CHAPTER 3

Asymptotic pointwise nonexpansive mappings in CAT (k)

spaces

In this chapter, we study convergence theorems of the Ishikawa iteration for asymp-

totic pointwise nonexpansive mappings on CAT (k) spaces with £ > 0.

3.1 Basic concepts

Let C be a nonempty subset of a metric space (X, d). We shall denote by 7 (C') the
class of all asymptotic pointwise nonexpansive mappings from C into C. Let T € T(C).
Then there exists a sequence of mapping «a,, : C' — [0,00) such that for all z,y € C' and
n € N,
limsup ap(z) < 1 and d(T"(2), T"(y)) < an(z)d(x,y).

n—oo

Let a,(x) = max{ay,(x),1}. Without loss of generality, we can assume that
d(T"(x), T"(y)) < an(x)d(x, y), and
li_>m an(r) =1, ap(x) >1, forall z,y € C and n € N. (3.1)

Define b, (z) = an(z) — 1. Then, for each x € C' we have lim;,_,o by (z) = 0.

Definition 3.1.1. Define 7,(C) as a class of all mappings in the class 7(C) such that

o

Z bp(x) < cofor everyxz € C, and (3.2)
n=1
an is a bounded function for every n € N. (3.3)

It is clear that every nonexpansive mapping is asymptotic pointwise nonexpansive,
but there exists an asymptotic pointwise nonexpansive mapping which is not nonexpan-

sive.

Example 3.1.1. [2, p. 244] Let By be the closed unit ball in the Hilbert space H = /o
and T : By — By a mapping defined by

T(x1,x2,x3,...) = (0, x%, QaoTo, A3T3, ...),
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where {a;} is a sequence of real numbers such that 0 < o; <1 and [[;2, o = 1/2. Then

T is asymptotic pointwise nonexpansive but 7' is not nonexpansive.

Let X be a complete CAT (k) space and C be a closed convex subset of X. Let
T € 7.(C) and let {nt} be an increasing sequence of natural numbers. Let {tx}, {sx} C

[a,b] C (0,1). Define a sequence {x} in C as:

x] € C,
Tp+1 = (1 = t)zp & T (yi), (3.4)
Yk = (1 — sp)xp ® s T™ (xy), for k € N.

We say that the sequence {xy} in (3.4) is well-defined if limsup;,_,. an, (zx) = 1.

Remark 3.1.2. Observe that by the definition of asymptotic pointwise nonexpansiveness,
lim supy,_, o ar(z) = 1. for every € C. Hence we can always choose a subsequence {a,, }

which makes {zj} well-defined.

Before proving the main convergence theorems we give the following definition and

some useful lemmas.

Definition 3.1.3. [9] A strictly increasing sequence {n;} C N is called quasi-periodic if
the sequence {n;11 —n;} is bounded, or equivalently if there exists a number ¢ € N such
that any block of ¢ consecutive natural numbers must contain a term of the sequence {n;}.

The smallest of such numbers ¢ will be called a quasi-period of {n;}.
Example 3.1.2.
(i) The sequence {1,3,5,7,...,2n+ 1, ...} is quasi-periodic with quasi-period 2.
(ii) The sequence {3,6,9,12,...,3n,...} is quasi-periodic with quasi-period 3.
(iii) The sequence {1,4,9,16,...,n%, ...} is not quasi-periodic.

Lemma 3.1.4. [9] Suppose {ry} is a bounded sequence of real numbers and {dy} is a
doubly-index sequence of real numbers which satisfy
limsuplimsupdy, <0, and rp4p < 7%+ dipn
k—oo  Mm—00

for each k,n > 1. Then {ry} converges to an r € R.

The following lemma is a consequence of Lemma 2.2 of Khamsi and Khan [27].

23



Lemma 3.1.5. Let kK > 0 and (X, d) be a complete CAT(k) space with diam(X ) < 2f

Suppose that {t,} is a sequence in [b, c] for some b, c € (0,1) and {u,}, {vn} are sequences

i X such that

(i) limsup,,_, d(up,w) <r,

(#) limsup,,_,. d(vp,w) < r, and

(i4i) limy, o0 d((1 — tp)up ® thv,, w) =1,
for some r > 0. Then limy, o d(tp, vy) = 0.

