
CHAPTER 4

Examples

In this chapter, we give four computational examples for the measure of complete

dependences φ and two examples for the measure of complete dependence ζp.

4.1 Example Calculations of Measure of Complete Dependence

First, we find φ(Y |Y ) where Y is a geometric distribution function.

Second, we compute φ(Y |X) and φ(Y |Y ) in the case X and Y are continuous random

vectors with FGM-copula.

Next, we show that φ(Hα|Xα) =
1
αφ(F |X1) +

α−1
α φ(G|X2) whenever F and G are joint

distribution functions with the same marginals such that F (1, v⃗) = G(1, v⃗) and

Hα(u, v⃗) =


1
αF (αu, v⃗) if u ≤ 1

α ,

1
αF (1, v⃗) +

α−1
α G(αu−1

α−1 , v⃗) otherwise.

Finally, we compute φ(CX,Y ) where X and Y are continuous random vectors and CX,Y

is the joint Archimedean copula.

For another measure of complete dependence ζp, there are two examples to be

considered in this part. We start with the computation of ζp(Y |X) when X and Y are

random vectors with FGM-copula.

Furthermore, we determine ζp(Y |X) where (X,Y ) is normally distributed with mean zero

and covariance matrix

 I P

P t I

 .
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Example 4.1.1. If Y is a geometric distribution function, then

φ(Y |Y ) =
2(p− 1)(p2 − 2p+ 2)

(p− 2)p(p2 − 3p+ 3)
.

Proof. Since Y is a geometric distribution function, we get P(Y = y) = (1− p)yp. Then

FY (y) = P(Y ≤ y)

=

y∑
i=0

P(Y = i)

= p

y∑
i=0

(1− p)i

=
p
(
1− (1− p)y+1

)
1− (1− p)

= 1− (1− p)y+1.

Since φ(Y |Y ) = 2
∫
FY (y) (1− FY (y)) dFY (y), we can conclude that

φ(Y |Y ) = 2

∫
(1− (1− p)y+1)(1− p)y+1dFY (y)

= 2

∞∑
y=0

[
(1− (1− p)y+1)(1− p)y+1

] (
1− (1− p)y+1

)
= 2

∞∑
y=0

(
1− 2(1− p)y+1 + (1− p)2y+2

)
(1− p)y+1

= 2


∞∑
y=0

(1− p)y+1 − 2

∞∑
y=0

(1− p)2y+2 +

∞∑
y=0

(1− p)3y+3


= 2

{
1− p

1− (1− p)
− 2

(
(1− p)2

1− (1− p)2

)
+

(
(1− p)3

1− (1− p)3

)}
=

2(p− 1)(p2 − 2p+ 2)

(p− 2)p(p2 − 3p+ 3)
.
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Example 4.1.2. Let X and Y be continuous random vectors with the FGM-copula

Cθ(u, v) =

(
m∏
i=1

ui

) n∏
j=1

vj

+ θ

(
m∏
i=1

ui(1− ui)

) n∏
j=1

vj(1− vj)


which is their joint distribution.

Then

φ(Y |X) =

∫ ∣∣FV |U (v|u)− FY (v)
∣∣dFX(u)dFY (v)

=

∫ ∣∣∣∣∣∣θ
(

m∏
i=1

(1− 2ui)

) n∏
j=1

vj(1− vj)

∣∣∣∣∣∣ dudv
= |θ|

∫ m∏
i=1

(1− 2ui)du

∫ n∏
j=1

vj(1− vj)dv

= |θ|
(∫

|1− 2u|du
)m

(v(1− v)dv)n

= |θ|

(∫
u≤ 1

2

(1− 2u)du+

∫
u> 1

2

(2u− 1)du

)m(∫
(v − v2)dv

)n

= |θ|
(
1

2

)m(1

6

)n

=
|θ|

2m6n
.

Since FY (v) =
∏n

i=1 vi, we obtain that

φ(Y |Y ) = 2

∫ n∏
i=1

vi

(
n∏

i=1

vi

)
dv

= 2

∫ ( n∏
i=1

vi − (
n∏

i=1

vi)
2

)
dv

= 2

[
(

∫
vdv)n − (

∫
v2dv)n

]
= 2

(
1

2n
− 1

3n

)
=

2(3n − 2n)

6n
.

