CHAPTER 4

Generalized hybrid mappings in $CAT(\kappa)$ spaces

In this chapter, we study fixed point theorems and convergence theorems of the Ishikawa iteration for generalized hybrid mappings on $CAT(\kappa)$ spaces with $\kappa > 0$.

1818

4.1 Basic concepts

Let C be a nonempty subset of a $CAT(\kappa)$ space (X, d). Recall that a mapping $T: C \to X$ is called *generalized hybrid* if there exist functions $a_1, a_2, a_3, k_1, k_2 : C \to [0, 1)$ such that

- $(P1) d^{2}(T(x), T(y)) \leq a_{1}(x)d^{2}(x, y) + a_{2}(x)d^{2}(T(x), y) + a_{3}(x)d^{2}(T(y), x) + k_{1}(x)d^{2}(T(x), x) + k_{2}(x)d^{2}(T(y), y) \text{ for all } x, y \in C;$
- (P2) $a_1(x) + a_2(x) + a_3(x) \le 1$ for all $x, y \in C$;
- (P3) $2k_1(x) < 1 a_2(x)$ and $k_2(x) < 1 a_3(x)$ for all $x \in C$.

It is clear that every nonexpansive mapping is generalized hybrid, but the converse is not true.

Example 4.1.1. [12] Define a mapping $T : [0,3] \rightarrow [0,3]$ by

$$T(x) = \begin{cases} 0, & x \neq 3 \\ 2, & x = 3. \end{cases}$$

Then T is generalized hybird but T is not nonexpansive.

Let C be a nonempty closed convex subset of a complete $CAT(\kappa)$ space (X, d) and let

$$P_C(x) = \{ y \in C : d(x, y) = \inf_{z \in C} d(x, z) \}$$

be the *metric projection* from X onto C.

Lemma 4.1.1. ([15, Proposition 3.5]) Let $\kappa > 0$ and (X, d) be a complete $CAT(\kappa)$ space with $diam(X) < \frac{\pi}{2\sqrt{\kappa}}$. Let $x \in X$ and C be a nonempty closed convex subset of X. Then (i) for each $x \in X$, $P_C(x)$ is a singleton;

- (ii) for each $y \in C$, $d(P_C(x), P_C(y)) \le d(x, y)$.

4.2 Demiclosed principle

Now, we prove the demiclosed principle for generalized hybrid mappings on $CAT(\kappa)$ spaces.

Theorem 4.2.1. Let $\kappa > 0$ and (X, d) be a complete $CAT(\kappa)$ space with $diam(X) \leq \frac{\pi/2 - \varepsilon}{\sqrt{\kappa}}$ for some $\varepsilon \in (0, \pi/2)$. Let C be a nonempty closed convex subset of X, and $T : C \to X$ be a generalized hybrid mapping with $\frac{2k_1(x)}{1-a_2(x)} < \frac{R}{2}$ for all $x \in C$ where $R = (\pi - 2\varepsilon)tan(\varepsilon)$. Let $\{x_n\}$ be a sequence in C with $\Delta - \lim_{n \to \infty} x_n = z$ and $\lim_{n \to \infty} d(x_n, T(x_n)) = 0$. Then $z \in C$ and z = T(z).

Proof. Since $\Delta - \lim_{n \to \infty} x_n = z$, by Lemma 2.4.19, $z \in C$. Since T is a generalized hybrid mapping,

$$\begin{aligned} d^2(T(x_n), T(z)) &\leq a_1(z)d^2(z, x_n) + a_2(z)d^2(T(z), x_n) + a_3(z)d^2(T(x_n), z) \\ &+ k_1(z)d^2(T(z), z) + k_2(z)d^2(T(x_n), x_n) \\ &\leq a_1(z)d^2(z, x_n) + a_2(z)\left[d(T(z), T(x_n)) + d(T(x_n), x_n)\right]^2 \\ &+ a_3(z)\left[d(T(x_n), x_n) + d(x_n, z)\right]^2 \\ &+ k_1(z)d^2(T(z), z) + k_2(z)d^2(T(x_n), x_n), \end{aligned}$$

yielding

$$\limsup_{n \to \infty} d^2(T(x_n), T(z)) \leq \limsup_{n \to \infty} d^2(z, x_n) + \frac{k_1(z)}{1 - a_2(z)} d^2(z, T(z)).$$

