CHAPTER 4

Generalized hybrid mappings in CAT(x) spaces

In this chapter, we study fixed point theorems and convergence theorems of the

Ishikawa iteration for generalized hybrid mappings on CAT (k) spaces with £ > 0.

4.1 Basic concepts

Let C be a nonempty subset of a CAT(k) space (X,d). Recall that a mapping
T:C — X is called generalized hybrid if there exist functions a1, ag, a3, k1, ke : C — [0,1)

such that
(P1) dX(T(2), T(y)) < a1 (z)d*(z,y)+as(x)d*(T (), y)+as()d*(T(y), z)+k (z)d* (T(x), )+
ko(x)d*(T(y),y) for all z,y € C;
(P2) a1(z) + as(z) + asz(z) <1 for all x,y € C;
(P3) 2k1(z) <1 —az(x) and ko(x) < 1 — ag(x) for all z € C.

It is clear that every nonexpansive mapping is generalized hybrid, but the converse
is not true.
Example 4.1.1. [12] Define a mapping T : [0,3] — [0, 3] by

0, z+#3
2, ©»=3.

T(z) =

Then T is generalized hybird but 7" is not nonexpansive.

Let C be a nonempty closed convex subset of a complete CAT (k) space (X, d) and
let

Po(e) = {y € C + d(,y) = inf d(x,2)}

be the metric projection from X onto C.

Lemma 4.1.1. ([15, Proposition 3.5]) Let k > 0 and (X,d) be a complete CAT(k) space

with diam(X ) < ﬁ Let x € X and C be a nonempty closed convex subset of X. Then
(i) for each x € X, Po(x) is a singleton;
(ii) for each y € C, d(Pc(x), Po(y)) < d(x,y).
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4.2 Demiclosed principle

Now, we prove the demiclosed principle for generalized hybrid mappings on CAT (k)

spaces.

Theorem 4.2.1. Let k > 0 and (X, d) be a complete CAT (k) space with diam(X ) < ”/2\/56

for some e € (0,7/2). Let C be a nonempty closed convex subset of X, and T : C — X be

a generalized hybrid mapping with 12_’22(%2;) < g for all x € C where R = (7w — 2¢)tan(e).
Let {zy} be a sequence in C with A —lim, o0 T, = 2 and limy, o0 d(xp, T'(xy)) = 0. Then

ze€C and z=T(z).

Proof. Since A—lim,,_,c &, = 2z, by Lemma 2.4.19, z € C. Since T is a generalized hybrid

mapping,

d*(T(an), T(2)) < a1(2)d*(2,20) + a2(2)d*(T(2), ) + as(2)d*(T(zn), 2)
k1(2)d*(T(2), 2) + ka(2)d*(T(x0), 2)

a1(2)d’ (2, 2n) + az(2) [d(T(2), T(2n)) + d(T(z0), 20)]”
a3(2) [T (wn), ) + d(@n, 2)]°

az(2) [d(
ki (2)d*(T(2), 2) + ka(2)d* (T (20), 20),
yielding
lierrLSOIip d(T(z,),T(2)) < liﬁsogp d?(z,2n) + %cﬂ(z, T(2)).
This implies that

lim sup d2(z,,, T(2)) < limsup [d(z, T(z)) + d(T(z,,), T(2)))?

n—oo n—oo

< limsup [d* (2, T(3)) + 2d(@n, T(20))d(T (@), T(2)) + d*(T(22), T(2))]

n—oo

< limsup dQ(T(xn)a T(z))

n—oo

. k1(2)
<1 (2, zp) + —22)__
S nap omt) v

d*(z,T(2)). (4.1)
On the other hand, by Lemma 2.4.14 we have

Be (xn %z s ;T(z)> < %dQ(xn,z) + %dz(xn,T(z)) _ ng(z,T(z)). (4.2)
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By (4.1) and (4.2), we get

1 1 1 1
lim sup d?(zn, =2 ® =T(2)) < = limsup d?(zn, z) + = limsup d?(zn, T(2))
2 2 2 2 nooo

n—oo n—oo

R 2
- P T()

