
CHAPTER 4

Generalized hybrid mappings in CAT(κ) spaces

In this chapter, we study fixed point theorems and convergence theorems of the

Ishikawa iteration for generalized hybrid mappings on CAT(κ) spaces with κ > 0.

4.1 Basic concepts

Let C be a nonempty subset of a CAT(κ) space (X, d). Recall that a mapping

T : C → X is called generalized hybrid if there exist functions a1, a2, a3, k1, k2 : C → [0, 1)

such that

(P1) d2(T (x), T (y)) ≤ a1(x)d2(x, y)+a2(x)d2(T (x), y)+a3(x)d2(T (y), x)+k1(x)d2(T (x), x)+

k2(x)d2(T (y), y) for all x, y ∈ C;

(P2) a1(x) + a2(x) + a3(x) ≤ 1 for all x, y ∈ C;

(P3) 2k1(x) < 1− a2(x) and k2(x) < 1− a3(x) for all x ∈ C.

It is clear that every nonexpansive mapping is generalized hybrid, but the converse

is not true.

Example 4.1.1. [12] Define a mapping T : [0, 3] → [0, 3] by

T (x) =

⎧
⎨

⎩
0, x ̸= 3

2, x = 3.

Then T is generalized hybird but T is not nonexpansive.

Let C be a nonempty closed convex subset of a complete CAT(κ) space (X, d) and

let

PC(x) = {y ∈ C : d(x, y) = inf
z∈C

d(x, z)}

be the metric projection from X onto C.

Lemma 4.1.1. ([15, Proposition 3.5]) Let κ > 0 and (X, d) be a complete CAT(κ) space

with diam(X) < π
2
√
κ
. Let x ∈ X and C be a nonempty closed convex subset of X. Then

(i) for each x ∈ X, PC(x) is a singleton;

(ii) for each y ∈ C, d(PC(x), PC(y)) ≤ d(x, y).
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4.2 Demiclosed principle

Now, we prove the demiclosed principle for generalized hybrid mappings on CAT(κ)

spaces.

Theorem 4.2.1. Let κ > 0 and (X, d) be a complete CAT(κ) space with diam(X) ≤ π/2−ε√
κ

for some ε ∈ (0,π/2). Let C be a nonempty closed convex subset of X, and T : C → X be

a generalized hybrid mapping with 2k1(x)
1−a2(x)

< R
2 for all x ∈ C where R = (π − 2ε)tan(ε).

Let {xn} be a sequence in C with ∆− limn→∞ xn = z and limn→∞ d(xn, T (xn)) = 0. Then

z ∈ C and z = T (z).

Proof. Since ∆−limn→∞ xn = z, by Lemma 2.4.19, z ∈ C. Since T is a generalized hybrid

mapping,

d2(T (xn), T (z)) ≤ a1(z)d
2(z, xn) + a2(z)d

2(T (z), xn) + a3(z)d
2(T (xn), z)

+ k1(z)d
2(T (z), z) + k2(z)d

2(T (xn), xn)

≤ a1(z)d
2(z, xn) + a2(z) [d(T (z), T (xn)) + d(T (xn), xn)]

2

+ a3(z) [d(T (xn), xn) + d(xn, z)]
2

+ k1(z)d
2(T (z), z) + k2(z)d

2(T (xn), xn),

yielding

lim sup
n→∞

d2(T (xn), T (z)) ≤ lim sup
n→∞

d2(z, xn) +
k1(z)

1− a2(z)
d2(z, T (z)).

This implies that

lim sup
n→∞

d2(xn, T (z)) ≤ lim sup
n→∞

[d(xn, T (xn)) + d(T (xn), T (z))]
2

≤ lim sup
n→∞

[
d2(xn, T (xn)) + 2d(xn, T (xn))d(T (xn), T (z)) + d2(T (xn), T (z))

]

≤ lim sup
n→∞

d2(T (xn), T (z))

≤ lim sup
n→∞

d2(z, xn) +
k1(z)

1− a2(z)
d2(z, T (z)). (4.1)

On the other hand, by Lemma 2.4.14 we have

d2
(
xn,

1

2
z ⊕ 1

2
T (z)

)
≤ 1

2
d2(xn, z) +

1

2
d2(xn, T (z))−

R

8
d2(z, T (z)). (4.2)
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4.3 Fixed point theorems

Theorem 4.3.1. Let κ > 0 and (X, d) be a complete CAT(κ) space with diam(X) ≤ π/2−ε√
κ

for some ε ∈ (0,π/2). Let C be a nonempty closed convex subset of X, and T : C → C be

a generalized hybrid mapping with k1(x) = k2(x) = 0 for all x ∈ C. Then T has a fixed

point.

