CHAPTER 4

Examples

In this chapter, we give four computational examples for the measure of complete

dependences ¢ and two examples for the measure of complete dependence (.

4.1 Example Calculations of Measure of Complete Dependence

First, we find ¢(Y|Y) where Y is a geometric distribution function.
Second, we compute ¢(Y|X) and ¢(Y]Y) in the case X and Y are continuous random
vectors with FGM-copula.
Next, we show that p(Ha|Xa) = 2¢(F|X1) + 2=Lp(G|X,) whenever F and G are joint

distribution functions with the same marginals such that F'(1,9) = G(1, ¥) and

L F(au, ) if wu<l

1P, 9)+ 1G(ee=L, §) otherwise.

o a—1
Finally, we compute ¢(Cx,y) where X and Y are continuous random vectors and Cx y
is the joint Archimedean copula.

For another measure of complete dependence (j, there are two examples to be
considered in this part. We start with the computation of (,(Y|X) when X and Y are
random vectors with FGM-copula.

Furthermore, we determine (,(Y|X) where (X,Y") is normally distributed with mean zero
I P

PtoI

and covariance matrix
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Example 4.1.1. If Y is a geometric distribution function, then

2(p—1)(p* —2p+2)
(p—2)p(p? —3p+3)’

Proof. Since Y is a geometric distribution function, we get P(Y = y) = (1 — p)¥p. Then

(YY) =

Fy(y) =P <vy)

2K
2
(

~

Y =1i)
p)Y (1-p)

Yy
=0
o p(l—(@a—-pyth

1-(1-p)

=1—(1-p¥.

Since (YY) =2 [ Fy(y) (1 — Fy(y)) dFy (y), we can conclude that

w@ﬂﬁzz/u—u—mﬁwu—m“mﬂmn

=2> [1-(1-p™Ha-p¥](1-@1-prH)

y=0
oo

=2> (1-21-p¥H +(1-p*?) @ -prt
y=0

y=0

:2{1—1(1519) ~ (19(;3);)2) ! <%>}
)

-9 {i(l _p)y+1 — Qi(l il p)2y+2 + i(l _ p)3y+3}
y=0 y=0
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Example 4.1.2. Let X and Y be continuous random vectors with the FGM-copula

Coy(u,v) = (H ul> (H vj> +6 (H u; (1 — uz)> (H v (1 — Uj))

which is their joint distribution.

Then

H(V]X) = / |Fypr(vlu) — Fy(v)] dFy (u)dFy (v)
/0(1@[12%)(12[ 121])
=1 = |
\9[/H1—2uzdu/H (1—v;)d

Y (/\1 - 2u|du> (u(1 — v)dv)”
(1 — 2u)du + /u>§(2u _ 1)du> : </(v _ vz)m))n

dudv

Since Fy (v) =[]}, vi, we obtain that

Therefore,
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Example 4.1.3. Let X and Y be absolutely continuous random vectors with dimensions

m and n, respectively, with the FGM-copula

Co(@, §) = T(@)I1(7) + OT(D)TL(T — @) L) - 7)
as its linkage. Consider

;Cg( =2 [H(U)H(U) O — @)I(F)I(T — U)}

Then

p

1
G(V]X) = [/‘——-Cgﬁff 11(7) dﬁdﬁ]p

1

[/‘9 11 = 2u]) (T 0;(1 — v;))[” duy...dumdoy...doy, ’

Y [/‘T_ Qﬁ!pdﬁ] ’ [/W(T—g)pdﬁr

1 \7 n
= 0| (pfrl) B(l+p,1+p)r

where S(1+p,1+p) = fo 1 — ¥)Pdv is the beta function.
Particularly, % < GY|X) < |0n|.

Let F' and G be joint distribution functions with the same marginals and a € (1, 00).

