CHAPTER 3

Main Results

3.1 Measure of Complete Dependence Based on Conditional Distribu-

tion Functions

In this chapter, we define the measure of dependence for random vectors using the

conditional distribution functions.

Definition 3.1.1. Let X and Y be random vectors.

The measure of dependence ¢ of Y given X is defined by

o) = [ [ Fyix(oln) — By ()] dPx (w)dFy (0)
where Fy | x is the conditional distribution function of Y given X.

We will figure out the maximum value of ¢ using Lemma 3.1.3. The proove of
Lemma 3.1.3 is very complicated. Therefore, we separated parts of its proof into the

following lemmas.

Lemma 3.1.1. Let A be a metric space and | be a Borel probability measure on A such
that p(B(z,€) \ B(x,€)) = 0 for all ball B(x,€) centered in x € A and of radius € > 0.
Let y € (0,1) and ©, = {f : A — [0,1] | f is measurable and [, f(x)dp = y}. Then a

function Hy defined by Hy(€) = fB(m 9nm; f(z)d,u—ch(w e)mEj,(l — f(2))du is a continuous
function where Ey = {x € A|f(x) >y} and f € D,.
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Proof. Let y € ®,. Consider

f(z)dp — / ldu
C(w,a)ﬂE}% Bc(m,a)ﬂE}%

= / f(z)dp+
B(z,a)NES

f
— [ 5@ w50y 0 E5)
E%

_ /E; f(z)dp — (1 = p(B(z, a)) + u(ES) — w(B(x,a) U EY))
- /E; f)dp =1+ p(B(x,a)) = p(EF) + p(B(z,a) U EY)

- /E; f(2)dp + p(B(z,a)) — p(ES) + (=1 + u(B(z,a) U Ef))
T /E; F(Z)dp + p(B(z,a)) = w(EF) = (1= p(B(x,a) U EY))
¥ /E ; F(2)du + p(Blx,a)) — p(ES) — u (B(x,a) N Ey).

Let b, " a.

Then B(z,b,) C B(x,a) and |JB(z,b,) = B(z, a).

So, u(B(x,by)) = u(B(z,a)) gnd u(B(x,by) N Ey) = p(B(x,a) N Ey).

Thus, bnlgrclf Hy(b,) = Hi(a).

If b, \, a, then (\B(z,b,) = B(x,a) and p (M\B(x, a)) = 0, we can conclude that

n

(B, b)) N 1(B(, @) and (B, bn) 0 Ey) e Bz, 0) 1 Ey).
Thus, , li_1r>r(1Z+ Hy(by) = Hi(a).

Hence, H; is a continuous function. ]
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Lemma 3.1.2. Let A be a metric space and p be a Borel probability measure on A such
that w(B(z,€) \ B(z,€)) = 0 for all ball B(z,€) centered in x € A and of radius € > 0.
Let y € (0,1) and ®, = {f A = [0,1] | f is measurable and [, f(x)dp = y}. Then a

function Hy defined by Ho(e fB (@:0)NE; f(2) d”_fBC(x,e)mEf(l — f(2))du is a continuous
function where Ef = {x € A\f( ) >y} and f € D,.

Proof. Let y € ©,. Consider

() = [ o [ — f(=)du
B(z,a ﬁEf Be(z,a ﬂE’f

= / z)d / 1dp + / f(z)dp
B(z,a ﬁEf Be(z,a)NEf B (z,a)NEf

= / z)dp + / i / 1dpy
B(z,a ﬂEf Be(z,a) ﬂEf Be(z,a)NEf

= | f(2)dp— p(B%(z,a) N Ef)
By

7;

f(2)dp — (1= p(B(z,a)) + u(Ey) — p(B(z,a) U Ey))
s f(2)dp — 14 p(B(x,a)) — w(Ef) + p(B(z,a) U Ey)
f
=/ f@)dp + p(B(z,a)) — p(Ey) + (=1 + p(B(z,a) U Ey))
f

F(2)dp+ (B, a)) — p(Ey) — (1 — u(B(x.a) U Ey))
f
= | JG)p+ p(Blr,a)) = nBy) — p (Blr,a) 0 EG)
f

Let b, " a.

Then B(z,b,) C B(z,a) and |JB(z,b,) = B(z, a).

So, u(B(z,by)) = p(B(x,a)) and p(B(z,bn) N EF) = p(B(z,a) N ES).

Thus, . lim_ Hg(bn) = Hg(a).

If by, N\ a, then (B(z,b,) = B(x,a) and u (B(:p,a) \ B(z, a)) = 0, we can conclude that
1Bz, br)) s 1(Bz, @) and p(B(z,b) N %) N, pu(B(, a) N E).

Thus, . liIIl+ Hg(bn) = HQ(CL).