Is that

NAM SI

This implies that

$$\begin{split} \limsup_{n \to \infty} d^2(x_n, T(z)) &\leq \limsup_{n \to \infty} \left[d(x_n, T(x_n)) + d(T(x_n), T(z)) \right]^2 \\ &\leq \limsup_{n \to \infty} \left[d^2(x_n, T(x_n)) + 2d(x_n, T(x_n))d(T(x_n), T(z)) + d^2(T(x_n), T(z)) \right] \\ &\leq \limsup_{n \to \infty} d^2(T(x_n), T(z)) \\ &\leq \limsup_{n \to \infty} d^2(z, x_n) + \frac{k_1(z)}{1 - a_2(z)} d^2(z, T(z)). \end{split}$$
(4.1)

On the other hand, by Lemma 2.4.14 we have

$$d^{2}\left(x_{n}, \frac{1}{2}z \oplus \frac{1}{2}T(z)\right) \leq \frac{1}{2}d^{2}(x_{n}, z) + \frac{1}{2}d^{2}(x_{n}, T(z)) - \frac{R}{8}d^{2}(z, T(z)).$$
(4.2)

By (4.1) and (4.2), we get

$$\begin{split} \limsup_{n \to \infty} d^2(x_n, \frac{1}{2}z \oplus \frac{1}{2}T(z)) &\leq \frac{1}{2}\limsup_{n \to \infty} d^2(x_n, z) + \frac{1}{2}\limsup_{n \to \infty} d^2(x_n, T(z)) \\ &\quad - \frac{R}{8}d^2(z, T(z)) \\ &\leq \limsup_{n \to \infty} d^2(x_n, z) + \frac{k_1(z)}{2(1 - a_2(z))}\limsup_{n \to \infty} d^2(z, T(z)) \\ &\quad - \frac{R}{8}d^2(z, T(z)). \end{split}$$

Thus

$$\left(\frac{R}{8} - \frac{k_1(z)}{2(1 - a_2(z))}\right) d^2(z, T(z)) \le \limsup_{n \to \infty} d^2(x_n, z) - \limsup_{n \to \infty} d^2\left(x_n, \frac{1}{2}z \oplus \frac{1}{2}T(z)\right) \le 0.$$

Since $\frac{2k_1(z)}{1 - a_2(x)} < \frac{R}{2}$, we get $\frac{k_1(z)}{2(1 - a_2(z))} < \frac{R}{8}$ and so $d^2(z, T(z)) = 0$. Hence $z = T(z)$.

Remark 4.2.2. From Theorem 4.2.1, we can find an optimal value of $R = (\pi - 2\varepsilon) \tan(\varepsilon)$, which depends on the value κ . For example, if the value $\kappa = 1$, then the optimal value of R is 1.07148718 as illustrated in Figure 2.6.

Figure 2.6: The optimal value of $R = (\pi - 2\varepsilon) \tan(\varepsilon)$.

Corollary 4.2.3. Let (X,d) be a complete CAT(0) space, C be a nonempty bounded closed convex subset of X, and $T: C \to C$ be a generalized hybrid mapping. Let $\{x_n\}$ be a sequence in C with $\Delta - \lim_{n\to\infty} x_n = z$ and $\lim_{n\to\infty} d(x_n, T(x_n)) = 0$. Then $z \in C$ and z = T(z).

Proof. It is well known that very convex subset of a CAT(0) space, equipped with the induced metric, is a CAT(0) space. Then (C, d) is a CAT(0) space and hence it is a CAT(κ) space for all $\kappa > 0$. Notice also that C is R-convex for R = 2. Since C is bounded, we can choose $\varepsilon \in (0, \pi/2)$ and $\kappa > 0$ so that diam $(C) \leq \frac{\pi/2 - \varepsilon}{\sqrt{\kappa}}$. The conclusion follows from Theorem 4.2.1.