The existence of fixed points for asymptotic pointwise nonexpansive mappings in

CAT(k) spaces was proved by Espinola et al. [16] as the following result.

Theorem 3.1.6. Let £ > 0 and (X,d) be a complete CAT(k) space with diam(X) <

_m_
2R "

nonexpansive mapping from C into C has a fized point.

Let C be a nonempty closed convex subset of X. Then any asymptotic pointwise

Lemma 3.1.7. Let K > 0 and (X, d) be a complete CAT(k) space with diam(X ) < Q\f
Let C' be a nonempty closed convex subset of X and let T € T.(C). Let {tx},{sx} C
[a,b] C (0,1), and {n} C N be such that {xi} in (3.4) is well-defined. Let z € F(T).

Then there exists an r € R such that limg_,oo d(xg, 2) = 7.

Proof. For each k € N, we let yx = (1 — sp)xx ® sxT™ (xy). Then

d(xgy1,2) = d((1 — tgp)zk © tT™ (yi), 2)

d(@k, 2) + ted(T™ (yr), 2)

d(yk, )

[d((1 — sg)zr ® sxT"* (2k), 2)]

1 —t)d(zp, 2) + tr( z))
( (2))
ti(L+ bny (2)) [(1 — sp)d(@p, 2) + spd(T™ (), 2)]
( (2))

+ ti( (2))

z)
(Th, 2) + te(1 + by, (2
S HEMNIMNELS
(zk,2) +

d(zk, z) + te(1 + by, (2)) (1 + sgbn, (2))d(zk, 2)
(k, 2)

1—tg)d(xp, 2 (14 by, (2 2d(xk,z)
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d(mk’z) +_bnk(z)(1 +'ank(z))d(xkvz)
=d(zk, 2) + (1 + an, (2))bp, (2)d(zk, 2)
<d(zk,z) + (1 + an, (2))diam(C)by, (2)

Fix any M > 1. Since ay, (z) > 1 and limg_,o an,(2) = 1, it follow that there exists a

ko > 1 such that for k > ko, an, (2) < M. Then
d(zg41,2) < d(zg, 2) + (1 + M)diam(C)by, (2)

It follows that for each n € N,

k4+n+1
A(Tpgn, 2) < d(@p, 2) + (1 + M)diam(C) > by, (2).
=k

Denote 74, = d(zy, 2) for every k € N and dy,, = diam(C) Y5471 b, (2). Observe that
since T € T.(C), it follows that limsup,_, limsup,, ., di, = 0. By Lemma 3.1.4 then,

there exists an r € R such that limg s d(xg, 2) = 7. O

Lemma 3.1.8. Let k > 0 and (X, d) be a complete CAT (k) space with diam(X ) < ﬁ

Let C be a nonempty closed convex subset of X and let T € T.(C). Let {tx}, {sk} C
[a,b] C (0,1), and {n} C N be such that {zy} in (5.4) is well-defined. Then

lim d(T™* (yx), zx) =0, (3.5)
k—o0
and
lim d(xgi1,2x) = 0. (3.6)
k— o0

Proof. By Theorem 3.1.6, F(T') # (). Let z € F(T). By Lemma 3.1.7, we get limy_,o d(zg, 2)
exists. Let

lim d(z, z) = ec. (3.7)

k—ro0
Since z € F(T), T € T,(C) and limy_,o d(x,2) = ¢, by Lemma 3.1.7 we have the
following
lim sup d(T"* (yx), z) = lim sup d(T"* (yx), T"*(=))
k—o0 k—o0

< limsup an, (2)d(yx, 2)

k—o00

< limsup ay, (2)d(sgT™ (vx) ® (1 — s)w, 2)

k—o0
< liiri}sup (Skn, (2)d(T™ (x), 2) + (1 — sg)an, (2)d(xg, 2))
< liirisup (skaik(z)d(aﬁk, z) + (1 = sp)an, (2)d(z,2)) <c.  (3.8)
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Note that
lm d(tT"™ (yx) & (1 — tg)xg, 2) = lim d(zp41,2) = c. (3.9)
k—ro0 k—ro0

