
CHAPTER 2

Preliminaries

The purpose of this chapter is to collect notations, terminologies and elementary

results used throughout the thesis.

2.1 Metric spaces

Definition 2.1.1. Let X be a set and d be a function from X ×X to [0,∞) such that

for all x, y, z ∈ X we have

(M1) d(x, y) = 0 if and only if x = y;

(M2) d(x, y) = d(y, x);

(M3) d(x, y) ≤ d(x, z) + d(z, y).

A function d satisfying the above conditions is said to be a distance function or

a metric and the pair (X, d) a metric space. We sometimes write X for a metric space

(X, d).

Example 2.1.1. The real line R with d(x, y) = |x− y| is a metric space. The metric d is

called the usual metric for R.

Example 2.1.2. Let X be a nonempty set. Define a metric d on X by

d(x, y) =

⎧
⎪⎨

⎪⎩

0 if x = y

1 if x ̸= y.

Then (X, d) is a metric space, called a discrete space.

Example 2.1.3. Let X be the set of all continuous functions from a closed interval [a, b]

to R. We define a metric d by

d(f, g) = max
x∈[a,b]

|f(x)− g(x)| for all f, g ∈ X.

Then (X, d) is a metric space and usually denoted by C[a, b].

Definition 2.1.2. A sequence {xn} in (X, d) is said to converge to a point x ∈ X if for

each ε > 0, there exists a natural number N such that d(xn, x) < ε whenever n ≥ N. In

this case we write either lim
n→∞

xn = x or xn → x as n → ∞.
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Definition 2.1.3. A sequence {xn} in a metric space (X, d) is said to be a Cauchy

sequence if for each ε > 0, there exists a positive integer N such that d(xn, xm) < ε for

all m,n ≥ N.

Theorem 2.1.4. (cf. [25]) Every convergent sequence in a metric space is a Cauchy

sequence.

Definition 2.1.5. A metric space X is said to be complete if every Cauchy sequence in

X converges to a point in X.

Definition 2.1.6. Given a point x0 ∈ X and a real number r > 0, we define

(i) B(x0, r) = {x ∈ X | d(x, x0) < r}, the open ball with center x0 and redius r;

(ii) B(x0, r) = {x ∈ X | d(x, x0) ≤ r}, the closed ball with center x0 and redius r;

(iii) S(x0, r) = {x ∈ X | d(x, x0) = r}, the sphere with center x0 and redius r.

Definition 2.1.7. Let (X, d) be a metric space. A set G ⊆ X is called an open set if for

every x ∈ G, there is r > 0 such that B(x, r) ⊆ G. A set F ⊆ X is called a closed set if

its complement is open. A set C ⊆ X is called a compact set if any sequence {xn} in C

has a subsequence {xnk} which converges to a point in C.

Theorem 2.1.8. (cf. [25]) A subset C of a metric space X is closed if and only if

{xn} ⊂ C and lim
n→∞

xn = x imply x ∈ C.

Lemma 2.1.9. (cf. [25]) A compact subset C of a metric space is closed and bounded.

Definition 2.1.10. (cf. [53]) Let X and Y be metric spaces and let f be a mapping from

X into Y . Then f is said to be continuous at x0 in X if

xn → x0 =⇒ f(x0) → f(x0).

Moreover, f is said to be continuous on X if it is continuous at every point of X.

Theorem 2.1.11. (cf. [24]) Let X be a compact metric space, and let f : X → R be a

continuous mapping. Then there is a point x0 ∈ X such that

f (x0) = inf
{
f (x) : x ∈ X

}
.
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2.2 Banach spaces

A linear space or vector space X over field F (the real field R or the complex field

C) is a set X together with an internal binary operation + called addition and a scalar

multiplication carrying (α, x) in F×X to αx inX satisfying the following for all x, y, z ∈ X

and α,β ∈ F:

1. x+ y = y + x;

2. x+ (y + z) = (x+ y) + z;

3. there exists an element 0 ∈ X called the zero vector of X such that x + 0 = x for

all x ∈ X;

4. for every element x ∈ X, there exists an element −x ∈ X called the additive inverse

or the negative of x such that x+ (−x) = 0;

5. α(x+ y) = αx+ αy;

6. (α+ β)x = αx+ βx;

7. (αβ)x = α(βx);

8. 1x = x.

