
CHAPTER 3

Asymptotic pointwise nonexpansive mappings in CAT(κ)

spaces

In this chapter, we study convergence theorems of the Ishikawa iteration for asymp-

totic pointwise nonexpansive mappings on CAT(κ) spaces with κ > 0.

3.1 Basic concepts

Let C be a nonempty subset of a metric space (X, d). We shall denote by T (C) the

class of all asymptotic pointwise nonexpansive mappings from C into C. Let T ∈ T (C).

Then there exists a sequence of mapping αn : C → [0,∞) such that for all x, y ∈ C and

n ∈ N,

lim sup
n→∞

αn(x) ≤ 1 and d(Tn(x), Tn(y)) ≤ αn(x)d(x, y).

Let an(x) = max{αn(x), 1}. Without loss of generality, we can assume that

d(Tn(x), Tn(y)) ≤ an(x)d(x, y), and

lim
n→∞

an(x) = 1, an(x) ≥ 1, for all x, y ∈ C and n ∈ N. (3.1)

Define bn(x) = an(x)− 1. Then, for each x ∈ C we have limn→∞ bn(x) = 0.

Definition 3.1.1. Define Tr(C) as a class of all mappings in the class T (C) such that

∞∑

n=1

bn(x) < ∞ for everyx ∈ C, and (3.2)

an is a bounded function for every n ∈ N. (3.3)

It is clear that every nonexpansive mapping is asymptotic pointwise nonexpansive,

but there exists an asymptotic pointwise nonexpansive mapping which is not nonexpan-

sive.

Example 3.1.1. [2, p. 244] Let BH be the closed unit ball in the Hilbert space H = ℓ2

and T : BH → BH a mapping defined by

T (x1, x2, x3, ...) = (0, x21,α2x2,α3x3, ...),
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where {αi} is a sequence of real numbers such that 0 < αi ≤ 1 and
∏∞

i=2 αi = 1/2. Then

T is asymptotic pointwise nonexpansive but T is not nonexpansive.

Let X be a complete CAT(κ) space and C be a closed convex subset of X. Let

T ∈ Tr(C) and let {nk} be an increasing sequence of natural numbers. Let {tk}, {sk} ⊂

[a, b] ⊂ (0, 1). Define a sequence {xk} in C as:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1 ∈ C,

xk+1 = (1− tk)xk ⊕ tkTnk(yk),

yk = (1− sk)xk ⊕ skTnk(xk), for k ∈ N.

(3.4)

We say that the sequence {xk} in (3.4) is well-defined if lim supk→∞ ank(xk) = 1.

Remark 3.1.2. Observe that by the definition of asymptotic pointwise nonexpansiveness,

lim supk→∞ ak(x) = 1. for every x ∈ C. Hence we can always choose a subsequence {ank}

which makes {xk} well-defined.

Before proving the main convergence theorems we give the following definition and

some useful lemmas.

Definition 3.1.3. [9] A strictly increasing sequence {ni} ⊂ N is called quasi-periodic if

the sequence {ni+1 − ni} is bounded, or equivalently if there exists a number q ∈ N such

that any block of q consecutive natural numbers must contain a term of the sequence {ni}.

The smallest of such numbers q will be called a quasi-period of {ni}.

Example 3.1.2.

(i) The sequence {1, 3, 5, 7, ..., 2n+ 1, ...} is quasi-periodic with quasi-period 2.

(ii) The sequence {3, 6, 9, 12, ..., 3n, ...} is quasi-periodic with quasi-period 3.

(iii) The sequence {1, 4, 9, 16, ..., n2, ...} is not quasi-periodic.

Lemma 3.1.4. [9] Suppose {rk} is a bounded sequence of real numbers and {dk,n} is a

doubly-index sequence of real numbers which satisfy

lim sup
k→∞

lim sup
n→∞

dk,n ≤ 0, and rk+n ≤ rk + dk,n

for each k, n ≥ 1. Then {rk} converges to an r ∈ R.

The following lemma is a consequence of Lemma 2.2 of Khamsi and Khan [27].
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Lemma 3.1.5. Let κ > 0 and (X, d) be a complete CAT(κ) space with diam(X) < π
2
√
κ
.

Suppose that {tn} is a sequence in [b, c] for some b, c ∈ (0, 1) and {un}, {vn} are sequences

in X such that

(i) lim supn→∞ d(un, w) ≤ r,

(ii) lim supn→∞ d(vn, w) ≤ r, and

(iii) limn→∞ d((1− tn)un ⊕ tnvn, w) = r,

for some r ≥ 0. Then limn→∞ d(un, vn) = 0.