Hence, Hs is a continuous function. ]
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Lemma 3.1.3. Let A be a metric space and p be a Borel probability measure on A such

that p(B(x,€) \ B(x,€)) =0 for all ball B(z,€) centered in x € A and of radius € > 0.
Let y € (0,1) and ©, = {f : A—[0,1] | f is measurable and [, f(x)dp = y}.
The supremum of [, |f(x) — y|dp over f € D, happens when f € {0,1} a.e.

Moreover, max x) —yldu = 2y(1 —y).
{f@y}fA!f() yldp = 2y(1 —y)

Proof. For each y € (0,1), we can find ball B(xg,e9) C A such that fB(xo c0) dpu =y by
continuity of the function € — pu(B(z, €)) with infimum zero and supremum one. We define

a function f: A — {0,1} via

if x € B(xg, €
fmym g S o coh
0 ifz ¢ B(xo,ep)-

Since pu(B(x,€) \ B(z,€)) = 0, we can conclude that f is an indicator function in ©,,.

Let 13 € ®, be an indicator function of B C A. We shall show that

/ 1p(z) — yldp = 2y(1 — y).
A

Since 15 € ®,, we can conclude that u(B) = [1pdu = y. Consider,

/AllB(ﬂf) —yldp = /B(l—y)du+/chdu
= (1 = y)u(B) +yu(B°)
=(1-yy+yl-—y)
=2y(1 —y). (3.1)

Therefore, [, [1p(x) —y|dp =2y(1 —y).
Let f € ©, be not an indicator function and Ey = {z € A|f(z) > y} .

Since
[Efydqu/E;ydu—y
~ [ @)
A
= [ fl@)du+ [ f(z)du,
Ef E$
we get
| w-t@nan= [ (s~ )an (3:2)
f Ey
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Consider

J @ —vian= [ 15 = yidnt [ 176 - vian

!

:/ (f(a:)—y)du-i-/ (y — f(z))dp
Ef ES
= 2/Ef(f(:b) —y)dp.

Since [, (f(2) =y)du = [ge(y — f(2))dp and [ /(@) = yldp = 2 [ (f(2) = y)dp, we
can conclude that [, |f(z) — y|du = 2fE;(y — f(x))du
Next, we show that [, |f(z)—yldu < [, |f*(x)—y|dpw where F* € ©, is an indicator

function.

Case 1) fEc x)dp > 0.

Let x € Ef be fixed.

Since the function Hy in Lemma 3.1.1 is continuous and y > f(z) for all z € E¥,

we get
0>y—1
> f(z) -
—(1 = f(2)).
Then Hy(0) = —fE;(l — f(2))dp < 0 and H (oo fEC z)dp > 0.

Thus, there exists ¢y € (0,00) such that Hl(eo) =0.
Define a new function f* by f* = flg, + 1E;mgc(m,60).
We show that f* € D,,.

Since Hi(ep) = 0, we have

0 | - | - f(=)du
B(z,e0) ﬁEC Be(x,e0) ﬁEC

= / z)dp — / 1dp +/ f(z)dpu.
8(:1: 60 ﬂEc BC :E 60 ﬂEC BC(.'E,E())HE;

Therefore,

/ F(z)du = /B g (3.3)

f f
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Then
[ @i = [ @it [ s @
A A A

— [ @t [ ap
Ey BC(I,EO)HE;

= [ f(x)dp+ (z)dp
Ey

- /A F(a)du
=y

f
(&3
E;

Hence, f* € D,.
Next, we show that [, |f(z) —yldu < [, [f*(x) = y|dp.
Since y € (0,1) and equation(3.3), we obtain that

/ ydu+ [ flz)dp = / ydu + / dp
B(z,e0)NES E$ B(w,eo)ﬂE; Bc(x,eo)ﬂE;

> / ydp + / ydu
B(x,e0)NES Be(x,e0)NES

= /C ydp.

f

Therefore, fB(m,eo)nE; ydu + fE; f(z)dp > fE; ydpu.

Thus,
/B(iv,eo)ﬂE;

v > [ (= 1@
f
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Consider

J 1@ —vlan= [ 15 vl [ 1@ - vias

!