4.3 Fixed point theorems

Theorem 4.3.1. Let $\kappa > 0$ and (X, d) be a complete $CAT(\kappa)$ space with $diam(X) \leq \frac{\pi/2-\varepsilon}{\sqrt{\kappa}}$ for some $\varepsilon \in (0, \pi/2)$. Let C be a nonempty closed convex subset of X, and $T : C \to C$ be a generalized hybrid mapping with $k_1(x) = k_2(x) = 0$ for all $x \in C$. Then T has a fixed point.

Proof. Fix $x \in C$ and define $x_n := T^n(x)$ for $n \in \mathbb{N}$. Suppose that $A(\{x_n\}) = \{z\}$. Then by Lemma 2.4.19, $z \in C$. Since T is generalized hybrid and $k_1(z) = k_2(z) = 0$,

$$d^{2}(x_{n}, T(z)) = d^{2}(T^{n}(x), T(z))$$

= $d^{2}(T(T^{n-1}(x)), T(z))$
= $d^{2}(T(x_{n-1}), T(z))$
 $\leq a_{1}(z)d^{2}(z, x_{n-1}) + a_{2}(z)d^{2}(T(z), x_{n-1}) + a_{3}(z)d^{2}(x_{n}, z).$

Taking the limit superior on both sides, we get

$$\begin{split} \limsup_{n \to \infty} d^2(x_n, T(z)) &\leq a_1(z) \limsup_{n \to \infty} d^2(z, x_{n-1}) + a_2(z) \limsup_{n \to \infty} d^2(T(z), x_{n-1}) \\ &+ a_3(z) \limsup_{n \to \infty} d^2(x_n, z) \\ &\leq (a_1(z) + a_3(z)) \limsup_{n \to \infty} d^2(x_n, z) + a_2(z) \limsup_{n \to \infty} d^2(x_n, T(z)). \end{split}$$

This implies by (P2) that $\limsup_{n\to\infty} d^2(x_n, T(z)) \leq \limsup_{n\to\infty} d^2(x_n, z)$. But, Since $A(\{x_n\}) = \{z\}$, it must be the case that z = T(z) and the proof is complete.

As a consequence of Theorem 4.3.1, we obtain:

Corollary 4.3.2. Let (X, d) be a complete CAT(0) space, C be a nonempty bounded closed convex subset of X, and $T : C \to C$ be a generalized hybrid mapping with $k_1(x) = k_2(x) = 0$ for all $x \in C$. Then T has a fixed point.

served

4.4 Δ -convergence theorems

We begin this section by proving a crucial lemma.

Lemma 4.4.1. Let $\kappa > 0$ and (X,d) be a complete $CAT(\kappa)$ space with $diam(X) \leq \frac{\pi/2-\varepsilon}{\sqrt{\kappa}}$ for some $\varepsilon \in (0,\pi/2)$. Let C be a nonempty closed convex subset of X, and T : $C \to X$ be a generalized hybrid mapping with $\frac{2k_1(x)}{1-a_2(x)} < \frac{R}{2}$ for all $x \in C$ where $R = (\pi - 2\varepsilon)tan(\varepsilon)$. Suppose $\{x_n\}$ is a sequence in C such that $\lim_{n\to\infty} d(x_n, Tx_n) = 0$ and

 $\{d(x_n, v)\}$ converges for all $v \in F(T)$, then $\omega_w(x_n) \subseteq F(T)$. Here $\omega_w(x_n) := \bigcup A(\{u_n\})$ where the union is taken over all subsequences $\{u_n\}$ of $\{x_n\}$. Moreover, $\omega_w(x_n)$ consists of exactly one point.