The existence of fixed points for asymptotic pointwise nonexpansive mappings in

CAT(κ) spaces was proved by Esṕınola et al. [16] as the following result.

Theorem 3.1.6. Let κ > 0 and (X, d) be a complete CAT(κ) space with diam(X) <

π
2
√
κ
. Let C be a nonempty closed convex subset of X. Then any asymptotic pointwise

nonexpansive mapping from C into C has a fixed point.

Lemma 3.1.7. Let κ > 0 and (X, d) be a complete CAT(κ) space with diam(X) < π
2
√
κ
.

Let C be a nonempty closed convex subset of X and let T ∈ Tr(C). Let {tk}, {sk} ⊂

[a, b] ⊂ (0, 1), and {nk} ⊂ N be such that {xk} in (3.4) is well-defined. Let z ∈ F (T ).

Then there exists an r ∈ R such that limk→∞ d(xk, z) = r.

Proof. For each k ∈ N, we let yk = (1− sk)xk ⊕ skTnk(xk). Then

d(xk+1, z) = d((1− tk)xk ⊕ tkT
nk(yk), z)

≤ (1− tk)d(xk, z) + tkd(T
nk(yk), z)

≤ (1− tk)d(xk, z) + tk(1 + bnk(z))d(yk, z)

≤ (1− tk)d(xk, z) + tk(1 + bnk(z)) [d((1− sk)xk ⊕ skT
nk(xk), z)]

≤ (1− tk)d(xk, z) + tk(1 + bnk(z)) [(1− sk)d(xk, z) + skd(T
nk(xk), z)]

≤ (1− tk)d(xk, z) + tk(1 + bnk(z))(1 + skbnk(z))d(xk, z)

≤ (1− tk)d(xk, z) + tk(1 + bnk(z))
2d(xk, z)

≤ d(xk, z) + tk(2bnk(z) + b2nk
(z))d(xk, z)

≤ d(xk, z) + (2bnk(z) + b2nk
(z))d(xk, z)

= d(xk, z) + bnk(z)(2 + bnk(z))d(xk, z)

= d(xk, z) + bnk(z)(2 + ank(z)− 1)d(xk, z)
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= d(xk, z) + bnk(z)(1 + ank(z))d(xk, z)

= d(xk, z) + (1 + ank(z))bnk(z)d(xk, z)

≤ d(xk, z) + (1 + ank(z))diam(C)bnk(z)

Fix any M > 1. Since ank(z) ≥ 1 and limk→∞ ank(z) = 1, it follow that there exists a

k0 ≥ 1 such that for k > k0, ank(z) ≤ M. Then

d(xk+1, z) ≤ d(xk, z) + (1 +M)diam(C)bnk(z)

It follows that for each n ∈ N,

d(xk+n, z) ≤ d(xk, z) + (1 +M)diam(C)
k+n+1∑

i=k

bni(z).

Denote rk = d(xk, z) for every k ∈ N and dk,n = diam(C)
∑k+n−1

i=k bni(z). Observe that

since T ∈ Tr(C), it follows that lim supk→∞ lim supn→∞ dk,n = 0. By Lemma 3.1.4 then,

there exists an r ∈ R such that limk→∞ d(xk, z) = r.

Lemma 3.1.8. Let κ > 0 and (X, d) be a complete CAT(κ) space with diam(X) < π
2
√
κ
.

Let C be a nonempty closed convex subset of X and let T ∈ Tr(C). Let {tk}, {sk} ⊂

[a, b] ⊂ (0, 1), and {nk} ⊂ N be such that {xk} in (3.4) is well-defined. Then

lim
k→∞

d(Tnk(yk), xk) = 0, (3.5)

and

lim
k→∞

d(xk+1, xk) = 0. (3.6)

Proof. By Theorem 3.1.6, F (T ) ̸= ∅. Let z ∈ F (T ). By Lemma 3.1.7, we get limk→∞ d(xk, z)

exists. Let

lim
k→∞

d(xk, z) = c. (3.7)

Since z ∈ F (T ), T ∈ Tr(C) and limk→∞ d(xk, z) = c, by Lemma 3.1.7 we have the

following

lim sup
k→∞

d(Tnk(yk), z) = lim sup
k→∞

d(Tnk(yk), T
nk(z))

≤ lim sup
k→∞

ank(z)d(yk, z)

≤ lim sup
k→∞

ank(z)d(skT
nk(xk)⊕ (1− sk)xk, z)

≤ lim sup
k→∞

(skank(z)d(T
nk(xk), z) + (1− sk)ank(z)d(xk, z))

≤ lim sup
k→∞

(
ska

2
nk
(z)d(xk, z) + (1− sk)ank(z)d(xk, z)

)
≤ c. (3.8)
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Note that

lim
k→∞

d(tkT
nk(yk)⊕ (1− tk)xk, z) = lim

k→∞
d(xk+1, z) = c. (3.9)

It follows from (3.7), (3.8), (3.9) and Lemma 3.1.5 that

lim
k→∞

d(Tnk(yk), xk) = 0.