: ki (2) : 2
< limsup d?(z ,2) + limsupd(z, T
< TP d o 2) ¥ 5 — o) M ¢ T

- §d2(z, T(2)).
Thus

R kl(z) 2 . 2 . 2 1 1
£__ k2 Y. 3 11 N
(8 2(1 - a2(z))) d*(2,T()) < limsupd*(zn, 2) — limsupd* { &n, 32 57(2) | <0

Since 12—_]%% < &, we get X%f%m < & and so d?(2,T(z)) =0 . Hence z = T\(=2). O

Remark 4.2.2. From Theorem 4.2.1, we can find an optimal value of R = (7 —2¢) tan(e),
which depends on the value . For example, if the value k = 1, then the optimal value of

R is 1.07148718 as illustrated in Figure 2.6.

f(&) = (x — 2¢) tane

(0.463647609, 1.107148718)

05 A

Figure 2.6: The optimal value of R = (7 — 2¢) tan(e).

Corollary 4.2.3. Let (X,d) be a complete CAT(0) space, C be a nonempty bounded
closed convez subset of X, and T : C — C be a generalized hybrid mapping. Let {z,} be
a sequence in C with A —lim, ;o T, = 2z and lim,,_,o, d(z,,,T(z,)) = 0. Then z € C and

z=T(z).

Proof. It is well known that very convex subset of a CAT(0) space, equipped with the
induced metric, is a CAT(0) space. Then (C, d) is a CAT(0) space and hence it is a CAT (k)

space for all kK > 0. Notice also that C is R-convex for R = 2. Since C is bounded, we

can choose € € (0,7/2) and « > 0 so that diam(C) < ”/% The conclusion follows from

—€
K

Theorem 4.2.1. O
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4.3 Fixed point theorems

Theorem 4.3.1. Let k > 0 and (X, d) be a complete CAT (k) space with diam(X ) < %
for some € € (0,7/2). Let C be a nonempty closed convex subset of X, and T : C' — C be
a generalized hybrid mapping with ki(z) = ke(x) = 0 for all x € C. Then T has a fized

point.

Proof. Fix x € C and define z,, := T"(z) for n € N. Suppose that A({z,}) = {z}. Then
by Lemma 2.4.19, z € C. Since T is generalized hybrid and k;(z) = ka(z) =0,

2

d* (25, T (2))

(T"(x),T(z2))

2(T(T" (@), T(2))

Y(T(2n-1),T(2))

a1(2)d*(z, @ -1) + az(2)d*(T(2), 20 -1) + az(2)d* (2, 2).

d
d
d

| /\

Taking the limit superior on both sides, we get
lim sup d?(,, T(2)) < a1(2) limsup d?(z, z,_1) + az(2) hmsup d*(T(2), Tp_1)
n—oo n—oo

+ a3(2) lim sup d*(z,, 2)

n—o0

< (a1(2) + a3(2)) limsup d?(z,, 2) + as(2) limsup d* (2, T(2)).

n—oo n—oo
This implies by (P2) that limsup,,_,., d*(z,,T(2)) < limsup,,_,., d*(zn,z). But, Since
A({zn}) = {z}, it must be the case that z = T'(z) and the proof is complete. O

As a consequence of Theorem 4.3.1, we obtain:

Corollary 4.3.2. Let (X, d) be a complete CAT(0) space, C be a nonempty bounded closed
convex subset of X, and T : C' — C' be a generalized hybrid mapping with ki(z) = ka(z) =
0 for allx € C. Then T has a fixed point.

4.4 A-convergence theorems

We begin this section by proving a crucial lemma.

Lemma 4.4.1. Let k > 0 and (X,d) be a complete CAT(k) space with diam(X) <

ﬂ/2\/; for some € € (0,7/2). Let C be a nonempty closed convexr subset of X, and T :

C — X be a generalized hybrid mapping with 1%;(8) < R for all x € C where R =

(m — 2¢e)tan(e). Suppose {x,} is a sequence in C such that limy,_o d(y, Tzy) = 0 and
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{d(xn,v)} converges for all v € F(T), then wy(xy,) C F(T). Here wy(xy) := JA{un})
where the union is taken over all subsequences {u,} of {x,}. Moreover, wy(zy) consists

of exactly one point.