= /E ’flEf (1’) + 1Bc(x,eo)ﬁEJ§‘ (1’) - y‘d:u
f

+ [ 1715, @) + Loy (@) sl
f

— [ @ = sldnt [ s o) - slds
By B

— [ 1@ =sldn+ | -yt [ ydy
Ey BC(:E,GQ)QE; B(:p,eo)ﬂE’;

= f(x)du/ ydp+ | f(z)dp
Ej Ejf 7

F / ydp + / ydp
Be(w,e0)NES B(z,e0)NES

=/ f(x)du—/ ?Jdﬂ—/ ydﬂ+/ ydp
A Ey Be(x,e0)NES B(z,e0)NES

! f

=y—/ ydu—/ ydu+/ ydp
Ey Bc(x,eo)ﬂE; B(z,e0)NES

i
= / ydp + / ydp
B(x,eo)ﬂE; B(x,eo)ﬂEJCc

X 2/ ydy.
B({E,eo)lﬁlE;

By inequality (3.4) and equality (3.1), we can conclude that

/Alf*(x) —yldp = Q/B(xveo)mE; ydu
>2 [ (y— f(x))dp
¢
= [ 1#@) - slan
A
Hence, [, [f*(x) —yldp > [, |f(z) —yldu.

Case ii) fE; f(x)dp =0 and fEf(l — f(z))dp > 0.

The function Hs in Lemma 3.1.2 is continuous on (0, 00).
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Consider

H. = du — 1-— d
2(0) /B o, T /B o, (L TG

_o- /B oy, (L

—— [ - s
Ey

~ [ -
Es

< 0.

We next show that Ha(oo) > 0. Consider

= - ~ f(2))d
Hy(o0) /B o T2 /B SRS (O
= / f(z)du
B(x,00)NEf

)
=/ f(z)dp
Ey
>0

Then there is ¢y € (0,1) such that Hy(ey) = 0. Consider

0 = Hy(eo)

-/ fG)dn - | (1= f(=))dp

B(x,eo)ﬁEf BC(I,eo)ﬂEf
-/ fedn - | tdu+ [ f(2)dn

B(Z,eo)ﬂEf Bc(x,eo)ﬁEf Bc(x,eo)ﬂEf
= f(z)du —/ 1dp.

Ey Be(x,e0)NEy

Hence,
/ 1p= [ )
Bc(ﬁ,EO)ﬂEf Ef
=y. (3.5)

We define a new function f* = flE? + 1ge(z,e0)nE, - We show that fred,.
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Consider
/I;f*(x‘)dﬂ:/qulE;dﬂ+/I4166(m7€o)mEfdﬂ
= f(x)du—i—/ 1dp
EJC, BC({L',eQ)ﬂEf
— 0+ / 1du
Be(z,e0)NEy

= / 1dp
BC(I,EQ)ﬂEf

Thus, f* € D,.
We next show that [, [f(z) —yldu < [, |f*(x) —y|dp. By inequality (3.2) and
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fEc x)dp = 0, we obtain that

[ (@) —yldp = | [f1e:(2) + 1ge(z,e0)nE, (2) — yldp
A A !
— [ M @)~ vld+ [ 1f@) - sldn

Ey Ef

=/ (1—y)du+/ ydu+/ (y — f(z))dp
Bc(w,eo)ﬁEf B(x,eo)ﬁEf °
= / 1dp — / ydp + / ydp
Be(x,e0)NEy Be(x,e0)NEy B(x,e0)NEf
+/ ydu—/ f@)dp
B B
zy—/ ydu+/ ydu+/ ydp =0
Be(z,e0)NEy B(z,e0)NEf ;
—/ ydu+/ ydu+/ ydu+/ ydp
B¢ B(z,e0)NE5 B(x,e0)NE5 ES
2 (/ ydp —|— yd,u)
ES B(x eo)ﬂEf
2/ ydp
E
2/
E
/ (f(z du+/ (y — f(z))dp
Ey o

Ef

= Eff —/ ydu+/Ecydﬂ—/cf(x)du

! f

- / () — gl + /E (@) — yldu

= [ 1@ = yla f

Thus, [, |f(z) —yldu < [, |f*(x) = y|du. Therefore, the supremum of
[41f(x) —y|ldp over f € ®, happens when f € {0,1} a.e.

\Y
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Lemma 3.1.4. Let Y be a continuous random vector with dimension n. Then
1 if i<y ;i=1,...n
Fyy (41%) =
0  otherwise.

Proof. Let Y be a continuous random vector of dimension n, we have two cases to consider

Casei) T <7y.
Then Vg, , ((x — h,x + h] x (—=00,y]) = Vg, ((x — h,x + h]) where h is suffi-

ciently small. Therefore,

_—, VFY,Y ((x = h,z + h] x (—00,y])
ANO Ve, ((x — h,z + h))

Ve, (2 = h,z + h])

WO Vi, ((z — h,z 4+ h))

Case ii) = £ y.
If x; > y; for some i = 1,...,n, then ]%1{‘1%) VEyy (( — h,x + h] X (—o0,y]) = 0.
Assume z; < y; for alli =1,...,n and 2; = y; for some j =1,...,n
Since Y is a continuous random vector, we get

}L{‘% VFY,Y ((:C —h,x+ h] X (—oo,y]) =0.