Therefore,
φ(Y |X)

φ(Y |Y )
=

|θ|
2m+1(3n − 2n)

.

43



Example 4.1.3. Let X and Y be absolutely continuous random vectors with dimensions

m and n, respectively, with the FGM-copula

Cθ(u⃗, v⃗) = Π(u⃗)Π(v⃗) + θΠ(u⃗)Π(⃗1− u⃗)Π(v⃗)Π(⃗1− v⃗)

as its linkage. Consider

∂

∂u⃗
Cθ(u⃗, v⃗) =

∂

∂u⃗

[
Π(u⃗)Π(v⃗) + θΠ(u⃗)Π(⃗1− u⃗)Π(v⃗)Π(⃗1− v⃗)

]
= Π(v⃗) + θΠ(v⃗)Π(⃗1− v⃗)

∂

∂u⃗
Π(u⃗)Π(⃗1− u⃗)

= Π(v⃗) + θ (Πm
i=1|1− 2ui|)

(
Πn

j=1vj(1− vj)
)
.

Then

ζp(Y |X) =

[∫ ∣∣∣∣ ∂∂u⃗Cθ(u⃗, v⃗)−Π(v⃗)

∣∣∣∣p du⃗dv⃗] 1
p

=

[∫ ∣∣θ (Πm
i=1|1− 2ui|)

(
Πn

j=1vj(1− vj)
)∣∣p du1...dumdv1...dvn

] 1
p

= |θ|
[∫

|⃗1− 2u⃗|pdu⃗
]m

p
[∫

v⃗p(⃗1− v⃗)pdv⃗

]n
p

= |θ|
(

1

p+ 1

)m
p

β(1 + p, 1 + p)
n
p

where β(1 + p, 1 + p) =
∫ 1
0 v⃗

p(⃗1− v⃗)pdv⃗ is the beta function.

Particularly, |θ|
2m+n3n

≤ ζp(Y |X) ≤ |θ|
6n .

Let F and G be joint distribution functions with the same marginals and α ∈ (1,∞).

Then the function Hα defined by

Hα(u, v⃗) =


1
αF (αu, v⃗) if u ≤ 1

α ,

1
αF (1, v⃗) +

α−1
α G(αu−1

α−1 , v⃗) otherwise

also has the same marginals as F and G.
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Example 4.1.4. Let F and G be joint distribution functions with the same marginals

such that F (1, v⃗) = G(1, v⃗). Let (X1, Y1), (X2, Y2) and (Xα, Yα) have the distribution

functions F,G and Hα, respectively. Then

φ(Hα|Xα) =

∫ ∣∣∣∣ ∂∂uHα(u, v⃗)−Hα(1, v⃗)

∣∣∣∣dudHα(1, v⃗)

=

∫
u≤ 1

α

∣∣∣∣ 1α ∂

∂u
F (αu, v⃗)− 1

α
F (1, v⃗)− α− 1

α
G(1, v⃗)

∣∣∣∣ dudF (1, v⃗)
+

∫
u> 1

α

∣∣∣∣α− 1

α

∂

∂u
G(
αu− 1

α− 1
, v⃗)− 1

α
F (1, v⃗)− α− 1

α
G(1, v⃗)

∣∣∣∣ dudG(1, v⃗)
=

1

α

∫ ∣∣∣∣ ∂∂wF (w, v⃗)− F (1, v⃗)

∣∣∣∣ dwdF (1, v⃗)
+
α− 1

α

∫ ∣∣∣∣ ∂∂xG(x, v⃗)−G(1, v⃗)

∣∣∣∣dxdG(1, v⃗)
=

1

α
φ(F |X1) +

α− 1

α
φ(G|X2).

Example 4.1.5. Let X and Y be continuous random vectors with the joint Archimedean

copula CX,Y of the form

CX,Y (u1, ..., um, v1, ..., vn) = ϕ(ϕ−1(u1) + ...+ ϕ−1(um) + ϕ−1(v1) + ...+ ϕ−1(vn))

for some function ϕ.

In the case of CX,Y is Clayton copula we have ϕθ(x) = (1 + θx)
−
1

θ and

ϕ
(m)
θ (x) = θm

(
1−m− 1

θm
(ϕθ(x))

mθ+1

)
where (a)m = a(a+ 1)...(a+m− 1).