Proof. Let u € wy(xy,). Then there exists a subsequence {uy, } of {z,,} such that A({u,}) =
{u}. By Lemma 2.4.19, there exists a subsequence {v, } of {u, } such that A—lim,,_,~ v, =
v € C. By Theorem 4.2.1, v € F(T). By Lemma 2.4.20, u = v. This shows that wy,(z,) C
F(T). Next, we show that wy,(x,) consists of exactly one point. Let {uy} be subsequence
of {z,} with A({uy,}) = {u} and let A({x,}) = {x}. Since u € wy(x,) C F(T), we have
{d(xn,u)} converges. Again, by Lemma 2.4.20, = u. This completes the proof. O

Theorem 4.4.2. Let k > 0 and (X, d) be a complete CAT (k) space with diam (X ) < ﬂ/z\/gg
for some € € (0,7/2). Let C be a nonempty closed convex subset of X, and T : C' — X be
a generalized hybrid mapping with F(T) # (. Let {an} be a sequence in [0,1] and define

a sequence {x,} in C by

x1 € C  chosen arbitrary

ZTnt1 = Po ((1 — an)zn ® anT(zy)), neN.

Let R = (7 — 2¢) tan(e) and suppose that

(i)%<§f0rallm€0,

(i) iminf, 0 o, [(173")}2 - 16222({2)} >0 for all z € F(T).

Then {x,} A-converges to an element of F(T).
Proof. Let z € F(T). Since T' is generalized hybrid,
d*(T(x),2) = d*(T(),T(2))

< al(z)dz(z, x) + ag(z)dz(T(z), x) + ag(z)dQ(T(x), z)
+ k1(2)d3(T(2), 2) + ka(2)d?(T(x), x).

Thus
(1 - a3(2)) d*(T(2), 2) < (a1(2) + az(2)) d*(z, 2) + ka(2)d* (T (), )
< (1 —a3(2)) d*(z,z) + ko(2)d*(T(z), x).
So
d*(T(x),2) < d*(z,z) + 1ﬁza(':zz)dz(T(a:),a:) for all z € C.

36



By Lemmas 2.4.14 and 4.1.1, we have
d*(2n11,2) = d* (Po((1 — an)zn ® anT(2,)), 2)
<d?((1 = ap)xn ® anT(2n), 2)

< (1 = an)d?(xn, 2) + and*(T(zy,), 2) — Eozn(l — a)d* (g, T())

2
< (1= ap)d*(xn, 2) + ap[d® (2, 2,) + %dQ(T(In), Tn)]
_ gan(l — o)z T(wn)
< d(2n, 2) + an [1 chZ?z) e 5 a”)] d(zp, T(z2)). (4.3)

By (ii), there exist § > 0 and N € N such that

3 [(1—an)R_ ka(z)
N 2 1 —as(z)

]25>O for all n > N.

Without loss of generality, we may assume that

N [(1 —an)R  ka(2)
" 2 1—as(z)

] >0 forall n > N. (4.4)

It follows from (4.3) and (4.4) that {d(zn,2)} is a nonincreasing sequence and hence
lim,, 00 d(xy, 2) exists. Again, by (4.3), we have

. (1 —-ap)R ka(z)
lim o, [ 2 (G 24,5

} d*(x, T(x,)) = 0.

n—oo

This implies by (ii) that lim, s d(zy, T (x,)) = 0. By Lemma 4.4.1, wy(z,) consists of
exactly one point and is contained in F'(7'). This shows that {z,} A-converges to an

element of F'(T). O

Theorem 4.4.3. Let k > 0 and (X, d) be a complete CAT (k) space with diam(X ) < %
for some € € (0,7/2). Let C be a nonempty closed convexr subset of X, and T : C — X
be a generalized hybrid mapping with F(T) # (0. Let {ay,} and {Bn} be two sequences in

[0,1] and define a sequence {x,} in C by

x1 € C  chosen arbitrary,
Tnt1 = Po (L — an)T(20) © anT (yn)) ,
yn 1= Po (1= Bn)zn @ BT (xn)) .-
Assume that
(i) ka2(2) =0 for all z € F(T),
(i) iminf,, o0 oy, > 0 and liminf,, o B, (1 — 5,) > 0.

