
⌊kv − u⌋ if kv > u,

0 otherwise

where ⌊x⌋ is the floor of x. Thus, ζpp (X|Y ) ≤ 1
k

∫
|u|pdu and hence,

ζp(X|Y ) ≤
(
1

k

) 1
p
(

1

p+ 1

) 1
p

≤
(
1

k

) 1
p

.

Choosing k = ⌊ϵ−p⌋+ 1, we have ζp(X|Y ) ≤ ϵ as required.

In general, let (Xi, Yi) where i = 1, ..., n be independent copies of a random vector

(X0, Y0) in which ζp(Y0|X0) = ζp(Y0|Y0) but ζp(X0|Y0) ≤ ϵ
n and let X = (X1, ..., Xn) and

Y = (Y1, ..., Yn). Then ζp(Y |X) = ζp(Y |Y ) and

ζpp (X|Y ) =

∫ ∣∣∣∣Πn
i=1

∂

∂ui
CY0,X0(ui, vi)−Πn

i=1vi

∣∣∣∣p du1 · · ·dundv1 · · · dvn
≤

n∑
i=1

np−1

∫ ∣∣∣∣ ∂∂uCY0,X0(u, v)− v

∣∣∣∣p dudv
= npζpp (X0, |Y0)

= ϵp

and hence, ζp(X|Y ) ≤ ϵ as desired.

40