Observe that (3.5) and the construction of the sequence {xk} yield

lim
k→∞

d(xk+1, xk) = 0.

This completes the proof.

Lemma 3.1.9. Let κ > 0 and (X, d) be a complete CAT(κ) space with diam(X) < π
2
√
κ
.

Let C be a nonempty closed convex subset of X and let T ∈ Tr(C). Let {tk}, {sk} ⊂

[a, b] ⊂ (0, 1), and {nk} ⊂ N be such that {xk} in (3.4) is well-defined. Then

lim
k→∞

d(Tnk(xk), xk) = 0.

Proof. Let yk = skTnk(xk)⊕ (1− sk)xk. Since

d(Tnk(xk), xk) ≤ d(Tnk(xk), T
nk(yk)) + d(Tnk(yk), xk)

≤ ank(xk)d(xk, yk) + d(Tnk(yk), xk)

= skank(xk)d(T
nk(xk), xk) + d(Tnk(yk), xk),

it follows that

d(Tnk(xk), xk) ≤
d(Tnk(yk), xk)

(1− skank(xk))
.

Since lim supk→∞ ank(xk) = 1, by Lemma 3.1.8 we get that

lim
k→∞

d(Tnk(xk), xk) = 0. (3.10)

This completes of the proof.

Theorem 3.1.10. Let κ > 0 and (X, d) be a complete CAT(κ) space with diam(X) < π
2
√
κ
.

Let C be a nonempty closed convex subset of X and let T ∈ Tr(C). Let {tk}, {sk} ⊂ [a, b] ⊂

(0, 1), and {nk} ⊂ N be such that {xk} in (3.4) is well-defined. If the set J = {j ∈ N :

nj+1 = 1 + nj} is quasi-periodic, then

lim
k→∞

d(T (xk), xk) = 0. (3.11)
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Proof. It is enough to prove that d(T (xk), xk) → 0 as k → ∞ through J . Indeed, let q

be a quasi-period of J and ε > 0 be given. Then there exists N1 ∈ N such that

d(T (xk), xk) <
ε

3
, for all k ∈ J such that k ≥ N1. (3.12)

By the quasi-periodicity of J , for each l ∈ N there exists il ∈ J such that |l − il| ≤ q.

Without loss of generality, we can assume that l ≤ il ≤ l+ q (the proof for the other case

is identical). Let M = sup{a1(x) : x ∈ C}. Then M ≥ 1. Since liml→∞ d(xl+1, xl) = 0 by

(3.6), there exists N2 ∈ N such that

d(xl+1, xl) <
ε

3qM
, for all l ≥ N2. (3.13)

This implies that for all l ≥ N2,

d(xil , xl) ≤ d(xil , xil−1) + ...+ d(xl+1, xl) ≤ q

(
ε

3qM

)
=

ε

3M
. (3.14)

By the definition of T, we have

d(T (xil), T (xl)) ≤ Md(xil , xl) ≤ M
( ε

3M

)
=

ε

3
. (3.15)

Let N = max{N1, N2}. Then for l ≥ N, we have from (3.12), (3.14) and (3.15) that

d(xl, T (xl)) ≤ d(xl, xil) + d(xil , T (xil)) + d(T (xil), T (xl)) <
ε

3M
+

ε

3
+

ε

3
≤ ε.

To prove that d(T (xk), xk) → 0 as k → ∞ through J . Since J = {k ∈ N : nk+1 =

nk + 1} is quasi-periodic then for each k ∈ J , we have

d(xk, Txk) ≤ d (xk, xk+1) + d (xk+1, T
nk+1(xk+1)) + d(Tnk+1(xk+1), T

nk+1(xk))

+ d(Tnk+1(xk), T (xk))

≤ d(xk, xk+1) + d(xk+1, T
nk+1(xk+1)) + ank+1(xk+1)d(xk+1, xk)

+ a1(xk)d(T
nk(xk), xk).

This, together with (3.6) and (3.10), we can obtain that d(T (xk), xk) → 0 as k → ∞

through J .

Lemma 3.1.11. Let κ > 0 and (X, d) be a complete CAT(κ) space with diam(X) < π
2
√
κ
.