The elements of a vector space X are called vectors, and the elements of F are called

scalars.

A finite subset {x1, . . . , xn} of a linear space X is said to be linearly independent

if for any α1 . . . ,αn ∈ R with α1x1 + · · · + αnxn = 0 implies α1 = · · · = αn = 0. If, in

addition, every x ∈ X is a linear combination of x1, . . . , xn, that is x = α1x1 + · · ·+αnxn

for some α1 . . . ,αn ∈ R, then we say that X has the dimension n.

A function ∥ · ∥ from a (real) linear space X into R is called a norm if it satisfies

the following properties for all x, y ∈ X and α ∈ R:

1. ∥x∥ ≥ 0;

2. ∥x∥ = 0 if and only if x = 0;

3. ∥αx∥ = |α|∥x∥;

4. ∥x+ y∥ ≤ ∥x∥+ ∥y∥.
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From this norm we can define a metric, induced by the norm ∥ · ∥, by

d (x, y) = ∥x− y∥, x, y ∈ X.

A linear space X equipped with the norm ∥ · ∥ is called a normed linear space. A normed

linear space (X, ∥ · ∥) which is complete is called a Banach space.

Definition 2.2.1. A subset C of a Banach spaceX is said to be convex if αx+(1−α)y ∈ C

for each x, y ∈ C and α ∈ [0, 1].

Definition 2.2.2. Let C be a subset of a linear space X. The closed convex hull of C in

X is the intersection of all closed convex subsets of X containing C which is denoted by

co(C). Thus,

co(C) = ∩ {D ⊆ X : C ⊆ D, D is closed and convex} .

Definition 2.2.3. Let x be an element and {xn} a sequence in a normed space X. Then

{xn} converges strongly to x written by xn → x, if limn→∞ ∥xn − x∥ = 0.

Definition 2.2.4. A Banach space X is said to be strictly convex if

∥x∥ = ∥y∥ = 1 and x ̸= y imply
∥∥∥
x+ y

2

∥∥∥ < 1.

Example 2.2.1.

(i) Let X = Rn, n ≥ 2 with norm ∥ · ∥1 defined by ∥x∥1 =
∑n

i=1 |xi|, for x =

(x1, x2, . . . , xn) ∈ Rn. Then X is not strictly convex.

(ii) Let X = Rn, n ≥ 2 with norm ∥ · ∥2 defined by ∥x∥2 =
(∑n

i=1 x
2
i

)1/2
, for x =

(x1, x2, . . . , xn) ∈ Rn. Then X is strictly convex.

Definition 2.2.5. A Banach space X is called uniformly convex if for any ε ∈ (0, 2], there

exists a δ = δ(ε) > 0 such that if x, y ∈ X with ∥x∥ = ∥y∥ = 1 and ∥x − y∥ ≥ ε, then

∥x+y
2 ∥ ≤ 1− δ.

Theorem 2.2.6. (cf. [53]) Every uniformly convex Banach space is strictly convex.

2.3 Hilbert spaces

Definition 2.3.1. Let X be a vector space over field F = R (or C). An inner product on

X is a function ⟨·, ·⟩ : X ×X → F such that for any x, y, z ∈ X and α ∈ F, one has

(1) ⟨x, x⟩ ≥ 0 ;
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(2) ⟨x, x⟩ = 0 if and only if x = 0 ;

(3) ⟨αx, y⟩ = α⟨x, y⟩ ;

(4) ⟨x, y⟩ = ⟨y, x⟩ ; and

(5) ⟨x+ y, z⟩ = ⟨x, z⟩+ ⟨y, z⟩.

A vector space X together with an inner product ⟨·, ·⟩ is called an inner product space or

a pre-Hilbert space and it is denoted by (X, ⟨·, ·⟩) or simply by X.

Remark 2.3.2. An inner product on X defines a norm || · || on X which is given by

||x|| =
√

⟨x, x⟩.