It follows from (3.7), (3.8), (3.9) and Lemma 3.1.5 that
lim d(T"*(y),xr) = 0.
k—ro0
Observe that (3.5) and the construction of the sequence {z} yield
lim d(xg41,2x) = 0.
k—ro0
This completes the proof. ]

Lemma 3.1.9. Let k > 0 and (X,d) be a complete CAT (k) space with diam(X ) < ENCE
Let C be a nonempty closed convex subset of X and let T € T.(C). Let {tx}, {sk} C
[a,b] C (0,1), and {nr} C N be such that {zy} in (5.4) is well-defined. Then

lim d(T™(xy),zx) = 0.

k— o0

Proof. Let yp = spT™ (xx) ® (1 — sg)xk. Since

d(T"™ (zr,), o) < d(T™ (zg), T (yx)) + d(T"* (yx), k)
< an,, (zr)d(xK, y) + AT (yk ), T1)
= SkQn,, (xk)d(Tnk (mk)’ xk) i d(Tnk (yk)’ xk)’
it follows that
AT (yr), 2x)

(1 = span, (z1))’

Since lim supy,_, o, @n, (xx) = 1, by Lemma 3.1.8 we get that

d(Tnk (l’k), xk) <

lim d(T"*(xy),zk) = 0. (3.10)

k—o0

This completes of the proof. O

Theorem 3.1.10. Let k > 0 and (X, d) be a complete CAT (k) space with diam(X ) < QWW
Let C be a nonempty closed convez subset of X and let T € T.(C). Let {tx},{sx} C [a,b] C
(0,1), and {nr} C N be such that {xp} in (3.4) is well-defined. If the set J = {j € N :

nj+1 = 1+n;} is quasi-periodic, then

thIgo d(T(xg), z) = 0. (3.11)
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Proof. Tt is enough to prove that d(T'(xy),xx) — 0 as k — oo through J. Indeed, let ¢
be a quasi-period of J and € > 0 be given. Then there exists N; € N such that

d(T(xg),z,) < =, for all k € J such that k > Nj. (3.12)

Wl M

By the quasi-periodicity of J, for each [ € N there exists i; € J such that |l — 4| < gq.
Without loss of generality, we can assume that [ <i; <[+ g (the proof for the other case
is identical). Let M = sup{ai(z) : € C'}. Then M > 1. Since lim;_, o d(zi41,2;) = 0 by
(3.6), there exists Ny € N such that

d(zis1, 1)) < iﬂ for all [ > No. (3.13)
This implies that for all [ > Ns,
(i, ) < d(xiy, wi-1) + o+ d(xi1, 1) < g ( < > = \&_ (3.14)
3qM 3M
By the definition of 7', we have
d(T (), T(x1)) < Md(wy,,2;) < M (3iM) A % (3.15)

Let N = max{Nj, N2}. Then for [ > N, we have from (3.12), (3.14) and (3.15) that

d(a, T(w)) < d(wn, @) + dlag, Tlay)) + d(D(ay) T(e) < g+ 5 + 5 <e.

To prove that d(T'(zx),zx) — 0 as k — oo through J. Since J ={k € N:ny; =

ng + 1} is quasi-periodic then for each k € J, we have
d(zg, Tay) < d(@g, Tpe1) +d (D41, T (2g41)) + AT (2g41), T ()
+ d(T™  (ay), T(1))
< d(@g, Tpr1) + d(@pr1, T (Tp41)) + gy (Tr1)d(Tpp1, o)

+ ay(zg)d(T™ (z1), k).

This, together with (3.6) and (3.10), we can obtain that d(T'(xg),xr) — 0 as k — oo
through J. O

Lemma 3.1.11. Let k > 0 and (X, d) be a complete CAT (k) space with diam(X ) < ﬁ

Let C be a nonempty closed convex subset of X and letT € T,(C). If limy,_ o0 d(zpn, T (xy)) =
0, then lim, o0 d(2y, T'(2,)) = 0 for every I € N.