Proof. Fix x ∈ C and define xn := Tn(x) for n ∈ N. Suppose that A({xn}) = {z}. Then

by Lemma 2.4.19, z ∈ C. Since T is generalized hybrid and k1(z) = k2(z) = 0,

d2(xn, T (z)) = d2(Tn(x), T (z))

= d2(T (Tn−1(x)), T (z))

= d2(T (xn−1), T (z))

≤ a1(z)d
2(z, xn−1) + a2(z)d

2(T (z), xn−1) + a3(z)d
2(xn, z).

Taking the limit superior on both sides, we get

lim sup
n→∞

d2(xn, T (z)) ≤ a1(z) lim sup
n→∞

d2(z, xn−1) + a2(z) lim sup
n→∞

d2(T (z), xn−1)

+ a3(z) lim sup
n→∞

d2(xn, z)

≤ (a1(z) + a3(z)) lim sup
n→∞

d2(xn, z) + a2(z) lim sup
n→∞

d2(xn, T (z)).

This implies by (P2) that lim supn→∞ d2(xn, T (z)) ≤ lim supn→∞ d2(xn, z). But, Since

A({xn}) = {z}, it must be the case that z = T (z) and the proof is complete.

As a consequence of Theorem 4.3.1, we obtain:

Corollary 4.3.2. Let (X, d) be a complete CAT(0) space, C be a nonempty bounded closed

convex subset of X, and T : C → C be a generalized hybrid mapping with k1(x) = k2(x) =

0 for all x ∈ C. Then T has a fixed point.

4.4 ∆-convergence theorems

We begin this section by proving a crucial lemma.

Lemma 4.4.1. Let κ > 0 and (X, d) be a complete CAT(κ) space with diam(X) ≤
π/2−ε√

κ
for some ε ∈ (0,π/2). Let C be a nonempty closed convex subset of X, and T :

C → X be a generalized hybrid mapping with 2k1(x)
1−a2(x)

< R
2 for all x ∈ C where R =

(π − 2ε)tan(ε). Suppose {xn} is a sequence in C such that limn→∞ d(xn, Txn) = 0 and
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{d(xn, v)} converges for all v ∈ F (T ), then ωw(xn) ⊆ F (T ). Here ωw(xn) :=
⋃

A({un})

where the union is taken over all subsequences {un} of {xn}. Moreover, ωw(xn) consists

of exactly one point.

Proof. Let u ∈ ωw(xn). Then there exists a subsequence {un} of {xn} such that A({un}) =

{u}. By Lemma 2.4.19, there exists a subsequence {vn} of {un} such that∆−limn→∞ vn =

v ∈ C. By Theorem 4.2.1, v ∈ F (T ). By Lemma 2.4.20, u = v. This shows that ωw(xn) ⊆

F (T ). Next, we show that ωw(xn) consists of exactly one point. Let {un} be subsequence

of {xn} with A({un}) = {u} and let A({xn}) = {x}. Since u ∈ ωw(xn) ⊆ F (T ), we have

{d(xn, u)} converges. Again, by Lemma 2.4.20, x = u. This completes the proof.

Theorem 4.4.2. Let κ > 0 and (X, d) be a complete CAT(κ) space with diam(X) ≤ π/2−ε√
κ

for some ε ∈ (0,π/2). Let C be a nonempty closed convex subset of X, and T : C → X be

a generalized hybrid mapping with F (T ) ̸= ∅. Let {αn} be a sequence in [0, 1] and define

a sequence {xn} in C by

⎧
⎨

⎩
x1 ∈ C chosen arbitrary

xn+1 := PC ((1− αn)xn ⊕ αnT (xn)) , n ∈ N.