Let C be a nonempty closed convex subset of X and let T ∈ Tr(C). If limn→∞ d(xn, T (xn)) =

0, then limn→∞ d(xn, T l(xn)) = 0 for every l ∈ N.

Proof. It follows from (3.3) that there exists M > 0 such that

l−1∑

i=1

sup{ai(x) ; x ∈ C} ≤ M. (3.16)
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It follows from

d(T l(xn), xn) ≤
l−1∑

i=1

d(T i+1(xn), T
i(xn)) + d(T (xn), xn) (3.17)

≤ d(T (xn), xn)

(
l−1∑

i=1

ai(xn) + 1

)
(3.18)

≤ (M + 1)d(T (xn), xn) (3.19)

that

lim
n→∞

d(T l(xn), xn) = 0. (3.20)

This completes the proof.

The following result is the demiclosed principal for asymptotic pointwise nonex-

pansive mapping in CAT(κ) spaces.

Theorem 3.1.12. Let κ > 0 and (X, d) be a complete CAT(κ) space with diam(X)

< π
2
√
κ
. Let C be a nonempty closed convex subset of X and let T ∈ Tr(C). Suppose {xn}

is a sequence in C such that limn→∞ d(xn, T (xn)) = 0 and ∆ − limn→∞ xn = z. Then

T (z) = z.

Proof. Define φ(x) = lim supn→∞ d(xn, x) for x ∈ C. Let m ∈ N be such that m > 2.

Thus

d(Tm(xn), x) ≤
m∑

i=1

d(T i(xn), T
i−1(xn)) + d(xn, x)

≤ d(T (xn), xn)
m∑

i=1

ai(xn) + d(xn, x).

Since all functions ai are bounded and d(T (xn), xn) → 0, we have

lim sup
n→∞

d(Tm(xn), x) ≤ lim sup
n→∞

d(xn, x) = φ(x).

On the other hand, by Lemma 3.1.11, we have

φ(x) ≤ lim sup
n→∞

d(xn, T
m(xn)) + lim sup

n→∞
d(Tm(xn), x) = lim sup

n→∞
d(Tm(xn), x).

Hence,

φ(x) = lim sup
n→∞

d(Tm(xn), x).

Since T is asymptotic pointwise nonexpansive,
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φ(Tm(x)) = lim sup
n→∞

d(Tm(xn), T
m(x))

≤ lim sup
n→∞

am(x)d(xn, x)

≤ am(x)

[
lim sup
n→∞

d(xn, x)

]

≤ am(x)φ(x).

That is

φ(Tm(x)) ≤ am(x)φ(x), for every x ∈ C.

Applying this to z and passing with m → ∞, we have

lim
m→∞

φ(Tm(z)) ≤ φ(z). (3.21)

Since ∆− limn→∞ xn = z, for x ̸= z we have

φ(z) = lim sup
m→∞

d(xn, z) < lim sup
m→∞

d(xn, x) = φ(x), (3.22)

which implies that φ(z) = inf{φ(x) ; x ∈ C}. This together with (3.21) gives us

lim
m→∞

φ(Tm(z)) = φ(z). (3.23)

Since diam(X) < π
2
√
κ
, then there exists ε ∈ (0,π/2) such that diam(X) ≤ π/2−ε√

κ
. By

Lemma 2.4.14, we have

d2
(
xn,

z ⊕ Tm(z)

2

)
≤ 1

2
d2(xn, z) +

1

2
d2(xn, T

m(z))− R

8
d2(z, Tm(z))

for any n,m ≥ 1. If we take lim supn→∞ to both side, we get that

lim sup
n→∞

d2
(
xn,

z ⊕ Tm(z)

2

)
≤ 1

2
lim sup
n→∞

d2(xn, z)
2 +

1

2
lim sup
n→∞

d(xn, T
m(z))

− R

8
lim sup
n→∞

d2(z, Tm(z)).

This implies that

φ

(
z ⊕ Tm(z)

2

)2

≤ 1

2
φ(z)2 +

1

2
φ(Tm(z))2 − R

8
d2(z, Tm(z))

for any m ≥ 1. The definition of z implies

φ(z)2 ≤ 1

2
φ(z)2 +

1

2
φ(Tm(z))2 − R

8
d2(z, Tm(z))

for any m ≥ 1. Thus

d2(z, Tmz) ≤ 4

R
φ(Tm(z))2 − 4

R
φ(z)2.

Take m → ∞, we have limm→∞ d(z, Tm(z)) = 0. Hence T (z) = z since T is continuous.
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Corollary 3.1.13. Let (X, d) be a complete CAT(0) space, C be a nonempty bounded

closed convex subset of X, and T : C → C be an asymptotic pointwise nonexpansive

mapping. Let {xn} be a sequence in C with limn→∞ d(T (xn), xn) = 0 and ∆−limn→∞ xn =

z. Then z ∈ C and z = T (z).