Consider

CY |X(v|u) = ϕ(m)(ϕ−1(u1) + ...+ ϕ−1(um) + ϕ−1(v1) + ...+ ϕ−1(vn))

ϕ(m)(ϕ−1(u1) + ...+ ϕ−1(um))

=

θm
(
1−m− 1

θ

)
m

[ϕθ(ϕ
−1(u1) + ...+ ϕ−1(um) + ϕ−1(v1) + ...+ ϕ−1(vn))]

mθ+1

θm
(
1−m− 1

θ

)
m

[ϕθ(ϕ−1(u1) + ...+ ϕ−1(um))]mθ+1

=

(
Cθ(u, v)

Cθ(u)

)mθ+1

,

∂CX

∂u
(u1, ..., um) =

ϕ(m)(ϕ−1(u1) + ...+ ϕ−1(um))

ϕ′(ϕ−1(u1))...ϕ(ϕ−1(um)))

=

θm
(
1−m− 1

θ

)
m

(Cθ(u))
mθ+1

(−uθ+1
1 )...(−uθ+1

m )
,
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and

∂CY

∂v
(v1, ..., vn) =

ϕ(n)(ϕ−1(v1) + ...+ ϕ−1(vn))

ϕ′(ϕ−1(v1) + ...+ ϕ−1(vn))

=

θn
(
1− n− 1

θ

)
n

(Cθ(v))
nθ+1

(−vθ+1
1 )...(−vθ+1

n )
.

Therefore, ζ1(CX,Y ) =
∫ ∣∣∣∣(Cθ(u, v))

1+mθ(Cθ(v))
1+nθ − (Cθ(u))

1+mθ(Cθ(v))
2+nθ

(u1...umv1...vn)θ+1

∣∣∣∣ dudv.
Example 4.1.6. Let X and Y be absolutely continuous random vectors with dimensions

m and n, respectively, such that (X,Y ) is normally distributed with mean zero and

covariance matrix

 I P

P t I

. Since components of X and Y are independent,

ζp(Y |X) =

[∫ ∫ ∣∣FY |X(y|x)− FY (y)
∣∣p dFX(x)dFY (y)

] 1
p

by the change of variable formula.

Given X = x, Y is normally distributed with mean P tx and covariance matrix

I − P tP. Therefore,

FY |X(y|x) = ΦI−P tP (y − P tx)

where ΦΣ is the normal distribution function with mean zero and covariance matrix Σ.

Thus,

ζp(Y |X) =

[∫ ∫ ∣∣ΦI−P tP (y − P tx)− ΦI(y)
∣∣p dΦI(x)dΦI(y)

] 1
p

.

Particularly, ζ2(Y |X) =

√∫ ∫ ∣∣∣Φ2
I−P tP (y − P tx)

∣∣∣dΦI(x)dΦI(y)−
(
1
3

)n
.

Since
∫ ∫

Φ2
I−P tP (y − P tx)dΦI(x)dΦI(y) is the expectation of Φ2

I−P tP (Z − P tW )

where (Z,W ) has standard normal distribution which directly implies Z−P tW is normally

distributed with mean zero and covariance matrix I + P tP ,

ζ2(Y |X) =

√∫
Φ2
I−P tP (z)dΦI+P tP (z)−

(
1

3

)n

.

Note that the same idea can also be extended to the case of X and Y with dependent

components. For example, let X = (X1, X2) and Y = (Y1, Y2) be such that (X,Y ) is

normally distributed with mean zero and covariance matrix
1 ρX ρ ρ

ρX 1 ρ ρ

ρ ρ 1 ρY

ρ ρ ρY 1

 .
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Then the linkage associated with X and Y is the same as the linkage associated with a

normal random vector with mean zero and covariance matrix
1 0 ρ

√
1−ρY
1+ρY

ρ

0 1
√

1−ρX
1+ρX

ρ
√

1−ρX
1+ρX

√
1−ρY
1+ρY

ρ

ρ
√

1−ρX
1+ρX

ρ 1 0√
1−ρY
1+ρY

ρ
√

1−ρX
1+ρX

√
1−ρY
1+ρY

ρ 0 1


(see Example 3.3 in [5]). Therefore, we can apply the above result to

P =

 ρ
√

1−ρY
1+ρY

ρ√
1−ρX
1+ρX

ρ
√

1−ρX
1+ρX

√
1−ρY
1+ρY

ρ


to yield ζp(Y |X) in this case also.
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