Let R = (π − 2ε) tan(ε) and suppose that

(i) 2k1(x)
1−a2(x)

< R
2 for all x ∈ C,

(ii) lim infn→∞ αn

[
(1−αn)R

2 − k2(z)
1−a3(z)

]
> 0 for all z ∈ F (T ).

Then {xn} ∆-converges to an element of F (T ).

Proof. Let z ∈ F (T ). Since T is generalized hybrid,

d2(T (x), z) = d2(T (x), T (z))

≤ a1(z)d
2(z, x) + a2(z)d

2(T (z), x) + a3(z)d
2(T (x), z)

+ k1(z)d
2(T (z), z) + k2(z)d

2(T (x), x).

Thus

(1− a3(z)) d
2(T (x), z) ≤ (a1(z) + a2(z)) d

2(z, x) + k2(z)d
2(T (x), x)

≤ (1− a3(z)) d
2(z, x) + k2(z)d

2(T (x), x).

So

d2(T (x), z) ≤ d2(z, x) +
k2(z)

1− a3(z)
d2(T (x), x) for all x ∈ C.
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By Lemmas 2.4.14 and 4.1.1, we have

d2(xn+1, z) = d2 (PC((1− αn)xn ⊕ αnT (xn)), z)

≤ d2 ((1− αn)xn ⊕ αnT (xn), z)

≤ (1− αn)d
2(xn, z) + αnd

2(T (xn), z)−
R

2
αn(1− αn)d

2(xn, T (xn))

≤ (1− αn)d
2(xn, z) + αn[d

2(z, xn) +
k2(z)

1− a3(z)
d2(T (xn), xn)]

− R

2
αn(1− αn)d

2(xn, T (xn))

≤ d2(xn, z) + αn

[
k2(z)

1− a3(z)
− R(1− αn)

2

]
d2(xn, T (xn)). (4.3)

By (ii), there exist δ > 0 and N ∈ N such that

αn

[
(1− αn)R

2
− k2(z)

1− a3(z)

]
≥ δ > 0 for all n ≥ N.

Without loss of generality, we may assume that

αn

[
(1− αn)R

2
− k2(z)

1− a3(z)

]
> 0 for all n ≥ N. (4.4)

It follows from (4.3) and (4.4) that {d(xn, z)} is a nonincreasing sequence and hence

limn→∞ d(xn, z) exists. Again, by (4.3), we have

lim
n→∞

αn

[
(1− αn)R

2
− k2(z)

1− a3(z)

]
d2(xn, T (xn)) = 0.

This implies by (ii) that limn→∞ d(xn, T (xn)) = 0. By Lemma 4.4.1, ωw(xn) consists of

exactly one point and is contained in F (T ). This shows that {xn} ∆-converges to an

element of F (T ).

Theorem 4.4.3. Let κ > 0 and (X, d) be a complete CAT(κ) space with diam(X) ≤ π/2−ε√
κ

for some ε ∈ (0,π/2). Let C be a nonempty closed convex subset of X, and T : C → X

be a generalized hybrid mapping with F (T ) ̸= ∅. Let {αn} and {βn} be two sequences in

[0, 1] and define a sequence {xn} in C by
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1 ∈ C chosen arbitrary,

xn+1 := PC ((1− αn)T (xn)⊕ αnT (yn)) ,

yn := PC ((1− βn)xn ⊕ βnT (xn)) .

Assume that

(i) k2(z) = 0 for all z ∈ F (T ),

(ii) lim infn→∞ αn > 0 and lim infn→∞ βn(1− βn) > 0.