Definition 2.3.3. A complete inner product space is called a Hilbert space.

Example 2.3.1. The Euclidean space Rn is a Hilbert space with an inner product defined

by

⟨x, y⟩ = x1y1 + · · ·+ xnyn,

where x = (x1, ..., xn) and y = (y1, ..., yn).

Theorem 2.3.4. (The Schwarz inequality) If x and y are any two vectors in an inner

product space X, then |⟨x, y⟩| ≤ ∥x∥∥y∥.

Theorem 2.3.5. (The parallelogram law) If x and y are any two vectors in an inner

product space X, then

∥x+ y∥2 + ∥x− y∥2 = 2∥x∥2 + 2∥y∥2.

Remark 2.3.6. Any Hilbert space is a uniformly convex Banach space.

A function f : X → R is said to be linear if f (αx+ y) = αf (x) + f (y) for all

x, y ∈ X and α ∈ F. In addition, if there is M > 0 such that |f (x) | ≤ M∥x∥ for all

x ∈ X, we say that f is a bounded linear functional. Notice that the class of all bounded

linear functionals on X, denoted by X∗, is a Banach space equipped with the norm defined

by

∥f∥ = sup
{
|f (x) | : x ∈ BX

}
= sup

{
|f (x) | : x ∈ SX

}
,

where BX =
{
x ∈ X : ∥x∥ ≤ 1

}
is the unit ball of X and SX =

{
x ∈ X : ∥x∥ = 1

}
is

the unit sphere of X (see [25]). We also denote X∗∗ := (X∗)∗ and call it the second dual

space of X.

The most well known theorem in Banach space theory is the Hahn-Banach theorem.
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Theorem 2.3.7. Let x be a nonzero element of a normed space X. Then there exists

f ∈ X∗ such that f(x) = ∥x∥ and ∥f∥ = 1.

The topology induced by a norm is too strong in the sense that it has many open sets.

Indeed, in order that each bounded sequence in X has a norm convergent subsequence,

it is necessary and sufficient that X be finite dimensional. This fact leads us to consider

other weaker topologies on normed spaces which are related to the linear structure of the

spaces to search for subsequential extraction principles. So it is worthwhile to define the

weaker topology for a Banach space X. We say that a sequence {xn} in X converges

weakly to x, denoted by

w − lim
n→∞

xn = x,

if limn→∞ f (xn) = f (x) for all f ∈ X∗. A subset K of X is weakly closed if it is closed in

the weak topology, that is, if it contains the weak limit of each of its weakly convergent

sequences. The weakly open sets are now taken as those sets whose complements are

weakly closed. The resulting topology on X is called the weak topology on X. Sets which

are compact in this topology are said to be weakly compact.

It is important to know that the weak topology on a Banach space is a Hausdorff

topology, and that weak limits are unique. This is because the functionals in X∗ separate

points in X, that is, given any two points x ̸= y ∈ X there exists an f ∈ X∗ such that

f (x) ̸= f (y) . This is an another consequence of the Hahn-Banach theorem.

For x ∈ X and f ∈ X∗ define c (x) (f) = f (x) . It is easily seen that c (x) ∈ X∗∗ and

that, in fact, the mapping c : X → X∗∗ is an isometric isomorphism, called the canonical

embedding of X into X∗∗. If c (X) = X∗∗, then X is said to be reflexive.

Proposition 2.3.8. For a Banach space X the following are equivalent:

1. X is reflexive.

2. X∗ is reflexive.

3. BX is weakly compact in X.

4. Any bounded sequence in X has a weakly convergent subsequence.

5. For any f ∈ X∗ there exists x ∈ BX such that f (x) = ∥f∥.

6. For any bounded closed convex subset C of X and any f ∈ X∗ there exists x ∈ C

such that f(x) = sup
{
f (y) : y ∈ C

}
.
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7. If (Cn) is any descending sequence of nonempty bounded closed convex subsets of X,

then ∩∞
n=1Cn ̸= ∅.

Note that property (7) above offers a quick way, which we will not prove here, to

confirm the following fact.