Then the function H, defined by

L F(au, ) if w<l

1P, o)+ 221G, 5)  otherwise

a—1"

also has the same marginals as F' and G.
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Example 4.1.4. Let F and G be joint distribution functions with the same marginals
such that F(1,7) = G(1,7). Let (X1,Y1),(X2,Y2) and (X,,Y,) have the distribution
functions F, G and H,, respectively. Then

dudHo (1, 5)

10

a—1

©(Hy|Xa) = / ‘;uHa(u,ﬁ) — H,(1,7)

_/u<1 a%F(au,U)—éF(l,ﬁ)— - G(1,7)|dudF (1, v)
i /u>; aa 1(%@(0;7_11,17) - iF(l,ﬁ) - aa 1G(1,17) dudG(1,7)
- 1/ O plw, 7) = F(1,7)| dud F(1,9)
a ) |ow ’ ’ )
a—1 0 Y. _’ 3
+ /‘%G(ﬂzv)—a(l,v) dzdG(1,7)

1 a—1
= 590(F|X1) + TSO(G|X2)‘

Example 4.1.5. Let X and Y be continuous random vectors with the joint Archimedean

copula Cx y of the form

Cx,y (U1, ooy Uy V1, oty Un) = (97 (Ur) + oo+ & (um) + 67 (v1) + oo + 67 (vn))

for some function ¢.
-l

In the case of Cx y is Clayton copula we have ¢g(z) = (1 + 9(6)_5 and
gzﬁém)(a;) =0m (1 —m— % (¢9($))m9+1> where (a),, = ala+1)...(a + m —1).

m
Consider

O™ (o7 (w) + .+ 67 (um) + 67 (01) + o+ 971 (vn))
oM (o~ ur) + ... + ¢~ Hum))

G <1 110 ‘;‘> (66 (6= 1u0) T 1 Matm) b 61 (0n) £ ()0

Cy|x(v[u) =

" (1 i $>m [do(d" (ur) + ... 4 ¢~ ()0 F1

—— (U1, ey U) = o™ (6™ () + ...+ 67" (um))
ou - ¢ (¢~ Hu1))..d(d (um)))

o (1-m- é)m (Cp(u)) 0+

T Tl
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and
Oy oy = 8P @) o+ 07 (w))
BN 1y++yUn ¢'(¢—1(vl) +...+<Z>_1(Un))
o (1-n-3) oty

(—of T (=on™)

1+m9(00( ))1+n9 _ (Ce(u))1+m9(ce(v))2+n9
(U1 U V1 .0y ) 0L

Therefore, (1(Cxy) = f| (Co(u, v)) dudv.

Example 4.1.6. Let X and Y be absolutely continuous random vectors with dimensions

m and n, respectively, such that (X,Y’) is normally distributed with mean zero and

I P
covariance matrix . Since components of X and Y are independent,

pPtoT

GV 1X) = [/ [ 1Fvixlo) ~ B ()] ax @aFv()]

by the change of variable formula.
Given X = z,Y is normally distributed with mean P'z and covariance matrix

I — P!P. Therefore,
Fyx(ylz) = ®_ptp(y — P'z)
where ®y; is the normal distribution function with mean zero and covariance matrix X.

Thus,

1
GY[X) = U/\@, pep(y — P'z) — @1 (y)|” d® (x)d®(y) ’
Particularly, (2(Y|X) = \/ff‘fbl piply — Pla )‘d@l( )@ (y) — (1)"
Since [ [ @2 ., p(y — Plo)d®;(x)d®;(y) is the expectation of &3 ., ,(Z — P'W)

where (Z, W) has standard normal distribution which directly implies Z—P!W is normally

distributed with mean zero and covariance matrix I + P'P,

G(Y]X) = \/ [ B (s pip() - (é)

Note that the same idea can also be extended to the case of X and Y with dependent
components. For example, let X = (X1, X2) and Y = (Y1, Y2) be such that (X,Y) is

normally distributed with mean zero and covariance matrix



Then the linkage associated with X and Y is the same as the linkage associated with a

normal random vector with mean zero and covariance matrix

1
1 0 e

0 1 1- LX ) 1-px /1= Ly
TTpx P Trpx \/ THoy P

1—px
1+px P 1

/ 1-px [l=py
1+px 1+pyp 0 1

(see Example 3.3 in [5]). Therefore, we can apply the above result to

1—py
i p
P = +py

1—px l-px /1= )
1+PX’0 1+px 1+Py

to yield (,(Y'|X) in this case also.
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