Then {xn} ∆-converges to an element of F (T ).
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Proof. Fix z ∈ F (T ). By (i), we have d(T (x), z) ≤ d(x, z) for all x ∈ C. Let R =

(π − 2ε) tan(ε). By Lemmas 2.4.14 and 4.1.1, we have

d2(yn, z) = d2(PC ((1− βn)xn ⊕ βnT (xn)) , z)

≤ d2 ((1− βn)xn ⊕ βnT (xn), z)

≤ (1− βn)d
2(xn, z) + βnd

2(T (xn), z)−
R

2
βn(1− βn)d

2(xn, T (xn))

≤ (1− βn)d
2(xn, z) + βnd

2(xn, z)−
R

2
βn(1− βn)d

2(xn, T (xn))

≤ d2(xn, z)−
R

2
βn(1− βn)d

2(xn, T (xn))

≤ d2(xn, z). (4.5)

This implies that

d2 (xn+1, z) = d2(PC ((1− αn)T (xn)⊕ αnT (yn)), z)

≤ d2 ((1− αn)T (xn)⊕ αnT (yn), z)

≤ (1− αn)d
2(T (xn), z) + αnd

2(T (yn), z)−
R

2
αn(1− αn)d

2(T (xn), T (yn))

≤ (1− αn)d
2(xn, z) + αnd

2(yn, z)−
R

2
αn(1− αn)d

2(T (xn), T (yn))

≤ d2(xn, z)−
R

2
αn(1− αn)d

2(T (xn), T (yn))

≤ d2(xn, z).

Hence limn→∞ d(xn, z) exists and

0 ≤ R

2
αn(1− αn)d

2(T (xn), T (yn)) ≤ d2(xn, z)− d2(xn+1, z) + αn
[
d2(yn, z)− d2(xn, z)

]
.

So,

αn
[
d2(xn, z)− d2(yn, z)

]
≤ d2(xn, z)− d2(xn+1, z).

Since lim infn→∞ αn > 0, lim supn→∞
[
d2(yn, z)− d2(xn, z)

]
= 0. By (4.5), we have

R

2
βn(1− βn)d

2(xn, T (xn)) ≤ d2(xn, z)− d2(yn, z).

This implies by (ii) that limn→∞ d(xn, T (xn)) = 0. By Lemma 4.4.1, ωw(xn) consists of

exactly one point and is contained in F (T ). This shows that {xn} ∆-converges to an

element of F (T ).

The following lemma is also needed (cf. [39, Lemma 4.2]).

Theorem 4.4.4. Let κ > 0 and (X, d) be a complete CAT(κ) space with diam(X) ≤ π/2−ε√
κ

for some ε ∈ (0,π/2). Let {xn} and {yn} be sequences in X with limn→∞ d(xn, yn) = 0.

If ∆− limn→∞ xn = x and ∆− limn→∞ yn = y, then x = y.

38



Proof. Since limn→∞ d(xn, yn) = 0 and ∆− limn→∞ xn = x, we know that

r({xn}) = r(x, {xnj}) = lim sup
j→∞

d(xnj , x)

for every subsequence {xnj} of {xn}. Now, take any subsequence {ynj} of {yn}. Then,

there exists y ∈ X such that A({ynj}) = {y}. Hence,

lim sup
j→∞

d(ynj , y) ≤ lim sup
j→∞

d(ynj , x)

≤ lim sup
j→∞

d(ynj , xnj ) + lim sup
j→∞

d(xnj , x)

= lim sup
j→∞

d(xnj , x)

= r({xn})

≤ lim sup
j→∞

d(xnj , y)

≤ lim sup
j→∞

d(xnj , ynj ) + lim sup
j→∞

d(ynj , y)

≤ lim sup
j→∞

d(ynj , y)

Hence, lim supj→∞ d(ynj , y) = lim supj→∞ d(ynj , x). And this implies that x ∈ A({ynj}).

Since A({ynj}) = {y}, x = y. This completes the proof.

Theorem 4.4.5. Let κ > 0 and (X, d) be a complete CAT(κ) space with diam(X) ≤ π/2−ε√
κ

for some ε ∈ (0,π/2). Let C be a nonempty closed convex subset of X, and T, S : C → X

be two generalized hybrid mappings with F (T ) ∩ F (S) ̸= ∅. Let {αn} and {βn} be a

sequence in [0, 1] and define a sequence {xn} in C by
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1 ∈ C chosen arbitrary,

xn+1 := PC ((1− αn)xn ⊕ αnT (yn)) ,

yn := PC ((1− βn)xn ⊕ βnS(xn)) .