Recall the definition of ¢ from Definition 3.1.1,

H(Y]X) = / / [Fypx (o]u) = Fy (v)| dFx (u)dFy (v).

Lemma 3.1.5. Let Y be a continuous random vector. Then

H(YIY) =2 / (1< By ) B (0)dFy ().

Proof.

H(YIY) = / / Py iy (0]2) — Fr(y)ldFy (2)dFy ()
//{x<y} 1—Fy( ))dFy dFy //{xiy} dFy( )dFy(y)

- / ((1—Fy<y>> /{ ) }dwa)) dFy () + / <Fy<y> /{ % }dFy@)) dFy (y)

~ [A- BB WIRG + [ - @R GIE
—2 (1= K )R dF ().
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Lemma 3.1.6. Let X = (Xy,..., X,,) be a continuous random vector.

Then P(X € B(x,€) \ B(x,€)) =0 for all x € R™ and ¢ > 0.

Proof. Let x = (29, ...,29). Weset A; = (x1, ..., xi—¢€, ..., zy) and B; = (1, ..., Ti+€, ..., Tp)
n

where z; € [x? - e,x? + ¢] for all j # 4. Thus, B(x,¢) \ B(z,¢) = |J(A; U B;). Since a
i=1

random vector X is continuous, we get P(A;UB;) < P(R7~! x {2} xR"~7) = 0. Therefore,

P(X € B(z,¢€) \ B(z,€)) = 0. O

Theorem 3.1.7. Let X and Y be continuous random vectors.

Then 0 < o(Y]X) < o(Y|Y).

Proof. 1t is easy to see that 0 < (Y| X). Next, we show that (Y| X) < o(Y]Y).
By Lemma 3.1.3, we obtain that

2 (1= B )R ()dFr () > / [ 1Brixle) — B laFx @)aF ).

By Lemma 3.1.5, we have

PV[Y) =2 [(1- P ) Fr ) (o)
> [ 1Fyixclula) - Fy0)|dFx (@)dFy (1)
= ¢(Y|X).
]

Theorem 3.1.8. Let X and Y be continuous random vectors. Then ¢(Y|X) = 0 if and

only if X andY are independent.

Proof. Assume that ¢(Y|X) = 0. Then [ [ |Fy|x(v|u) — Fy(v)| dFx(u)dFy (v) = 0.
Thus, Fy|x(v|u) — Fy(v) = 0. Hence, Fy|x(v|u) = Fy (v).
Therefore, X and Y are independent.
Conversely, assume X and Y are independent.
We get Fy|x(v|u) = Fy(v). Thus,
PV 1X) = [ [Frix(olu) = Fy(0)| dPx (u)dFy ()

_ / |Fy (v) — Fy (v)] dFy (u)dFy (v)
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Theorem 3.1.9. Let X and Y be continuous random vectors.

Then o(Y|X) = o(YY) if and only if Y is a function of X.

Proof. Assume that ¢(Y|X) = ¢(Y|Y).

Then [ [ |Fyx(ylz) — Fy (y)|dFx (z)dFy (y) = [ 2(1 = Fy (y))Fy (y)dFy (y).

Since [ |Fyx(ylz) — Fy(y)|dFx < 2(1 — Fy(y))Fy(y), we can conclude that
J1Fyix(ylz) — Fy (y)|dFx = 2(1 = Fy (y)) Fy ().

By Lemma 3.1.3 and Lemma 2.2.4, we have Fy|x € {0,1} a.e.

Since Fy|x(-|z) is a distribution function, we obtain that the set {y|Fy|x(y|zr) = 1} is
closed under the pointwise minimum and closed under Euclidean topology.

Therefore, {y|Fy|x(y|z) = 1} has a minimum, we say f(z).

Then Fy | x(:|7) = 1{f(z),00]- Thus, P(Y = f(X)) = 1.

Hence, Y is a function of X. O

In fact, (Y |X) is not generally less than one so, we normalize it into the form

p(Y1X) [ 7y ix (yle) = Fy(y)| dFx (x)dFy (y)
P(Y]Y) 2 [ Fy(y)(1 = Fy(y))dFy (y)

For any random vectors X and Y with the joint distribution function Fxy, we

denote p(Fxy|X) = o(Y]X).

Let F' and G be joint distribution functions with the same marginals, then the

convex combination tF 4 (1 — ¢)G also has the same marginals as F' and G.

Theorem 3.1.10. Let F' and G be joint distribution functions with the same marginals.
Let (X1,Y1), (X2,Y2) and (X, Y:) have the distribution functions F,G and tF + (1 —1t)G,
respectively. Then (Y| Xy) < to(Y1]X71) + (1 — t)p(Ya]| X2).