Proof. Let $u \in \omega_w(x_n)$. Then there exists a subsequence $\{u_n\}$ of $\{x_n\}$ such that $A(\{u_n\}) =$ $\{u\}$. By Lemma 2.4.19, there exists a subsequence $\{v_n\}$ of $\{u_n\}$ such that $\Delta - \lim_{n \to \infty} v_n =$ $v \in C$. By Theorem 4.2.1, $v \in F(T)$. By Lemma 2.4.20, u = v. This shows that $\omega_w(x_n) \subseteq v$ F(T). Next, we show that $\omega_w(x_n)$ consists of exactly one point. Let $\{u_n\}$ be subsequence of $\{x_n\}$ with $A(\{u_n\}) = \{u\}$ and let $A(\{x_n\}) = \{x\}$. Since $u \in \omega_w(x_n) \subseteq F(T)$, we have $\{d(x_n, u)\}$ converges. Again, by Lemma 2.4.20, x = u. This completes the proof.

Theorem 4.4.2. Let $\kappa > 0$ and (X, d) be a complete $CAT(\kappa)$ space with $diam(X) \leq \frac{\pi/2 - \varepsilon}{\sqrt{\kappa}}$ for some $\varepsilon \in (0, \pi/2)$. Let C be a nonempty closed convex subset of X, and $T: C \to X$ be a generalized hybrid mapping with $F(T) \neq \emptyset$. Let $\{\alpha_n\}$ be a sequence in [0,1] and define a sequence $\{x_n\}$ in C by

$$\begin{cases} x_1 \in C \quad chosen \ arbitrary \\ x_{n+1} := P_C\left((1 - \alpha_n)x_n \oplus \alpha_n T(x_n)\right), \quad n \in \mathbb{N}. \end{cases}$$

Let $R = (\pi - 2\varepsilon) \tan(\varepsilon)$ and suppose that (i) $\frac{2k_1(x)}{1-a_2(x)} < \frac{R}{2}$ for all $x \in C$, (ii) $\liminf_{n \to \infty} \alpha_n \left[\frac{(1-\alpha_n)R}{2} - \frac{k_2(z)}{1-a_3(z)} \right] > 0$ for all $z \in F(T)$ Then $\{x_n\}$ Δ -converges to an element of F(T).

Proof. Let $z \in F(T)$. Since T is generalized hybrid,

 $d^{2}(T(x), z) = d^{2}(T(x), T(z))$

$$\leq a_1(z)d^2(z,x) + a_2(z)d^2(T(z),x) + a_3(z)d^2(T(x),z) + k_1(z)d^2(T(z),z) + k_2(z)d^2(T(x),x).$$
Thus
$$(1 - a_3(z)) d^2(T(x),z) \leq (a_1(z) + a_2(z)) d^2(z,x) + k_2(z)d^2(T(x),x) + (1 - a_3(z)) d^2(z,x) + k_2(z)d^2(T(x),x).$$

So

$$d^{2}(T(x), z) \leq d^{2}(z, x) + \frac{k_{2}(z)}{1 - a_{3}(z)}d^{2}(T(x), x) \text{ for all } x \in C$$

By Lemmas 2.4.14 and 4.1.1, we have

$$d^{2}(x_{n+1}, z) = d^{2} \left(P_{C}((1 - \alpha_{n})x_{n} \oplus \alpha_{n}T(x_{n})), z \right)$$

$$\leq d^{2} \left((1 - \alpha_{n})x_{n} \oplus \alpha_{n}T(x_{n}), z \right)$$

$$\leq (1 - \alpha_{n})d^{2}(x_{n}, z) + \alpha_{n}d^{2}(T(x_{n}), z) - \frac{R}{2}\alpha_{n}(1 - \alpha_{n})d^{2}(x_{n}, T(x_{n}))$$

$$\leq (1 - \alpha_{n})d^{2}(x_{n}, z) + \alpha_{n}[d^{2}(z, x_{n}) + \frac{k_{2}(z)}{1 - a_{3}(z)}d^{2}(T(x_{n}), x_{n})]$$

$$- \frac{R}{2}\alpha_{n}(1 - \alpha_{n})d^{2}(x_{n}, T(x_{n}))$$

$$\leq d^{2}(x_{n}, z) + \alpha_{n}\left[\frac{k_{2}(z)}{1 - a_{3}(z)} - \frac{R(1 - \alpha_{n})}{2}\right]d^{2}(x_{n}, T(x_{n})).$$
(4.3)