Theorem 2.3.9. (cf. [24]) If X is a uniformly convex Banach space, then X is reflexive.

Definition 2.3.10. A Banach space is said to satisfy Opial’s condition ([43]) if given

whenever {xn} converges weakly to x ∈ X,

lim sup
n→∞

∥xn − x∥ < lim sup
n→∞

∥xn − y∥

for each y ∈ X with y ̸= x.

2.4 Geodesic spaces

Definition 2.4.1. Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X

(or more briefly, a geodesic from x to y) is a map c : [0, l] → X such that c(0) = x, c(l) = y,

and d(c(t), c(t′)) = |t− t′| for all t, t′ ∈ [0, l].

The image c([0, l]) of c is called a geodesic segment joining x and y. When it is

unique, this geodesic segment is denoted by [x, y]. This means that z ∈ [x, y] if and only

if there exists α ∈ [0, 1] such that d(x, z) = (1 − α)d(x, y) and d(y, z) = αd(x, y). In this

case, we write z = αx⊕ (1− α)y.

Definition 2.4.2. The space (X, d) is said to be a geodesic space (D-geodesic space)

if every two points of X (every two points of distance smaller than D) are joined by a

geodesic, and X is said to be uniquely geodesic (D-uniquely geodesic) if there is exactly

one geodesic joining x and y for each x, y ∈ X (for x, y ∈ X with d(x, y) < D).

Definition 2.4.3. Let (X, d) be a metric space, x ∈ X, C ⊆ X. The diameter of C and

the distance from x to C are defined, respectively, by

diam(C) := sup {d(x, y) : x, y ∈ C} ,

d(x,C) := inf {d(x, y) : y ∈ C} .

Definition 2.4.4. Let (X, d) be a metric space. A subset C of X is said to be bounded

if diam(C) < ∞.
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Let En,1 denote the vector space Rn+1 endowed with the symmetric bilinear form

which associates to vectors u = (u1, ..., un+1) and v = (v1, ..., vn+1), the real number ⟨u|v⟩

is defined by

⟨u|v⟩ = −un+1vn+1 +
n∑

i=1

uivi.

Let Hn denote the hyperbolic n-space defined by

Hn = {u = (u1, ..., un+1) ∈ En,1 : ⟨u|u⟩ = −1, un+1 > 0}.

Let TxHn be a tangent space of Hn at x. The normalized geodesic c : R → Hn starting

from x ∈ Hn is given by

c(t) = (cosh t)x+ (sinh t)v, ∀t ∈ R

where v ∈ TxHn is the unit vector; while the distance d on Hn is

d(x, y) = arccosh(−⟨x, y⟩), ∀x, y ∈ Hn.

Then iteration process (1.1) has the form

xn+1 = (cosh(1− αn)r(xn, xn))xn + (sinh(1− αn)r(xn, xn))V (xn, xn), ∀n ≥ 0,

and iteration process (1.2) has the form

yn = (cosh(1− βn)r(xn, xn))xn + (sinh(1− βn)r(xn, xn))V (xn, xn),

xn+1 = (cosh(1− αn)r(xn, yn))xn + (sinh(1− αn)r(xn, yn))V (xn, yn), ∀n ≥ 0,

where

r(x, y) = arccosh(−⟨x, Ty⟩) and V (x, y) =
Ty + ⟨x, Ty⟩x√
⟨x, Ty⟩2 − 1

, ∀x, y ∈ Rn+1.

Definition 2.4.6. Given κ ∈ R, we denote by Mn
κ the following metric spaces:

(i) if κ = 0 then Mn
0 is the Euclidean space En;

(ii) if κ > 0 then Mn
κ is obtained from the spherical space Sn by multiplying the distance

function by the constant 1/
√
κ;

(iii) if κ < 0 then Mn
κ is obtained from the hyperbolic space Hn by multiplying the

distance function by the constant 1/
√
−κ.
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Definition 2.4.11. If κ ≤ 0, then X is called a CAT(κ) space if X is a geodesic space

such that all of its geodesic triangles satisfy the CAT(κ) inequality.