Proof. Let H=1tF + (1 -t)G.
Then HYt‘Xt = tFY1|X1 =+ (1 — t)GYQ‘XQ and Hyt = tFYl -+ (1 i~ t)GYQ ThllS,

p(H1X) = [ Hyx,(ul2) ~ Hyy(0)|dFx (2)dFy (1)
= [ 1Py 012) + (1= DGy, (o) — £33 0) — (1= G AP ()P ()
— [ 1 012) = By )+ (1 = 0(Goraprs (5l2) — Graw)) dAFx () Fy (1)
<t [ 1Py, (ko) - Py AP ()P (0
+(1-1) [ 1Grapr, vle) - Gra(0)|dFx (2)dFy ()

= tp(F|X1) + (1 - t)p(G|Xa).
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O]

By Theorem 3.1.10, we get ¢(tFx y+(1—t)Gx,y|X) < max{¢o(Fx y|X), o(Gxy|X)}

for all joint distributions F'xy and G xy with the same marginals Fix and Fy.

Theorem 3.1.11. Let X and Y be random wvectors.
Then p(Y|f(X)) < o(Y|X) for all measurable functions f.

Proof. Let f(X) = Z. We get

o 1) = [ [ IFxolo) - B @IdEx (0)dF (o)
— [ [ [ 1Fxtol) = B @zl db2 =y )
> [ [1] Frxto)dFxzlel) - Felg)lapa)afy o)
— [ [1Fvizt2) = Frlara)ar @)
= ¢(Y|2).
Hence, o(Y|f(X)) < @(Y|X) for all measurable functions f. 0
Theorem 3.1.12. Let X,Y and Z be random vectors. Then ¢(Y,Y, Z|X) = o(Y, Z|X).

Proof. For any random vectors X,Y and Z we have

oYY, Z|X) = / / By 21 aw, 22) = Fowz (g, wid)\ Ay 2y, w, 2)dFx ()

://|FY,Z|X(?J?Z|$)_FY,Z(Z/?Z)|dFY,Z(yaZ)dFX(37)

= (Y, Z|X).

Therefore, o(Y,Y, Z|X) = o(Y, Z|X). O

3.2 Measure of Complete Dependence Based on Linkages

Definition 3.2.1. Let X and Y be absolutely continuous random vectors of dimensions
m and n, respectively and p € [1, 00).

We define the measure ¢}, of complete dependence by

G(Y1X) = [/[0,1]m /[071]"

where C'xy is the linkage associated with (X,Y").

1
p

0 oo .
%Cx,y(u,v) — II(?)

P
dudv
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Theorem 3.2.1. Let X and Y be two absolutely continuous random vectors and f be a

measurable function such that f(X) has an absolutely continuous distribution function.

Then Cp(Yf(X)) < G(Y]X).

Proof. Since (,(Y|X) = (¥, (Y)|Up, (X)), we may as well assume that X and Y are
uniformly distributed. Similarly, the fact that ¢,(Y|f(X)) = G(Y[¥r,, (f(X)) allows

us to assume that Z = f(X) has uniform distribution also. Now,

0 o o
8*502,5’(2 ) = FY|Z(?J\Z)

- / Fyix (917)dFx2()2)

/aﬂcxy 7)dFy 2(57).

By Jensen’s inequality, we have

//‘CZY 29) - 1) dzdy—//i/ 8 Oy (@.7)Fx (77 - 1) dzag
-[fl] (aicx,y(f,m—mg)) ARy 2(717)| dzdg
/ / / O Cxy (@.9) - 1) Py (#7057
= [ [ | fecxv@n - )| arc@ay,
that is, ¢,(Y]2) < G(Y]X). =

Lemma 3.2.2. Let X and Y be two absolutely continuous random vectors.

Then the three following properties are equivalent:

i) GY]X) =0,

ii) QC (u,v) =11(7), and

il X, Y\t, ey )

iii) Cx.y (i, v) = (i) TL(7).
Proof. i) = 1i). Assume that (,(Y|X) =
Then [ Sioarm Jioan | 2 Coxy (,) — T1(7) \pd 7o } = 0.
Thus, [ 1pm Jio1yn \E%cx,y(ﬁ, ¥) — T(9)|” ditdv = 0.

, | &=Cxy (@, 7) — I(7)| = 0.
Therefore, 3~CX y (1, 7) = (7).
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i1) = iit). Assume that %Cx,y(ﬁ, ¥) = II(?). Thus,
Cx.y(a@,b) = / 96 (i, b)di
x,y\a,0) = Ghs X,y \U, U
[0,]

i11) = i). Assume that Cx y (u, ¥) = II(@)II(¥). Then

|=

p P
G = | [ 0 Gy (@ 7) ~Ti(D) dﬁdﬁ]
[0,1]™ J[0,1]» au
[ 9 p v
£ / 9 1@ - (@)| dads
[0,1)™ [071]71 ou
1
P
= / I(0) P dudv]
[0,1]™ J]o, 1]"

=0.
O

Lemma 3.2.3. Let X andY be two absolutely continuous random vectors. Then X and

Y are independent if and only if Vp, (X) and Vg, (Y) are independent.