By (ii), there exist $\delta > 0$ and $N \in \mathbb{N}$ such that

$$\alpha_n \left[\frac{(1-\alpha_n)R}{2} - \frac{k_2(z)}{1-a_3(z)} \right] \ge \delta > 0 \quad \text{for all } n \ge N$$

Without loss of generality, we may assume that

$$\alpha_n \left[\frac{(1 - \alpha_n)R}{2} - \frac{k_2(z)}{1 - a_3(z)} \right] > 0 \text{ for all } n \ge N.$$
(4.4)

It follows from (4.3) and (4.4) that $\{d(x_n, z)\}$ is a nonincreasing sequence and hence $\lim_{n\to\infty} d(x_n, z)$ exists. Again, by (4.3), we have

$$\lim_{n \to \infty} \alpha_n \left[\frac{(1 - \alpha_n)R}{2} - \frac{k_2(z)}{1 - a_3(z)} \right] d^2(x_n, T(x_n)) = 0.$$

This implies by (ii) that $\lim_{n\to\infty} d(x_n, T(x_n)) = 0$. By Lemma 4.4.1, $\omega_w(x_n)$ consists of exactly one point and is contained in F(T). This shows that $\{x_n\}$ Δ -converges to an element of F(T).

Theorem 4.4.3. Let $\kappa > 0$ and (X, d) be a complete $CAT(\kappa)$ space with $diam(X) \leq \frac{\pi/2 - \varepsilon}{\sqrt{\kappa}}$ for some $\varepsilon \in (0, \pi/2)$. Let C be a nonempty closed convex subset of X, and $T : C \to X$ be a generalized hybrid mapping with $F(T) \neq \emptyset$. Let $\{\alpha_n\}$ and $\{\beta_n\}$ be two sequences in [0, 1] and define a sequence $\{x_n\}$ in C by

$$\begin{cases} x_1 \in C \quad chosen \ arbitrary, \\ x_{n+1} := P_C\left((1 - \alpha_n)T(x_n) \oplus \alpha_n T(y_n)\right), \\ y_n := P_C\left((1 - \beta_n)x_n \oplus \beta_n T(x_n)\right). \end{cases}$$

Assume that

(i) $k_2(z) = 0$ for all $z \in F(T)$,

(*ii*) $\liminf_{n\to\infty} \alpha_n > 0$ and $\liminf_{n\to\infty} \beta_n(1-\beta_n) > 0$.

Then $\{x_n\}$ Δ -converges to an element of F(T).

Proof. Fix $z \in F(T)$. By (i), we have $d(T(x), z) \leq d(x, z)$ for all $x \in C$. Let $R = (\pi - 2\varepsilon) \tan(\varepsilon)$. By Lemmas 2.4.14 and 4.1.1, we have

$$d^{2}(y_{n}, z) = d^{2}(P_{C}((1 - \beta_{n})x_{n} \oplus \beta_{n}T(x_{n})), z)$$

$$\leq d^{2}((1 - \beta_{n})x_{n} \oplus \beta_{n}T(x_{n}), z)$$

$$\leq (1 - \beta_{n})d^{2}(x_{n}, z) + \beta_{n}d^{2}(T(x_{n}), z) - \frac{R}{2}\beta_{n}(1 - \beta_{n})d^{2}(x_{n}, T(x_{n}))$$

$$\leq (1 - \beta_{n})d^{2}(x_{n}, z) + \beta_{n}d^{2}(x_{n}, z) - \frac{R}{2}\beta_{n}(1 - \beta_{n})d^{2}(x_{n}, T(x_{n}))$$

$$\leq d^{2}(x_{n}, z) - \frac{R}{2}\beta_{n}(1 - \beta_{n})d^{2}(x_{n}, T(x_{n}))$$

$$\leq d^{2}(x_{n}, z).$$
(4.5)