Then {x,} A-converges to an element of F(T).
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Proof. Fix z € F(T). By (i), we have d(T(z),2) < d(z,2) for all z € C. Let R =
(m — 2¢) tan(e). By Lemmas 2.4.14 and 4.1.1, we have
Py 2) = P(Po (1= fu)in @ BaT(en) ,2)
< d* (1= Bn)an @ BuT (zn), 2)
< (1= ) (n, 2) + Bud (T (), 2) = 5 Bl = 5u) 2, Tlan)
— a1 = B (e, ()
< Pty 2) = 5 Bl = fu) 2, Tlan)

S (1 - ﬁn)dz(xm Z) + ﬁndQ(xm Z)

< d(wy, 2). (4.5)
This implies that
& (21,2) = (Pe (1 = an) T (5) & anT(Gn)), 2)
< @ ((1 - ) T(22) @ anT (1), 2)
< (1= 0)d(T(a0), 2) + and(T(yn). 2) — Son(1 = an)d(D(en), Twn)
< (1 ) (e 2) 0 (o, ) — in(1 — ) (), Tlyn)
< (. 2) — 3 (1~ ) (T (), T(pn)
< d%(zp, 2).
Hence lim,_,o d(zn, 2) exists and
0< gan(l — an)d*(T(20), T(yn)) < d* (0, 2) — d*(Tn11,2) + an [d*(yn, 2) — d*(zn, 2)] -

So,
an [d* (0, 2) — d*(yn, 2)] < d*(2p, 2) — d*(Tp41, 2).-

Since liminf, oo 04 > 0, imsup,, ;o [d*(yn, 2) — d*(wn, 2)] = 0. By (4.5), we have
81— B, D)) < P2y 2) = Py, 2).

This implies by (ii) that lim, e d(zy,T(2,)) = 0. By Lemma 4.4.1, w,(z,) consists of
exactly one point and is contained in F (7). This shows that {z,} A-converges to an

element of F(T). O
The following lemma is also needed (cf. [39, Lemma 4.2]).

Theorem 4.4.4. Let k > 0 and (X, d) be a complete CAT (k) space with diam(X ) < %
for some € € (0,7/2). Let {zn} and {y,} be sequences in X with lim, o0 d(zpn,yn) = 0.

If A —lim, ooy =2 and A — limy, 00 Y = ¥y, then x = y.
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Proof. Since lim,, 00 d(Zp,yn) = 0 and A — lim,, 00 ,, = x, we know that
r({zn}) = r(z, {xn]}) = hm sup d(xnj ,T)
J—00
for every subsequence {z,,} of {z,}. Now, take any subsequence {y,,} of {y,}. Then,

there exists y € X such that A({y,;}) = {y}. Hence,

lim sup d(yn;, y) < limsup d(yy,, )

j—00 Jj—00

< limsup d(Yn,, Tn;) + limsup d(zy,, x)

J—00 Jj—o0

= lim sup d(zy,,, x)
j—o0

=r({zn})

< limsup d(zy,,y)

j—00

< limsup d(zn,, yn,;) + limsup d(yn,;, y)

Jj—00 Jj—o0

< limsup d(yn,, y)

j—00
Hence, limsup;_, ., d(yn;,y) = limsup,_, ., d(yn,;, ). And this implies that x € A({yn,}).
Since A({yn,}) = {y}, = y. This completes the proof. O

Theorem 4.4.5. Let k > 0 and (X, d) be a complete CAT (k) space with diam(X ) < %\/;
for some € € (0,7/2). Let C be a nonempty closed convex subset of X, and T, S : C — X
be two generalized hybrid mappings with F(T) N F(S) # 0. Let {a,} and {B,} be a

sequence in [0, 1] and define a sequence {xy} in C by

x1 € C chosen arbitrary,
Tnt1 = Po (1 — an)zn © anT(yn)) ,
yn = Po (1= Bn)an ® BnS(zn)) -
Let R = (7 — 2¢) tan(e) and suppose that
(i) iminf,, o apn (1 — ) > 0,
(i1) K§ (2) = 0 and liminf,, o0 8, 1022 — K é())] >0 for all z € F(T) N F(S).

Then {x,} A-converges to a common fixed point of S and T.

Proof. Let z € F(T)N F(S). Since ki (2) = 0, d(T(z),2) < d(x,2) for all z € C. By
Lemmas 2.4.14 and 4.1.1, we have

d2(yn7 z) = dQ(PC (1= Bn)zn © BaS(wn)), 2)
< d2 ((1 - ﬂn)xn 5P 6ns($n)a Z)

<(1- Bn)dz(xnv z) + BndQ(S(xn)a z) — gﬁn(l - Bn)dQ(mm S(xy))
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k3 (2)

?g(z)dz(S(xn), Tn)

< (1 - Bn)dQ(xmz) + Bn [d2(mmz) +

B gﬂn(l - ﬁn)dQ(‘fm S(x"))

(L-B)R _ K5(2)
2 1 —a3(2)

< d*(zn, 2) — Bn [ ] d*(S(wy), xy). (4.6)

By (ii), there exist § > 0 and N € N such that

(1-5n)R kS (2)
Bn[ 3 —1_a§(z)]25>0f0rallnzN.

Without loss of generality, we may assume that

(1—-Bn)R kS (2)
m{ R

] > 0 for all n > N.
By (4.6), d(yn,2) < d(xy, z). Thus
dz(xnﬂ, z) = dQ(PC (1 —an)zn, @ anT(yn)), 2)
< d2 ((1 - an)mn SY anT(yn)v Z)
< (1 — an)d?(zn, 2) + nd®(T(yn), 2) — gan(l — ap)d% (@, T(yn))
< (1 = an)d?* (T, 2) + nd?®(yn, 2) — gan(l — ) d* (2, T (yn))
< (2, 2) ~ g n(l = an)d(on, T(vn)

< d*(@n, 2). (4.7)
Hence limy,_,o0 d(2p, 2) exists and

lim ay, (1 — ap)d?(zn, T(yn)) = 0.

n—oo

By (i), limy 00 (2, T'(yn)) = 0. Tt follows from (4.7) that
R
0< 50[”(1 - an)dQ(:vn,T(yn)) < dz(mn,z) - dQ(xn_H, z) + ap [d2(yn, z) — d2(mn,z)] )
Thus
an(l - Oén) [dQ(xTH Z) - d2(y’n7 2)] < dz(x’nv Z) - dQ(xn-i-l?Z)'
Again, by (i), limsup,, . [d*(zn,z) — d*(yn, z)] = 0. By (4.6), we have

(1-B)R k()

5 1 ag(z) d2(xn,5($n)) < dQ(ZCn,Z) - d2(yn,z).

B
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This implies by (ii) that lim,_,o d(zy, S(x,)) = 0. Hence,

lim sup d(?men) = lim sup d<PC ((1 - ﬂn)xn 2] ﬂnS(JJn)), Pc(:vn))

n—oo n—oo

<limsupd ((1 = Bn)xn ® BnS(zn), Tn)

n—oo

= limsup B, d(xy, S(zn))

n—oo

< limsup d(zy, S(xy))

n—oo

=0.

So, limy, 00 d(yn, T(yn)) = 0. By Lemma 4.4.1, There exist u,v € C such that wy(z,) =
{u} C F(S) and wy(yn) = {v} € F(T). This means that A — lim, oz, = w and

A — lim,, ,oo yn = v. Hence, by Lemma 4.4.4, u = v and the proof is complete. O
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