Proof. Since X and Yare absolutely continuous random vectors, we have ¥, and ¥p,

are invertible functions. Thus,
P(Upy(X) € A VR, (Y) € B) =P(X € U5 (A),Y € U (B))
— B(X € UL (A)B(Y € ¥ (B))
=P(Vp, (X) € AP(VR Y € (B)).

Therefore, Up, (X) and ¥, (Y) are independent.
Conversely, suppose that Up, (X) and ¥p, (Y') are independent. Consider

P(X €AY € B)=P(X € ¥, (\I/FX(A)) Y eV, (\IIFY(B)))

(
(Vry (X) € Uiy (A), ¥Ry (Y) € Upy (B))
(Vry (X) € Uiy (A))P(V Ry (V) € ¥R, (B))
(

P
P
P

X € A)P(Y € B).

Hence, X and Y are independent. O
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Theorem 3.2.4. Let X and Y be two absolutely continuous random vectors.

Then (Y| X) =0 if and only if X and Y are independent.

Proof. Assume that (,(Y|X) = 0. By Lemma 3.2.2, we have Cx y(u,v) = II(@)II(7).
Since Cxy is the joint distribution of ¥, (X) and W, (Y'), we obtain that ¥p, (X) and
Up, (Y) are independent. By Lemma 3.2.3, we get X and Y are independent.
Conversely, let X and Y be independent. By Lemma 3.2.2, we get Up, (X) and
Up, (Y) are independent. Thus, Cxy = II(2)II(¥). By Lemma 3.2.3, we can conclude
that ¢,(Y]X) = 0. O

Lemma 3.2.5. Let A be a metric space and p be a Borel probability measure on A such
that uw(B(z,e)\B(x,€)) = 0 for all ball B(x,€) with centered in x € A and of radius ¢ > 0.
Let y € (0,1) and ©, = {f : A — [0,1] | f is measurable and [, f(x)dp = y}. Then
f maximizes the function f = [ ‘f(:c) - y‘p dp on ®y if and only if f is an indicator

function. Moreover, {;Il%x} Jalf(@) —yPdp = yP(1 —y) + y(1 — y)?.
€

Y

Proof. By symmetry, we may assume 0 < y < —. By following the proof of Lemma3.1.3,

N |

we have D, contains an indicator function.

Let B C A and 15 € ©, be an indicator function of B. We shall show that

/A 1p(z) =y’ du = (1 - y)Py +y"(1 —y).

Since 15 € ®,, we can conclude that p(B) = [ 1pdu = y. Consider

[ st =vran= [ a-praes [ pa
= (1 —y)Pu(B) + y’u(B°)

=1 =yPy+y’(1—y).

Therefore, [, [1p(z) —y|Pdu = (1 —y)Py +y*(1 —y).

Let f € ®, and Ef = {z € A|f(x) > y}.

Assume that f is not an indicator function.

We will construct another function f* € ©, such that [, [f(z)—y[Pdu < [, |f*(z)—yPdp.
Hence, f can not maximize f — Ik |f(x) — y[Pdp on D,

Since f € Dy, [ (y = f@))dn = [ (f () = y)dp.

If fE; f(x)dpu =0, then fEf f(x)dp = y and hence, f =y a.e. which immediately implies
f is not the maximizer.

Thus, we may assume fE; f(x)dp > 0.
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For any € > 0, define H(e) = fB(x,e)mE; f(z)dp — ch(Le)mE?(l — f(2))dp.
Since 0 >y — 1> —(1 — f(z)), we get H(0) = —fE;(l — f(z))dp < 0.
Clearly, lim H(e) = fE; f(z)dp > 0.
By the assumption of u, the function H is continuous.
Thus, there exists €y € (0,00) such that H(ey) = 0.
Define a new function f* by letting f* = f1g, + 1E;mgc($760).
First, we show that f* € ©,. Since H(ey) = 0, we have

0 | fG)dn- | (1= f())dp
B(z,e0)NE$ Be(x,e0)NES

"
-/ fG)dn - [ 1du+ [ f(2)dp.
B(z,eo)ﬂE; Be(x,e0)NES Be(x,e0)NES

! f

Therefore,

/c fz)du = /BC( = 1d . (3.6)

f i
Then

[ r@an= [ s @dn+ [ Lo

~ [ s+ [ 1
Ey E?HBC(JZ,G())