Proof. It well known that every convex subset of a CAT(0) space, equipped with the

induced metric, is a CAT(0) space. Then (C, d) is a CAT(0) space and hence it is a

CAT(κ) space for all κ > 0. Notice also that C is R-convex for R = 2. Since C is

bounded, we can choose κ > 0 so that diam(C) < π
2
√
κ
. The conclusion follows from

Theorem 3.1.12.

Lemma 3.1.14. Let κ > 0 and (X, d) be a complete CAT(κ) space with diam(X)

< π
2
√
κ
. Let C be a nonempty closed convex subset of X and let T : C → C be an

asymptotic pointwise nonexpansive mapping. Suppose {xn} is a sequence in C such that

limn→∞ d(xn, T (xn)) = 0 and {d(xn, v)} converges for each v ∈ F (T ), then ωw(xn) ⊆

F (T ). Here ωw(xn) =
⋃

A ({un}) where the union is taken over all subsequences {un} of

{xn}. Moreover, ωw(xn) consists of exactly one point.

Proof. Let u ∈ ωw(xn). Then there exists a subsequence {un} of {xn} such that A({un}) =

{u}. By Lemma 2.4.19, there exists a subsequence {vn} of {un} such that∆−limn→∞ vn =

v ∈ C. By Theorem 3.1.12, v ∈ F (T ). By Lemma 2.4.20, u = v. This shows that ωw(xn) ⊆

F (T ). Next, we show that ωw(xn) consists of exactly one point. Let {un} be subsequence

of {xn} with A({un}) = {u} and let A({xn}) = {x}. Since u ∈ ωw(xn) ⊆ F (T ), we have

{d(xn, u)} converges. Again, by Lemma 2.4.20, x = u. This completes the proof.

3.2 ∆ and strong convergence theorems

Theorem 3.2.1. Let κ > 0 and (X, d) be a complete CAT(κ) space with diam(X) < π
2
√
κ
.

Let C be a nonempty closed convex subset of X and let T ∈ Tr(C). Let {tk}, {sk} ⊂ [a, b] ⊂

(0, 1), and {nk} ⊂ N be such that {xk} in (3.4) is well-defined. If the set J = {j ; nj+1 =

1 + nj} is quasi-periodic, then {xk} ∆-converge to a fixed point of T.

Proof. By Theorem 3.1.6, F (T ) ̸= ∅. Let z ∈ F (T ). By Lemma 3.1.7, limk→∞ d(xk, z) ex-

ists and hence {xk} is bounded. We have from Lemma 3.1.10 that limk→∞ d(xk, T (xk)) =

0. It follows from Lemma 3.1.14 that ωw(xk) ⊆ F (T ) . Since ωw(xk) consists of exactly

one point, {xk} ∆-converges to an element of F (T ) as desired.
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Theorem 3.2.2. Let κ > 0 and (X, d) be a complete CAT(κ) space with diam(X) < π
2
√
κ
.

Let C be a nonempty closed convex subset of X and let T ∈ Tr(C). Assume that Tm is

compact for some m ≥ 1. Let {tk}, {sk} ⊂ [a, b] ⊂ (0, 1), and {nk} ⊂ N be such that {xk}

in (3.4) is well-defined. If the set J = {j ; nj+1 = 1 + nj} is quasi-periodic, then {xk}

converges strongly to a fixed point of T.

Proof. By Lemma 3.1.10,

lim
k→∞

d(T (xk), xk) = 0. (3.24)

By Lemma 3.1.11,

lim
k→∞

d(Tm(xk), xk) = 0. (3.25)

By the compactness of Tm we can select a subsequence {xkj} of {xk} such that

lim
j→∞

d(Tm(xkj ), z) = 0, for all z ∈ C. (3.26)

Since

d(xkj , z) ≤ d(xkj , T
m(xkj )) + d(Tm(xkj ), z),

it follows from (3.25) and (3.26) that

lim
j→∞

d(xkj , z) = 0. (3.27)

Since

d(T (z), z) ≤ d(T (z), T (xkj ) + d(T (xkj ), xkj ) + d(xkj , z)

≤ a1(z)d(z, xkj ) + d(T (xkj ), xkj ) + d(xkj , z),

it follows from (3.24) and (3.27) that z ∈ F (T ). Applying Lemma 3.1.7 we conclude that

limk→∞ d(xk, z) exists. In view of (3.27), limk→∞ d(xk, z) = 0.
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