Proof. Tt follows from (3.3) that there exists M > 0 such that
-1
Zsup{ai(x) ; xeC <M. (3.16)
i=1
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It follows from

-1

A(T (), 2n) <D d(TH (@), T () + d(T (), )
=1

-1
< d(T(xn), 2n) (Z ai(zn) + 1)

< (M + 1)d(T (), 20)

that
lim d(T"(zy,), z,) = 0.

n—o0

This completes the proof.

(3.17)

(3.18)

(3.19)

(3.20)

O

The following result is the demiclosed principal for asymptotic pointwise nonex-

pansive mapping in CAT (k) spaces.

Theorem 3.1.12. Let k > 0 and (X,d) be a complete CAT(k) space with diam(X)

< ﬁ Let C be a nonempty closed convex subset of X and let T € T,(C). Suppose {x,}

is a sequence in C' such that lim, o d(zn, T(x,)) = 0 and A — limy, o0 &, = z. Then

T(z) = z.

Proof. Define ¢(z) = limsup,,_, . d(zp,x) for z € C. Let m € N be such that m > 2.

Thus

A(T™ (), 2) < d(T(20), T (wn)) + d(zn, )
=1

m

< d(T(2n),20) Y ai(zn) + d(zn, 7).
i=1

Since all functions a; are bounded and d(T'(zy,),x,) — 0, we have

limsup d(T™(xy,), z) < limsup d(x,, z) = ¢(x).

n—o0 n—oo

On the other hand, by Lemma 3.1.11, we have

o(x) < limsupd(zy, T™ (xy,)) + limsup d(T" (z,), x) = limsup d(T" (zy,), x).

n—oo n—oo n—o0

Hence,

¢(x) = limsup d(T" (xy,), x).

n—oo

Since T is asymptotic pointwise nonexpansive,
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O(T™(x)) = limsup d(T™(xy,), T (x))

n—oo

< limsup a, (z)d(zy, )
n—oo

< () [lim sup d(z, m)]

< am(x) ().
That is
(T (2)) < am(x)p(x), for every z € C.

Applying this to z and passing with m — oo, we have

lim $(T7(2)) < 6(). (3.21)

m—oo
Since A — lim,, o, x,, = 2, for = # z we have

¢(z) =limsup d(xy, 2) < limsup d(z,, x) = ¢(z), (3.22)

mM—r00 m—r00

which implies that ¢(z) = inf{¢(z) ; € C}. This together with (3.21) gives us

lim ¢(T™(2)) = 6(2). (3.23)
m—ro0
Since diam(X) < 37, then there exists & € (0,7/2) such that diam(X) < ”/2\/56. By

Lemma 2.4.14, we have

R (xn %W) < %dz(xn,z) 4 %dQ(azn,Tm(z)) A %dQ(z,Tm(z))

for any n,m > 1. If we take lim sup,,_,., to both side, we get that

" 1 1
lim sup d? <xn, M) < ) lim sup d*(zy,, 2)* + = limsup d(x,,, T™(2))

n—oo 2 n—oo n—oo

— % lim sup d?(z, T™(2)).

n—0o0

This implies that

™m z 2
o (FEFY) < GeGr G0 = ST

for any m > 1. The definition of z implies

B < SOl + 30T () — S (=T ()
for any m > 1. Thus

d?(z,T™z) <
Take m — oo, we have limy, oo d(z,7™(2)) = 0. Hence T'(z) = z since T is continuous.

O
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Corollary 3.1.13. Let (X,d) be a complete CAT(0) space, C be a nonempty bounded
closed convexr subset of X, and T : C — C be an asymptotic pointwise nonexrpansive
mapping. Let {xy} be a sequence in C with lim, o d(T(xy), x,) = 0 and A—lim, oo T, =

z. Then z € C and z = T(z).