= [ flz)dp+ (z)dp
Ey

= /Af(w)d#
=y

f
c
Ef

Hence, f* € ©,. Next, we show that [, [f(z) — y[Pdu < [, |f*(x) — y[Pdu. Consider

*(z) — ylPdp = *(z) — y|Pd “(z) — ylPd
/Alf(:v) ylPdy /Eflf(w) ol u+/E;\f(x) ylPdy
= [ 111,0) + Ly (@) — yPs

Ey¢

+ [ 1715 @) + Loy (@) sl
f

— [ @ =l [ s @) - o
By B

= / |f(x) — y[Pdp + / (1 —y)Pdu+ / yPdp.
E; Bc(a:,eo)ﬂEj‘i B(z,eo)ﬂE;’z

Clearly, |f(z) —y| <y <1—y for all z € E°. Thus,

/ If(w)ylpdué/ (1y)pdu+/ yPdp
]Cc BC(IE,E())QEJC, B((E,eo)ﬁE;
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1
and both sides are equal only when y = 5 and in this case |f(z) — y| =y on E%, that is,
f=0on E$. This contradicts the fact Jre f B x)dp > 0. Thus,

/ |f(z) —y[Pdp < / (1 —y)Pdu +/ yPdp.
¢ Bc(x,eo)ﬂE]‘i B(x,eo)ﬂEj’i

Finally, we show that

/A (@) — yPdp = (1— )Py + 571 — )

whenever f € ®, is an indicator function. Consider

J 1@ v [ 1@ = apaes [ -

f

2/ (1—y)pdu+/ yPdu
Ey ¢

!
= (1= y)Pu(Ey) + 4y u(EF)

=1 =y)Py+y"(1—y).

O
Corollary 3.2.6. For any absolutely continuous random vector'Y,
1
P
G(YY) = /[01]n (IL(9) (1 - I(#))” + (I1(?))" (1 - 1L())) dv
0 . ! . A .
Proof. Since a_,C’yy( ) = Cy |y (U]%) = Ly(az)s<q) is an indicator function,
9 P
| |geCr (@0~ )| di = 1) (1 - )" + (@) (1L~ 1),
[0,
by Lemma 3.2.5. Thus,
1
P
YY) = /[Ol]n (I(9) (1 - T(@))” + (11(¥))" (1 - TI(v))) dv
O

Lemma 3.2.7. Let Y be an absolutely continuous m— dimensional random vector and p

be a positive integer. Then

P 1 1 1
Gy Z( > - k+2)m+(p+1)m_ (p+2)™

k=0
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Proof. Consider

—

1
LYY = /0 /0 (H(y)(1 — T1(y))? + TI(y)(1 — (y))) dya...dya

L1 1 % 1
G)=2, <k> (_1)k(k ) R F R ) O () T

k=0

YT AZA0) 11\1

—\o/)om 1/ 3m om 3m

1 _1\75 ¢

_ 2 2

Y om gm

and
2 /2 1 1 1
2 k
YY)= =, +
&(Y) kz_0<k>( ) k+2) 2+1)m (242

(L L 48
L_i+i+7_,

ddd

- ogm gm’

2 2 2 2

Therefore, (1(YY) = e il = and (YY) = e

Theorem 3.2.9. Let X and Y be two absolutely continuous random vectors.

Then 0 < ((YX) < G(YY).

Proof. Clearly, 0 < (,(Y|X). Next, we show that (,(Y|X) < {(Y]Y).
By Lemma 3.2.5,

<y

/ ‘aaaCXW’ v) = 1(@)| di < (TI(#))" (1 - () + (@) (1 - (D))"
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Therefore,

? P z
/aﬁCXy(u,v)—H(v) dudv)

/ 1
/ ;

[(TL(@))P (1 = 11(¥)) + 1L(v)(1 — T1(7))"] d77>

GYX) =

IN

(
(
= (YY)

Theorem 3.2.10. Let X and Y be two absolutely continuous random vectors.

The three following properties are equivalent:

i) Y is a measurable function of X,

it) Y, (Y) is a measurable function of Vp, (X), and
iii) Cp(Y]X) = G(Y]Y).

Proof. First, we show that ¢) and ii) are equivalent. Assume Y is a measurable function
of X, that is, Y = f(X) for some measurable function f.
Thus,

\IIFY(Y) = \I]Ff(;q(f(X)) I~ \IlFf(X)f(\Il}_Tfl(X)(‘IlFf(x)(X))v

that is, Ur,, (v is a measurable function of ¥, (X).

Conversely, assume ¥, (Y) is a measurable function of ¥ g, (X).

Then ¥Up, (V) = g(Vp, (X)) for some measurable function g. So, Y = \Il;i (9(¥py (X))).
Finally, we show that i) and 4ii) are equivalent.