This implies that

$$\begin{aligned} d^{2}(x_{n+1},z) &= d^{2}(P_{C}\left((1-\alpha_{n})T(x_{n})\oplus\alpha_{n}T(y_{n})\right),z) \\ &\leq d^{2}\left((1-\alpha_{n})T(x_{n})\oplus\alpha_{n}T(y_{n}),z\right) \\ &\leq (1-\alpha_{n})d^{2}(T(x_{n}),z) + \alpha_{n}d^{2}(T(y_{n}),z) - \frac{R}{2}\alpha_{n}(1-\alpha_{n})d^{2}(T(x_{n}),T(y_{n})) \\ &\leq (1-\alpha_{n})d^{2}(x_{n},z) + \alpha_{n}d^{2}(y_{n},z) - \frac{R}{2}\alpha_{n}(1-\alpha_{n})d^{2}(T(x_{n}),T(y_{n})) \\ &\leq d^{2}(x_{n},z) - \frac{R}{2}\alpha_{n}(1-\alpha_{n})d^{2}(T(x_{n}),T(y_{n})) \\ &\leq d^{2}(x_{n},z). \end{aligned}$$

Hence $\lim_{n\to\infty} d(x_n, z)$ exists and

$$0 \le \frac{R}{2} \alpha_n (1 - \alpha_n) d^2 (T(x_n), T(y_n)) \le d^2 (x_n, z) - d^2 (x_{n+1}, z) + \alpha_n \left[d^2 (y_n, z) - d^2 (x_n, z) \right].$$

So,

Cop

$$\alpha_n \left[d^2(x_n, z) - d^2(y_n, z) \right] \le d^2(x_n, z) - d^2(x_{n+1}, z)$$

Since $\liminf_{n\to\infty} \alpha_n > 0$, $\limsup_{n\to\infty} \left[d^2(y_n, z) - d^2(x_n, z) \right] = 0$. By (4.5), we have $\frac{R}{2} \left(1 - \alpha_n \right) t^2(z_n, z) = t^2(z_n, z) + t^2(z_n, z) = t^2(z_n, z)$

$$\frac{\pi}{2}\beta_n(1-\beta_n)d^2(x_n,T(x_n)) \le d^2(x_n,z) - d^2(y_n,z).$$

This implies by (ii) that $\lim_{n\to\infty} d(x_n, T(x_n)) = 0$. By Lemma 4.4.1, $\omega_w(x_n)$ consists of exactly one point and is contained in F(T). This shows that $\{x_n\}$ Δ -converges to an element of F(T).

The following lemma is also needed (cf. [39, Lemma 4.2]).

Theorem 4.4.4. Let $\kappa > 0$ and (X, d) be a complete $CAT(\kappa)$ space with $diam(X) \leq \frac{\pi/2 - \varepsilon}{\sqrt{\kappa}}$ for some $\varepsilon \in (0, \pi/2)$. Let $\{x_n\}$ and $\{y_n\}$ be sequences in X with $\lim_{n\to\infty} d(x_n, y_n) = 0$. If $\Delta - \lim_{n\to\infty} x_n = x$ and $\Delta - \lim_{n\to\infty} y_n = y$, then x = y. *Proof.* Since $\lim_{n\to\infty} d(x_n, y_n) = 0$ and $\Delta - \lim_{n\to\infty} x_n = x$, we know that

$$r(\{x_n\}) = r(x, \{x_{n_j}\}) = \limsup_{j \to \infty} d(x_{n_j}, x)$$

for every subsequence $\{x_{n_j}\}$ of $\{x_n\}$. Now, take any subsequence $\{y_{n_j}\}$ of $\{y_n\}$. Then, there exists $y \in X$ such that $A(\{y_{n_j}\}) = \{y\}$. Hence,