If κ > 0, then X is called a CAT(κ) space if X is Dκ-geodesic, where Dκ = π√
κ
and

any geodesic triangle △(x, y, z) in X with d(x, y) + d(y, z) + d(z, x) < 2Dκ satisfies the

CAT(κ) inequality.

Theorem 2.4.12. [5, p. 165] The following statements hold:

(i) If X is a CAT(κ) space, then it is a CAT(κ′) space for every κ′ ≥ κ.

(ii) If X is a CAT(κ′) for every κ′ ≥ κ, then it is a CAT(κ) space.

The following example shows that there exists a CAT(κ) space with κ > 0 which is

not a CAT(0) space.

Example 2.4.1. [15] Let (S2, d) be the spherical space and ei ∈ S2, for i = 1, 2, 3 be each

of the elements of the canonical basis of R3. Let C be the closed convex hull over the

sphere of {ei : i = 1, 2, 3}, i.e, the positive octant of the sphere. Then C is CAT(1) space

but C is not CAT(0) space.

Lemma 2.4.13. ([5, p.176]) Let κ > 0 and (X, d) be a complete CAT(κ) space with

diam(X) < π
2
√
κ
. Then

d (x,αy ⊕ (1− α)z) ≤ αd(x, y) + (1− α)d(x, z),

for all x, y, z ∈ X and α ∈ [0, 1].

Lemma 2.4.14. [44] Let κ > 0 and (X, d) be a CAT(κ) space with diam(X) ≤ π/2−ε√
κ

for

some ε ∈ (0,π/2). Then for any x, y, z ∈ X and α ∈ [0, 1], we have

d2 (x, (1− α)y ⊕ αz) ≤ (1− α)d2(x, y) + αd2(x, z)− R

2
α(1− α)d2(y, z), (2.1)

where R = (π − 2ε) tan(ε).

Definition 2.4.15. [37] A geodesic space (X, d) is called uniformly convex if for any

r > 0, and η ∈ (0, 2] there exists a δ ∈ (0, 1] such that for all a, x, y ∈ X,

d(x, a) ≤ r

d(y, a) ≤ r

d(x, y) ≤ ηr

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
=⇒ d

(
1

2
x⊕ 1

2
y, a

)
≤ (1− δ)r.

A mapping θ : (0,∞) × (0, 2] → (0, 1] providing such a δ := θ(r, η) for any r > 0 and

η ∈ (0, 2] is called a modulus of uniform convexity.
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Definition 2.4.17. Let (X, d) be a complete CAT(κ) space, let {xn} be a bounded

sequence in X and for x ∈ X, we set

r(x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf{r(x, {xn}) : x ∈ X},

and the asymptotic center A({xn}) of {xn} is the set

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}.

It is known from Proposition 4.1 of [15] that in a CAT(κ) space X with diameter

smaller than π
2
√
κ
, A({xn}) consists of exactly one point. We now give the concept of

∆-convergence and collect some of its basic properties.

Definition 2.4.18. ([32], [38]) A sequence {xn} in X is said to ∆-converge to x ∈ X

if x is the unique asymptotic center of {un} for every subsequence {un} of {xn}. In this

case we write ∆− limn→∞ xn = x and call x the ∆-limit of {xn}.

Lemma 2.4.19. Let κ > 0 and (X, d) be a complete CAT(κ) space with diam(X) < π
2
√
κ
.

Then the following statements hold:

(i) [15, Corollary 4.4] Every sequence in X has a ∆-convergence subsequence.

(ii) [15, Proposition 4.5] Let C be a closed convex subset of X. If {xn} ⊂ C and ∆ −

limn→∞ xn = x, then x ∈ C.

By the uniqueness of asymptotic centers, we can obtain the following lemma.

Lemma 2.4.20. (cf. [14]) Let κ > 0 and (X, d) be a complete CAT(κ) space with

diam(X) < π
2
√
κ
. If {xn} is a sequence in X with A({xn}) = {x} and let {un} is a

subsequence of {xn} with A({un}) = {u} and the sequence {d(xn, u)} converges, then

x = u.