Assume Y is a measurable function of X, that is, Y = f(X) for some measurable func-

tion f. The fact that (,(Y|X) = (,(Y|Y') immediately follows from Theorem 3.2.1 and

Theorem 3.2.9.

Conversely, assume CP(Y;LX) = GYY).

Then [ %Cxﬁy(ﬁ, v) — H(ﬁ’)’ dadv = [[(II(¥))P(1 — II(¥)) + II(7) (1 — IL(¥))P]do.

p

Thus, [ ’;ny(ﬁ, 7) — I(3)| di = (I(7))P(1 — 1I(7)) + [I(&)(1 — II(7))P.

0
By Lemma 3.2.5, ?CX’Y is an indicator function.
U

0 0

Since ?ny(ﬁ, -) = Cyx (+|@) is a distribution function, the set {U‘WCX’YW’ v) = 1}
U U

is closed under the pointwise minimum and closed under Euclidean topology.

0
Therefore, {U\%ny(ﬁ, v) = 1} has a minimum, say f ().
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U) = L[£(g),00) (V)

0
Then %C)QY(’J v
(X) =1), that is, Y is a measurable function of X. O

Thus, P(Y = f

Theorem 3.2.11. Let X, Y, and Z be absolutely continuous random vectors in which Z

has the dimension k and (X,Y) and Z are independent,

1 \7»
o 21%) = (57 ) 61X
In particular, (,(Y, Z|X) < ((Y]X).

Proof. Since (X,Y) and Z are independent, we have Cx (v, z)(4, (¥, W)) = Cx y (@, ¥)IL().
Thus,

(&Y, Z|X) P—///‘ | o v (5:8)) — TU(O)IL(w@)| dadoda
- / / / (T,CX,Y(ﬁ,ﬁ)H(LU)—H(ﬁ)l‘[(u?)pdﬁdﬁdw
/ 7)Pdi / / ‘ 2 Oy (,7) ~ TI(7) " dady
1
- (%) eorr,
Therefore, (Y, Z|X) = (zﬁ)f’j G(Y]X). 0

Corollary 3.2.12. Let X,Y and Z be absolutely continuous random vectors such that

. G, Z|X) _ G(Y]X)
X,Y) and Z are independent. Then /
) ’ GV, ZIY.2) = GY|Y)

Proof. Assume that Y has the dimension m and Z has the dimension n. Consider
Gzyzy= [ [n@ e - 1@ )¢ + 1@ 0 - 1@ )] dida
0,1 J[o,1]

- / / (i) T1() (1 ~ () T1(3)F + 114 (i) (8) (1~ (@) T(0)| dd
[0,1]™ J[o,1]™ *-

> / / () (5) (1 11(a)" + (@) (3) (1 11(a)] dedi
[0,1]™ J[o,1]™ -

= (p+11)n /[0 i [H(U)(l —II(@))* + I1* (@) (1 — H(g))} dit

SG (YY)

T+ 1)
1
Thus, ¢,(Y, Z|Y, Z) > e GYY).

G, Z21X) _ GY]X)

By Theorem 3.2.11, we can conclude that .
G, 2IY,Z) ~ (YY)

Finally, we prove the next theorem which is a generalization of Theorem 1 in [7].
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Theorem 3.2.13. For any € > 0, there are absolutely continuous random vectors X and
Y of arbitrary marginals but with the same dimension such thatY is completely dependent

on X but ((X|Y) <e.

Proof. Since ¢, only depends on linkages, it is sufficient to prove the result for a uniform
distribution.

First, we prove the result in the case of random variables. Let ¥ = kX mod 1
where X has a uniform distribution. Then Y is also uniformly distributed. Clearly,

GY|X) = (p(Y]Y) since Y is a function of X. Also,

0
- — < —
uC’yX(u, v) =P(X <v|Y =u)

1
%Lkv—uj it kv > u,

0 otherwise

where |z is the floor of z. Thus, (5(X|Y) < + [ |u[Pdu and hence,

XYY < (;) <pi1>

Choosing k = [e 7P| + 1, we have (,(X|Y) < € as required.

In general, let (X;,Y;) where i = 1,...,n be independent copies of a random vector
(Xo, Yp) in which (,(Yp|Xo) = (p(Yo[Yo) but (»(Xo|Yo) < & and let X = (Xy,...,X,,) and
Y =(Y1,...,Y,). Then (,(Y|X) = (,(Y]Y) and

p

0
Cg(X|Y) = / ’H?ZlawCyo,Xo(ui,vi) — I ;| dug - --dupdo; - - doy,

n
0
< p—1 =
< ;:1 n /‘8uCYO’X°(u’ v) —v

= nP¢y(Xo, [Y0)

P
dudv

= P

and hence, (,(X|Y) < € as desired. O
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