$$\begin{split} \limsup_{j \to \infty} d(y_{n_j}, y) &\leq \limsup_{j \to \infty} d(y_{n_j}, x) \\ &\leq \limsup_{j \to \infty} d(y_{n_j}, x_{n_j}) + \limsup_{j \to \infty} d(x_{n_j}, x) \\ &= \limsup_{j \to \infty} d(x_{n_j}, x) \\ &= r(\{x_n\}) \\ &\leq \limsup_{j \to \infty} d(x_{n_j}, y) \\ &\leq \limsup_{j \to \infty} d(x_{n_j}, y_{n_j}) + \limsup_{j \to \infty} d(y_{n_j}, y) \\ &\leq \limsup_{j \to \infty} d(y_{n_j}, y) \end{split}$$

Hence, $\limsup_{j\to\infty} d(y_{n_j}, y) = \limsup_{j\to\infty} d(y_{n_j}, x)$. And this implies that $x \in A(\{y_{n_j}\})$. Since $A(\{y_{n_j}\}) = \{y\}, x = y$. This completes the proof.

Theorem 4.4.5. Let $\kappa > 0$ and (X, d) be a complete $CAT(\kappa)$ space with $diam(X) \leq \frac{\pi/2 - \varepsilon}{\sqrt{\kappa}}$ for some $\varepsilon \in (0, \pi/2)$. Let C be a nonempty closed convex subset of X, and $T, S: C \to X$ be two generalized hybrid mappings with $F(T) \cap F(S) \neq \emptyset$. Let $\{\alpha_n\}$ and $\{\beta_n\}$ be a sequence in [0,1] and define a sequence $\{x_n\}$ in C by

$$\begin{cases} x_1 \in C \quad chosen \ arbitrary, \\ x_{n+1} := P_C\left((1 - \alpha_n)x_n \oplus \alpha_n T(y_n)\right), \\ y_n := P_C\left((1 - \beta_n)x_n \oplus \beta_n S(x_n)\right). \end{cases}$$

Let $R = (\pi - 2\varepsilon) \tan(\varepsilon)$ and suppose that
(i) $\liminf_{n \to \infty} \alpha_n (1 - \alpha_n) > 0,$

(i)
$$\lim \lim_{n \to \infty} \alpha_n (1 - \alpha_n) > 0$$
,
(ii) $k_2^T(z) = 0$ and $\lim \inf_{n \to \infty} \beta_n \left[\frac{(1 - \beta_n)R}{2} - \frac{k_2^S(z)}{1 - a_3^S(z)} \right] > 0$ for all $z \in F(T) \cap F(S)$.
Then $\{x_n\}$ Δ -converges to a common fixed point of S and T .

Proof. Let $z \in F(T) \cap F(S)$. Since $k_2^T(z) = 0$, $d(T(x), z) \leq d(x, z)$ for all $x \in C$. By Lemmas 2.4.14 and 4.1.1, we have

$$d^{2}(y_{n}, z) = d^{2}(P_{C}((1 - \beta_{n})x_{n} \oplus \beta_{n}S(x_{n})), z)$$

$$\leq d^{2}((1 - \beta_{n})x_{n} \oplus \beta_{n}S(x_{n}), z)$$

$$\leq (1 - \beta_{n})d^{2}(x_{n}, z) + \beta_{n}d^{2}(S(x_{n}), z) - \frac{R}{2}\beta_{n}(1 - \beta_{n})d^{2}(x_{n}, S(x_{n}))$$

$$\leq (1 - \beta_n) d^2(x_n, z) + \beta_n \left[d^2(x_n, z) + \frac{k_2^S(z)}{1 - a_3^S(z)} d^2(S(x_n), x_n) \right] - \frac{R}{2} \beta_n (1 - \beta_n) d^2(x_n, S(x_n)) \leq d^2(x_n, z) - \beta_n \left[\frac{(1 - \beta_n)R}{2} - \frac{k_2^S(z)}{1 - a_3^S(z)} \right] d^2(S(x_n), x_n).$$
(4.6)