Let R = (π − 2ε) tan(ε) and suppose that

(i) lim infn→∞ αn(1− αn) > 0,

(ii) kT2 (z) = 0 and lim infn→∞ βn
[
(1−βn)R

2 − kS2 (z)

1−aS3 (z)

]
> 0 for all z ∈ F (T ) ∩ F (S).

Then {xn} ∆-converges to a common fixed point of S and T .

Proof. Let z ∈ F (T ) ∩ F (S). Since kT2 (z) = 0, d(T (x), z) ≤ d(x, z) for all x ∈ C. By

Lemmas 2.4.14 and 4.1.1, we have

d2(yn, z) = d2(PC ((1− βn)xn ⊕ βnS(xn)), z)

≤ d2 ((1− βn)xn ⊕ βnS(xn), z)

≤ (1− βn)d
2(xn, z) + βnd

2(S(xn), z)−
R

2
βn(1− βn)d

2(xn, S(xn))
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≤ (1− βn)d
2(xn, z) + βn

[
d2(xn, z) +

kS2 (z)

1− aS3 (z)
d2(S(xn), xn)

]

− R

2
βn(1− βn)d

2(xn, S(xn))

≤ d2(xn, z)− βn

[
(1− βn)R

2
− kS2 (z)

1− aS3 (z)

]
d2(S(xn), xn). (4.6)

By (ii), there exist δ > 0 and N ∈ N such that

βn

[
(1− βn)R

2
− kS2 (z)

1− aS3 (z)

]
≥ δ > 0 for all n ≥ N.

Without loss of generality, we may assume that

βn

[
(1− βn)R

2
− kS2 (z)

1− aS3 (z)

]
> 0 for all n ≥ N.

By (4.6), d(yn, z) ≤ d(xn, z). Thus

d2(xn+1, z) = d2(PC ((1− αn)xn ⊕ αnT (yn)), z)

≤ d2 ((1− αn)xn ⊕ αnT (yn), z)

≤ (1− αn)d
2(xn, z) + αnd

2(T (yn), z)−
R

2
αn(1− αn)d

2(xn, T (yn))

≤ (1− αn)d
2(xn, z) + αnd

2(yn, z)−
R

2
αn(1− αn)d

2(xn, T (yn))

≤ d2(xn, z)−
R

2
αn(1− αn)d

2(xn, T (yn))

≤ d2(xn, z). (4.7)

Hence limn→∞ d(xn, z) exists and

lim
n→∞

αn(1− αn)d
2(xn, T (yn)) = 0.

By (i), limn→∞ d2(xn, T (yn)) = 0. It follows from (4.7) that

0 ≤ R

2
αn(1− αn)d

2(xn, T (yn)) ≤ d2(xn, z)− d2(xn+1, z) + αn
[
d2(yn, z)− d2(xn, z)

]
.

Thus

αn(1− αn)
[
d2(xn, z)− d2(yn, z)

]
≤ d2(xn, z)− d2(xn+1, z).

Again, by (i), lim supn→∞
[
d2(xn, z)− d2(yn, z)

]
= 0. By (4.6), we have

βn

[
(1− βn)R

2
− kS2 (z)

1− aS3 (z)

]
d2(xn, S(xn)) ≤ d2(xn, z)− d2(yn, z).
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This implies by (ii) that limn→∞ d(xn, S(xn)) = 0. Hence,

lim sup
n→∞

d(yn, xn) = lim sup
n→∞

d(PC ((1− βn)xn ⊕ βnS(xn)), PC(xn))

≤ lim sup
n→∞

d ((1− βn)xn ⊕ βnS(xn), xn)

= lim sup
n→∞

βnd(xn, S(xn))

≤ lim sup
n→∞

d(xn, S(xn))

= 0.

So, limn→∞ d(yn, T (yn)) = 0. By Lemma 4.4.1, There exist u, v ∈ C such that ωw(xn) =

{u} ⊆ F (S) and ωw(yn) = {v} ⊆ F (T ). This means that ∆ − limn→∞ xn = u and

∆− limn→∞ yn = v. Hence, by Lemma 4.4.4, u = v and the proof is complete.
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