Proof. Suppose that x ̸= u. By the uniqueness of asymptotic centers, we have

lim sup
n→∞

d(un, u) < lim sup
n→∞

d(un, x)

≤ lim sup
n→∞

d(xn, x)

< lim sup
n→∞

d(xn, u)

= lim sup
n→∞

d(un, u),

a contradiction, and hence x = u.
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Definition 2.4.21. Let C be a nonempty subset of a metric space (X, d).

(1) A mapping T : C → C is said to be quasi-nonexpansive if

d(T (x), p) ≤ d(x, p),

for all x ∈ C and p ∈ F (T ).

(2) A mapping T : C → C is said to be asymptotically nonexpansive if there exist a

sequence kn ≥ 1 such that limn→∞ kn = 1 and

d(Tn(x), Tn(y)) ≤ knd(x, y),

for all x, y ∈ C, n ∈ N.

(3) A mapping T : C → C is said to be asymptotic pointwise nonexpansive if there exists

a sequence of functions αn : C → [0,∞) such that

lim sup
n→∞

αn(x) ≤ 1 and d(Tn(x), Tn(y)) ≤ αn(x)d(x, y),

for all x, y ∈ C, n ∈ N.

(4) A mapping T : C → C is said to be nonspreading if

2d2(T (x), T (y)) ≤ d2(T (x), y) + d2(T (y), x)

for all x, y ∈ C.

(5) A mapping T : C → C is said to be hybrid if

3d2(T (x), T (y)) ≤ d2(x, y) + d2(T (x), y) + d2(T (y), x)

for all x, y ∈ C.

(6) A mapping T : C → C is said to be generalized hybrid if there exist functions

a1, a2, a3, k1, k2 : C → [0, 1) such that

(P1) d2(T (x), T (y)) ≤ a1(x)d2(x, y) + a2(x)d2(T (x), y) + a3(x)d2(T (y), x)

+ k1(x)d2(T (x), x) + k2(x)d2(T (y), y) for all x, y ∈ C;

(P2) a1(x) + a2(x) + a3(x) ≤ 1 for all x, y ∈ C;

(P3) 2k1(x) < 1− a2(x) and k2(x) < 1− a3(x) for all x ∈ C.
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(7) A mapping T : C → C is said to satisfy condition (C) if

1

2
d(x, T (x)) ≤ d(x, y) implies d(T (x), T (y)) ≤ d(x, y)

for all x, y ∈ C.

(8) A mapping T : C → C is said to be fundamentally nonexpansive if

d(T 2(x), T (y)) ≤ d(T (x), y)

for all x, y ∈ C.

(9) A mapping T : C → C is said to be compact if for every bounded sequence {xn} in

C, {T (xn)} has convergent subsequence in C.

(10) A mapping T : C → C is said to satisfy condition (I) if there exists a nondecreasing

function f : [0,∞) → [0,∞) with f(0) = 0 and f (r) > 0 for all r > 0 such that

d (x, T (x)) ≥ f
(
d (x, F (T ))

)
for all x ∈ C.

Remark 2.4.22.

(1) Every mapping which satisfies condition (C) is fundamentally nonexpansive, but the

inverse is not true (see [47]).

(2) Every nonexpansive mapping satisfies condition (C) (see [52]).

(3) Every nonexpansive mapping is asymptotically nonexpansive (see Definition 2.4.21).

(4) Every asymptotically nonexpansive is asymptotic pointwise nonexpansive (see Defi-

nition 2.4.21).

(5) Every nonexpansive mapping is generalized hybrid (see [39]).

(6) Every nonspreading mapping is generalized hybrid (see [39]).

(7) Every hybrid mapping is generalized hybrid (see [39]).

The following diagram shows the relationship between nonexpansive, condition (C),

fundamentally nonexpansive, asymptotically nonexpansive, asymptotic pointwise nonex-

pansive, nonspreading, generalized hybrid and hybrid mappings.
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T is fundamentally nonexpansive

⇑

T is satisfy condition (C) T is nonspreading

⇑ ⇓

T is nonexpansive =⇒ T is generalized hybrid

⇓ ⇑

T is asymptotically nonexpansive T is hybrid

⇓

T is asymptotic pointwise nonexpansive
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