By (ii), there exist $\delta > 0$ and $N \in \mathbb{N}$ such that

$$\beta_n \left[\frac{(1-\beta_n)R}{2} - \frac{k_2^S(z)}{1-a_3^S(z)} \right] \ge \delta > 0 \text{ for all } n \ge N.$$

Without loss of generality, we may assume that

$$\beta_n \left[\frac{(1 - \beta_n)R}{2} - \frac{k_2^S(z)}{1 - a_3^S(z)} \right] > 0 \text{ for all } n \ge N$$

By (4.6), $d(y_n, z) \le d(x_n, z)$. Thus

$$d^{2}(x_{n+1}, z) = d^{2}(P_{C}((1 - \alpha_{n})x_{n} \oplus \alpha_{n}T(y_{n})), z)$$

$$\leq d^{2}((1 - \alpha_{n})x_{n} \oplus \alpha_{n}T(y_{n}), z)$$

$$\leq (1 - \alpha_{n})d^{2}(x_{n}, z) + \alpha_{n}d^{2}(T(y_{n}), z) - \frac{R}{2}\alpha_{n}(1 - \alpha_{n})d^{2}(x_{n}, T(y_{n}))$$

$$\leq (1 - \alpha_{n})d^{2}(x_{n}, z) + \alpha_{n}d^{2}(y_{n}, z) - \frac{R}{2}\alpha_{n}(1 - \alpha_{n})d^{2}(x_{n}, T(y_{n}))$$

$$\leq d^{2}(x_{n}, z) - \frac{R}{2}\alpha_{n}(1 - \alpha_{n})d^{2}(x_{n}, T(y_{n}))$$

$$\leq d^{2}(x_{n}, z).$$
(4.7)

Hence $\lim_{n\to\infty} d(x_n, z)$ exists and

$$\lim_{n \to \infty} \alpha_n (1 - \alpha_n) d^2(x_n, T(y_n)) = 0.$$

By (i), $\lim_{n\to\infty} d^2(x_n, T(y_n)) = 0$. It follows from (4.7) that $0 \leq \frac{R}{2} \alpha_n (1 - \alpha_n) d^2(x_n, T(y_n)) \leq d^2(x_n, z) - d^2(x_{n+1}, z) + \alpha_n \left[d^2(y_n, z) - d^2(x_n, z) \right]$. Thus $\alpha_n (1 - \alpha_n) \left[d^2(x_n, z) - d^2(y_n, z) \right] \leq d^2(x_n, z) - d^2(x_{n+1}, z).$

Again, by (i), $\limsup_{n\to\infty} \left[d^2(x_n, z) - d^2(y_n, z) \right] = 0$. By (4.6), we have

$$\beta_n \left[\frac{(1-\beta_n)R}{2} - \frac{k_2^S(z)}{1-a_3^S(z)} \right] d^2(x_n, S(x_n)) \le d^2(x_n, z) - d^2(y_n, z).$$

This implies by (ii) that $\lim_{n\to\infty} d(x_n, S(x_n)) = 0$. Hence,

$$\begin{split} \limsup_{n \to \infty} d(y_n, x_n) &= \limsup_{n \to \infty} d(P_C \left((1 - \beta_n) x_n \oplus \beta_n S(x_n) \right), P_C(x_n) \right) \\ &\leq \limsup_{n \to \infty} d \left((1 - \beta_n) x_n \oplus \beta_n S(x_n), x_n \right) \\ &= \limsup_{n \to \infty} \beta_n d(x_n, S(x_n)) \\ &\leq \limsup_{n \to \infty} d(x_n, S(x_n)) \\ &= 0. \end{split}$$

So, $\lim_{n\to\infty} d(y_n, T(y_n)) = 0$. By Lemma 4.4.1, There exist $u, v \in C$ such that $\omega_w(x_n) = \{u\} \subseteq F(S)$ and $\omega_w(y_n) = \{v\} \subseteq F(T)$. This means that $\Delta - \lim_{n\to\infty} x_n = u$ and $\Delta - \lim_{n\to\infty} y_n = v$. Hence, by Lemma 4.4.4, u = v and the proof is complete. \Box

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved