
CHAPTER 5

Fundamentally nonexpansive mappings in CAT(κ) spaces

In this chapter, we study fixed point theorems and ∆-convergence theorems of the

Ishikawa iteration for fundamentally nonexpansive mappings on CAT(κ) spaces with k >

0.

5.1 Basic concepts

Let C be a nonempty subset of a metric space (X, d). Recall that a mapping T :

C → C is said to be fundamentally nonexpansive if

d(T 2(x), T (y)) ≤ d(T (x), y), for all x, y ∈ C.

It is clear that every nonexpansive mapping is fundamentally nonexpansive, but the

converse is not true.

Example 5.1.1. [47] Define a mapping T : [0, 2] → [0, 2] by

T (x) =

⎧
⎨

⎩
0, x ̸= 2,

1, x = 2.

Then T is fundamentally nonexpansive, but T is not nonexpansive.

Proposition 5.1.1. [47] Every mapping which satisfies condition (C) is fundamentally

nonexpansive, but the inverse is not true.

Example 5.1.2. [20] Suppose X = {(0, 0), (0, 1), (1, 1), (1, 2)}. Define

d ((x1, y1), (x2, y2)) = max {|x1 − x2|, |y1 − y2|}

Define T on X by

T (0, 0) = (1, 2), T (0, 1) = (0, 0), T (1, 1) = (1, 1), T (1, 2) = (0, 1).

Then T is fundamentally nonexpansive but does not satisfy condition (C).
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Example 5.1.3. Define a mapping T : [0, 2] → [0, 2] by

T (x) =

⎧
⎨

⎩
0, x ∈ [0, 1),

3
4 , x ∈ [1, 2].

Then T is generalized hybrid but T is not fundamentally nonexpansive.

Proof. By taking x = 2, y = 1, we have

d(T 2(x), T (y)) = d

(
0,

3

4

)
=

3

4

but

d(T (x), y) = d

(
3

4
, 1

)
=

1

4
̸≥ d(T 2(x), T (y)).

Therefore T is not fundamentally nonexpansive. Next, we show that T is generalized

hybrid. If x ∈ [0, 1), y ∈ [1, 2] then d2(T (x), T (y)) = d2
(
0, 34
)
= 9

16 . We choose a1(x) =

1
16 , a2(x) =

9
16 , a3(x) =

6
16 , k1(x) =

6
32 , k2(x) =

9
16 , we get that

d2(T (x), T (y)) =
9

16
≤ a2(x)d

2(T (x), y)

≤ a1(x)d
2(x, y) + a2(x)d

2(T (x), y) + a3(x)(T (y), x) + k1(x)d
2(T (x), x)

+ k2(x)d
2(T (y), y).

Therefore T is generalized hybrid.

Lemma 5.1.2. Let C be a nonempty bounded closed convex subset of a complete CAT(κ)

space (X, d), and T : C → C be a fundamentally nonexpansive mapping and F (T ) ̸= ∅,

then F (T ) is closed.

Proof. Let {xn} be a sequence in F (T ) converging to some point z ∈ C. Since

d(xn, T (z)) = d(T 2(xn), T (z)) ≤ d(T (xn), z) = d(xn, z),

lim sup
n→∞

d(xn, T (z)) ≤ lim sup
n→∞

d(xn, z) = 0.

That is {xn} converges to T (z). This implies that T (z) = z. Therefore F (T ) is closed.

Lemma 5.1.3. Let C be a nonempty subset of a CAT(κ) space (X, d), and T : C → C

be a fundamentally nonexpansive mapping. Then

d(x, T (y)) ≤ 3d(T (x), x) + d(x, y),

for all x, y ∈ C.
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Proof. Since T is fundamentally nonexpansive, we have

d(x, T (y)) ≤ d(x, T (x)) + d(T (x), T 2(x)) + d(T 2(x), T (y))

≤ 2d(x, T (x)) + d(T (x), y)

≤ 3d(x, T (x)) + d(x, y).

This completes the proof.

Lemma 5.1.4. (cf. [45]) Let κ > 0 and (X, d) be a complete CAT(κ) space such that

diam(X) ≤ π/2−ε√
κ

for some ε ∈ (0,π/2) and let {zn} and {wn} be two sequences in X. Let

{βn} be a sequence in [0, 1] such that 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1. Suppose

that zn+1 = βnzn+(1−βn)wn for all n ∈ N and lim supn→∞(d(wn+1, wn)−d(zn+1, zn)) ≤

0. Then limn→∞ d(wn, zn) = 0.

Lemma 5.1.5. Let κ > 0 and (X, d) be a complete CAT(κ) space with diam(X) ≤ π/2−ε√
κ

for some ε ∈ (0,π/2). Let C be a nonempty closed convex subset of X, and T : C → C be

a fundamentally nonexpansive mapping, then there exists a sequence {xn} in C such that

limn→∞ d(T (xn), xn) = 0.

Proof. Define a sequence {xn} in C by x1 ∈ C and xn+1 = αT (xn)⊕ (1−α)xn for n ∈ N,

where α is a real number belonging to (0, 1). Then we have

d(T (xn+1), T (xn)) = αd(T 2(xn), T (xn)) ≤ αd(T (xn), xn) = d(xn+1, xn)

for all n ∈ N and hence

d(T (xn+1), T (xn)) ≤ d(xn+1, xn).

This implies that

lim sup
n→∞

(d(T (xn+1), T (xn))− d(xn+1, xn)) ≤ 0.

So by Lemma 5.1.4, we have

lim
n→∞

d(T (xn), xn) = 0.

This completes the proof.

5.2 Fixed point theorems

Theorem 5.2.1. Let κ > 0 and (X, d) be a complete CAT(κ) space with diam(X) ≤ π/2−ε√
κ

for some ε ∈ (0,π/2). Let C be a nonempty closed convex subset of X, and T : C → C be

a fundamentally nonexpansive mapping. Then F (T ) is nonempty.
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Proof. Define a sequence {xn} in C by x1 ∈ C and xn+1 = αT (xn)⊕ (1−α)xn for n ∈ N,

where α is a real number belonging to (0, 1) and let A({xn}) = {z}. It follows from

Lemma 2.4.19 that z ∈ C. By Lemma 5.1.5, we have lim supn→∞ d(T (xn), xn) = 0. By

Lemma 5.1.3, we have

d(xn, T (z)) ≤ 3d(T (xn), xn) + d(xn, z).

Taking the limit superior on both sides in the above inequality, we obtain

lim sup
n→∞

d(xn, T (z)) ≤ lim sup
n→∞

d(xn, z).

Since A({xn}) = {z}, it must be the case that z = T (z).

As a consequence of Theorem 5.2.1, we obtain

Corollary 5.2.2. Let (X, d) be a complete CAT(0) space. Let C be a nonempty bounded

closed convex subset of X, and T : C → C be a fundamentally nonexpansive mapping.

Then F (T ) is nonempty.

Corollary 5.2.3. Let κ > 0 and (X, d) be a complete CAT(κ) space with diam(X) ≤
π/2−ε√

κ
for some ε ∈ (0,π/2). Let C be a nonempty compact convex subset of X, and

T : C → C be a fundamentally nonexpansive mapping. Then F (T ) is nonempty.

Lemma 5.2.4. Let κ > 0 and (X, d) be a complete CAT(κ) space with diam(X) ≤ π/2−ε√
κ

for some ε ∈ (0,π/2). Let C be a nonempty closed convex subset of X, and T : C → C

be a fundamentally nonexpansive mapping. Let {αn} and {βn} be sequences in (0, 1).

Suppose x1 ∈ C, and {xn} defined by

⎧
⎨

⎩
yn = αnT (xn)⊕ (1− αn)xn,

xn+1 = βnT (yn)⊕ (1− βn)xn,

for all n ∈ N. Then limn→∞ d(xn, z) exists for all z ∈ F (T ).

Proof. Let z ∈ F (T ). By Lemma 5.1.3, we have

d(xn+1, z) = d(βnT (yn)⊕ (1− βn)xn, z)

≤ βnd(T (yn), z) + (1− βn)d(xn, z)

≤ βn [3d(T (z), z) + d(yn, z)] + (1− βn)d(xn, z)

≤ βnd(yn, z) + (1− βn)d(xn, z)

= βnd(αnT (xn)⊕ (1− αn)xn, z) + (1− βn)d(xn, z)
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≤ βnαnd(T (xn), z) + βn(1− αn)d(xn, z) + (1− βn)d(xn, z)

≤ βnαn [3d(T (z), z) + d(xn, z)] + βn(1− αn)d(xn, z) + (1− βn)d(xn, z)

≤ βnαnd(xn, z) + βn(1− αn)d(xn, z) + (1− βn)d(xn, z)

≤ d(xn, z). (5.1)

This implies that {d(xn, z)} is bounded and nonincreasing for all z ∈ F (T ). Hence

limn→∞ d(xn, z) exists.

Lemma 5.2.5. Let κ > 0 and (X, d) be a complete CAT(κ) space with diam(X) ≤ π/2−ε√
κ

for some ε ∈ (0,π/2). Let C be a nonempty closed convex subset of X, and T : C → C be

a fundamentally nonexpansive mapping. Define a sequence {xn} by x1 ∈ C and

⎧
⎨

⎩
yn = αnT (xn)⊕ (1− αn)xn,

xn+1 = βnT (yn)⊕ (1− βn)xn,

for all n ∈ N, where {αn} and {βn} are chosen so that βn ∈ [a, b] and αn ∈ [0, b] or

βn ∈ [a, 1] and αn ∈ [a, b] for some a, b with 0 < a ≤ b < 1. Then F (T ) ̸= ∅ if and only if

{xn} is bounded and limn→∞ d(T (xn), xn) = 0.

Proof. Suppose that F (T ) ̸= ∅ and let z ∈ F (T ). Then by Lemma 5.2.4, limn→∞ d(xn, z)

exists and {xn} is bounded. Put

lim
n→∞

d(xn, z) = c. (5.2)

By Lemma 5.1.3, we have

d(T (yn), z) ≤ 3d(T (z), z) + d(yn, z)

= d(yn, z)

= d(αnT (xn)⊕ (1− αn)xn, z)

≤ αnd(T (xn), z) + (1− αn)d(xn, z)

≤ αn [3d(T (z), z) + d(xn, z)] + (1− αn)d(xn, z)

= αnd(xn, z) + (1− αn)d(xn, z) = d(xn, z).

Thus

lim sup
n→∞

d (T (yn), z) ≤ lim sup
n→∞

d (yn, z) ≤ lim sup
n→∞

d (xn, z) = c. (5.3)

Further, we have

c = lim
n→∞

d (xn+1, z) = lim
n→∞

d
(
βnT (yn)⊕ (1− βn)xn, z

)
. (5.4)
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We first consider case: If 0 < a ≤ βn ≤ b < 1 and 0 ≤ αn ≤ b < 1.

By (5.2), (5.3), (5.4) and using Lemma 3.1.5, we obtain limn→∞ d (T (yn), xn) = 0.

Since

d (T (xn), xn) ≤ d (T (xn), T (yn)) + d (T (yn), xn)

≤ d
(
T (xn), T

2(yn)
)
+ d

(
T 2(yn), T (yn)

)
+ d (T (yn), xn)

≤ d (xn, T (yn)) + d (T (yn), yn) + d (T (yn), xn)

≤ 2d (xn, T (yn)) + d (T (yn), yn)

≤ 2d (xn, T (yn)) + d (T (yn), xn) + d (xn, yn)

≤ 3d (xn, T (yn)) + d (xn, yn)

= 3d (T (yn), xn) + d
(
xn,αnT (xn)⊕ (1− αn)xn

)

≤ 3d (T (yn), xn) + αnd (xn, T (xn)) + (1− αn)d (xn, xn)

= αnd (T (xn), xn) + 3d (T (yn), xn) .

Then (1− αn)d (T (xn), xn) ≤ 3d (T (yn), xn).

Since 0 ≤ αn ≤ b < 1, we obtain

(1− b)d (T (xn), xn) ≤ (1− αn)d (T (xn), xn) ≤ 3d (T (yn), xn) .

Thus

d (T (xn), xn) ≤
3

1− b
d (T (yn), xn) .

Therefore

lim
n→∞

d (T (xn), xn) ≤
3

1− b
lim
n→∞

d (T (yn), xn) = 0.

On the other hand, if 0 < a ≤ βn ≤ 1 and 0 < a ≤ αn ≤ b < 1, then by Lemma 5.1.3 we

have d(T (xn), z) ≤ 3d(T (z), z) + d(xn, z) = d(xn, z) for all n ∈ N. This implies that

lim sup
n→∞

d(T (xn), z) ≤ c. (5.5)

Now,

d (xn+1, z) = d
(
βnT (yn)⊕ (1− βn)xn, z

)

≤ βnd (T (yn), z) + (1− βn)d (xn, z)

≤ βn [3d (T (z), z) + d (yn, z)] + (1− βn)d (xn, z)

= βnd (yn, z) + (1− βn)d (xn, z)

= βnd (yn, z) + d (xn, z)− βnd (xn, z) .
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This implies that
d (xn+1, z)− d (xn, z)

βn
≤ d (yn, z)− d (xn, z) .

Hence

c ≤ lim inf
n→∞

d (yn, z) .

By (5.3) we have, lim supn→∞ d (yn, z) ≤ c thus

lim inf
n→∞

d (yn, z) = c = lim sup
n→∞

d (yn, z) ,

yielding

c = lim
n→∞

d (yn, z) = lim
n→∞

d
(
αnT (xn)⊕ (1− αn)xn, z

)
. (5.6)

Since limn→∞ d (xn, z) exists, by (5.2), (5.5) (5.6) and using Lemma 3.1.5, we have

lim
n→∞

d (xn, T (xn)) = 0.

Conversely, suppose that {xn} is bounded and limn→∞ d (T (xn), xn) = 0.

Let A ({xn}) = {z}. By Lemma 5.1.3, we have

d(xn, T (z)) ≤ 3d(T (xn), xn) + d(xn, z).

Taking the limit superior on both sides in the above inequality, we obtain

lim sup
n→∞

d (xn, T (z)) ≤ lim sup
n→∞

(
3d(T (xn), xn) + d(xn, z)

)
.

Since lim supn→∞ d (xn, T (xn)) = 0, lim supn→∞ d (xn, T (z)) ≤ lim supn→∞ d (xn, z). By

the uniqueness of asymptotic center, we obtain T (z) = z. Therefore, z is a fixed point of

T .

Theorem 5.2.6. Let κ > 0 and (X, d) be a complete CAT(κ) space with diam(X) ≤
π/2−ε√

κ
for some ε ∈ (0,π/2). Let C be a nonempty closed convex subset of X, and T :

C → C be a fundamentally nonexpansive mapping. Let {xn} be a sequence in C with

limn→∞ d(T (xn), xn) = 0 and ∆− limn→∞ xn = z. Then z ∈ C and z = T (z).

Proof. Since ∆ − limn→∞ xn = z, by Lemma 2.4.19, we have z ∈ C. It follows from

Lemma 5.1.3 that

d(xn, T (z)) ≤ 3d(T (xn), xn) + d(xn, z).
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Taking the limit superior on both sides in the above inequality, we obtain

lim sup
n→∞

d(xn, T (z)) ≤ lim sup
n→∞

d(xn, z).

By the uniqueness of asymptotic center, we obtain z = T (z).

Lemma 5.2.7. Let κ > 0 and (X, d) be a complete CAT(κ) space with diam(X) ≤ π/2−ε√
κ

for some ε ∈ (0,π/2). Let C be a nonempty closed convex subset of X, and T : C → C

be a fundamentally nonexpansive mapping. Suppose {xn} is a sequence in C such that

limn→∞ d(T (xn), xn) = 0 and {d(xn, v)} converges for all v ∈ F (T ), then ωw(xn) ⊆ F (T ).

Here ωw(xn) :=
⋃

A ({un}) where the union is taken over all subsequences {un} of {xn}.

Moreover, ωw(xn) consists of exactly one point.

Proof. Let u ∈ ωw(xn). Then there exists a subsequence {un} of {xn} such that A({un}) =

{u}. By Lemma 2.4.19, there exists a subsequence {vn} of {un} such that∆−limn→∞ vn =

v ∈ C. By Theorem 5.2.6, v ∈ F (T ). By Lemma 2.4.20, u = v. This shows that ωw(xn) ⊆

F (T ). Next, we show that ωw(xn) consists of exactly one point. Let {un} be subsequence

of {xn} with A({un}) = {u} and let A({xn}) = {x}. Since u ∈ ωw(xn) ⊆ F (T ), we have

{d(xn, u)} converges. Again, by Lemma 2.4.20, x = u. This completes the proof.

5.3 ∆ and strong convergence theorems

Theorem 5.3.1. Let κ > 0 and (X, d) be a complete CAT(κ) space with diam(X) ≤ π/2−ε√
κ

for some ε ∈ (0,π/2). Let C be a nonempty closed convex subset of X, and T : C → C be

a fundamentally nonexpansive mapping. Define a sequence {xn} by x1 ∈ C and

⎧
⎨

⎩
yn = αnT (xn)⊕ (1− αn)xn,

xn+1 = βnT (yn)⊕ (1− βn)xn,

for all n ∈ N, where {αn} and {βn} are chosen so that βn ∈ [a, b] and αn ∈ [0, b] or

βn ∈ [a, 1] and αn ∈ [a, b] for some a, b with 0 < a ≤ b < 1. Then {xn} ∆-converges to a

fixed point of T .

Proof. By Theorem 5.2.1, F (T ) ̸= ∅. Let z ∈ F (T ), by (5.1) we have d (xn+1, z) ≤ d (xn, z)

for all n ≥ 1. Then
{
d (xn, z)

}
is bounded and nonincreasing for each z ∈ F (T ), so it is

convergent, by Lemma 5.2.5 we have limn→∞ d (T (xn), xn) = 0. By using Lemma 5.2.7,

we obtain that ωw (xn) consists of exactly one point and is contained in F (T ). This shows

that {xn} ∆-converges to an element of F (T ).

49



Theorem 5.3.2. Let κ > 0 and (X, d) be a complete CAT(κ) space with diam(X) ≤ π/2−ε√
κ

for some ε ∈ (0,π/2). Let C be a nonempty compact convex subset of X, and T : C → C

be a fundamentally nonexpansive mapping. Define a sequence {xn} by x1 ∈ C and
⎧
⎨

⎩
yn = αnT (xn)⊕ (1− αn)xn,

xn+1 = βnT (yn)⊕ (1− βn)xn,

for all n ∈ N, where {αn} and {βn} are chosen so that βn ∈ [a, b] and αn ∈ [0, b] or

βn ∈ [a, 1] and αn ∈ [a, b] for some a, b with 0 < a ≤ b < 1. Then {xn} converge strongly

to a fixed point of T .

Proof. By Corollary 5.2.3, F (T ) ̸= ∅. Then by Lemma 5.2.5, we have limn→∞ d(T (xn), xn) =

0. Since C is compact, there exists a subsequence {xnk} of {xn} such that {xnk} converges

strongly to z for some z ∈ C. By Lemma 5.1.3 we have

d(xnk , T (z)) ≤ 3d(T (xnk), xnk) + d(xnk , z), ∀k ∈ N.

Therefore {xnk} converges to T (z). This implies T (z) = z. That is, z is a fixed point of

T. By Lemma 5.2.4, we have limn→∞ d(xn, z) exists. Thus {xn} converges strongly to a

fixed point of T.

Theorem 5.3.3. Let κ > 0 and (X, d) be a complete CAT(κ) space with diam(X) ≤ π/2−ε√
κ

for some ε ∈ (0,π/2). Let C be a nonempty closed convex subset of X, and T : C → C be

a fundamentally nonexpansive mapping. Define a sequence {xn} by x1 ∈ C and
⎧
⎨

⎩
yn = αnT (xn)⊕ (1− αn)xn,

xn+1 = βnT (yn)⊕ (1− βn)xn,

for all n ∈ N, where {αn} and {βn} are chosen so that βn ∈ [a, b] and αn ∈ [0, b] or

βn ∈ [a, 1] and αn ∈ [a, b] for some a, b with 0 < a ≤ b < 1. Suppose T satisfies condition

(I). Then {xn} converges strongly to some fixed point of T .

Proof. By condition (I), we have

f (d (xn, F (T ))) ≤ d(xn, T (xn)) for all n ∈ N.

It follows from Lemma 5.2.5 that

lim
n→∞

f (d (xn, F (T ))) = 0.

We can choose a subsequence {xnk} of {xn} and a sequence {zk} in F (T ) such that

d(xnk , zk) ≤
1

2k
for all k ∈ N. (5.7)
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By (5.1), we have

d(xnk+1 , zk) ≤ d(xnk , zk) ≤
1

2k
.

Hence

d(zk+1, zk) ≤ d(zk+1, xnk+1) + d(xnk+1 , zk)

≤ 1

2(k+1)
+

1

2k

<
1

2k−1
→ 0 as k → ∞.

This shows that {zk} is a Cauchy sequence in F (T ). Since F (T ) is closed in X, there exists

a point z ∈ F (T ) such that limk→∞ zk = z. It follows from (5.7) that limk→∞ xnk = z.

Since limn→∞ d(xn, z) exists, it must be the case that limn→∞ d(xn, z) = 0. Therefore we

obtain the desired result.
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