Proof. Tt well known that every convex subset of a CAT(0) space, equipped with the
induced metric, is a CAT(0) space. Then (C,d) is a CAT(0) space and hence it is a
CAT(k) space for all k > 0. Notice also that C' is R-convex for R = 2. Since C is
bounded, we can choose £ > 0 so that diam(C) < ﬁ—ﬁ The conclusion follows from

Theorem 3.1.12. J

Lemma 3.1.14. Let k > 0 and (X,d) be a complete CAT(k) space with diam(X)
< ﬁ Let C be a nonempty closed convexr subset of X and let T : C — C be an
asymptotic pointwise nonexpansive mapping. Suppose {x,} is a sequence in C such that
lim,, o0 d(2n, T(zy)) = 0 and {d(x,,v)} converges for each v € F(T), then wy(zy,) C
F(T). Here wy(xy) = A ({un}) where the union is taken over all subsequences {uy} of

{zn}. Moreover, wy(zy) consists of exactly one point.

Proof. Let u € wy,(xy,). Then there exists a subsequence {uy, } of {x,,} such that A({u,}) =
{u}. By Lemma 2.4.19, there exists a subsequence {v, } of {u, } such that A—lim,,_,~ v, =
v € C. By Theorem 3.1.12, v € F(T'). By Lemma 2.4.20, u = v. This shows that wy,(z,) C
F(T). Next, we show that wy(x,) consists of exactly one point. Let {u,} be subsequence
of {z,} with A({uy}) = {u} and let A({x,}) = {x}. Since u € wy(x,) C F(T), we have
{d(xn,u)} converges. Again, by Lemma 2.4.20, = u. This completes the proof. O

3.2 A and strong convergence theorems

Theorem 3.2.1. Let k > 0 and (X, d) be a complete CAT (k) space with diam(X ) < ﬁ
Let C be a nonempty closed convex subset of X and let T € T,(C). Let {tx},{sr} C [a,b] C
(0,1), and {ni} C N be such that {z1} in (3.4) is well-defined. If the set J = {j; nj41 =

1+ n;} is quasi-periodic, then {x} A-converge to a fized point of T.

Proof. By Theorem 3.1.6, F(T) # (). Let 2 € F(T). By Lemma 3.1.7, limy_, o d(z, 2) ex-
ists and hence {z}} is bounded. We have from Lemma 3.1.10 that limy_o d(zg, T'(z1)) =
0. Tt follows from Lemma 3.1.14 that wy(zr) C F(T). Since wy(xy) consists of exactly

one point, {xx} A-converges to an element of F(7T) as desired. O
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Theorem 3.2.2. Let k > 0 and (X, d) be a complete CAT(k) space with diam(X ) < ﬁ
Let C be a nonempty closed convex subset of X and let T € T.(C). Assume that T™ is
compact for some m > 1. Let {t;},{sx} C [a,b] C (0,1), and {ny} C N be such that {xy}
in (3.4) is well-defined. If the set J = {j; nj4+1 = 1+ n;} is quasi-periodic, then {x}

converges strongly to a fixed point of T.

Proof. By Lemma 3.1.10,

lim d(T'(zx),zx) = 0. (3.24)
k—o0
By Lemma 3.1.11,
lim d(Tm(xk),mk) =0. (325)
k— o0

By the compactness of 7™ we can select a subsequence {zy,} of {z;} such that

lim d(T™(z,),2) =0, for all z € C. (3.26)

Jj—o0
Since
d(wg;, 2) < d(zg,, T (2r,)) + d(T™ (21,), 2),

it follows from (3.25) and (3.26) that

lim d(zy,;, z) = 0. (3.27)

Jj—00

Since

d(T(2),2) < d(T(2), Tar,) + d(T(xy,), 21;) + (g, 2)

< a1(2)d(z, zg;) + d(T(zg,), 2k, ) + d(zks 5 2),

it follows from (3.24) and (3.27) that z € F/(T). Applying Lemma 3.1.7 we conclude that

limg o d(zg, 2) exists. In view of (3.27), limg_, o d(2k, 2) = 0. O
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