CHAPTER 5

Fundamentally nonexpansive mappings in $CAT(\kappa)$ spaces

In this chapter, we study fixed point theorems and Δ -convergence theorems of the Ishikawa iteration for fundamentally nonexpansive mappings on $CAT(\kappa)$ spaces with k > 0.

5.1 Basic concepts

Let C be a nonempty subset of a metric space (X, d). Recall that a mapping $T : C \to C$ is said to be *fundamentally nonexpansive* if

$$d(T^2(x), T(y)) \le d(T(x), y)$$
, for all $x, y \in C$.

It is clear that every nonexpansive mapping is fundamentally nonexpansive, but the converse is not true.

Example 5.1.1. [47] Define a mapping $T : [0, 2] \rightarrow [0, 2]$ by

$$T(x) = \begin{cases} 0, & x \neq 2, \\ 1, & x = 2. \end{cases}$$

Then T is fundamentally nonexpansive, but T is not nonexpansive.

Proposition 5.1.1. [47] Every mapping which satisfies condition (C) is fundamentally nonexpansive, but the inverse is not true.

Example 5.1.2. [20] Suppose $X = \{(0,0), (0,1), (1,1), (1,2)\}$. Define

$$d((x_1, y_1), (x_2, y_2)) = \max\{|x_1 - x_2|, |y_1 - y_2|\}$$

Define T on X by

$$T(0,0) = (1,2), \quad T(0,1) = (0,0), \quad T(1,1) = (1,1), \quad T(1,2) = (0,1).$$

Then T is fundamentally nonexpansive but does not satisfy condition (C).

Example 5.1.3. Define a mapping $T : [0, 2] \rightarrow [0, 2]$ by

$$T(x) = \begin{cases} 0, & x \in [0, 1), \\ \frac{3}{4}, & x \in [1, 2]. \end{cases}$$

Then T is generalized hybrid but T is not fundamentally nonexpansive.

Proof. By taking x = 2, y = 1, we have

$$d(T^{2}(x), T(y)) = d\left(0, \frac{3}{4}\right) = \frac{3}{4}$$

but

$$d(T(x), y) = d\left(\frac{3}{4}, 1\right) = \frac{1}{4} \not\geq d(T^2(x), T(y)).$$

Therefore T is not fundamentally nonexpansive. Next, we show that T is generalized hybrid. If $x \in [0,1), y \in [1,2]$ then $d^2(T(x), T(y)) = d^2(0, \frac{3}{4}) = \frac{9}{16}$. We choose $a_1(x) = \frac{1}{16}, a_2(x) = \frac{9}{16}, a_3(x) = \frac{6}{16}, k_1(x) = \frac{6}{32}, k_2(x) = \frac{9}{16}$, we get that

$$d^{2}(T(x), T(y)) = \frac{9}{16} \le a_{2}(x)d^{2}(T(x), y)$$

$$\le a_{1}(x)d^{2}(x, y) + a_{2}(x)d^{2}(T(x), y) + a_{3}(x)(T(y), x) + k_{1}(x)d^{2}(T(x), x)$$

$$+ k_{2}(x)d^{2}(T(y), y).$$

Therefore T is generalized hybrid.

Lemma 5.1.2. Let C be a nonempty bounded closed convex subset of a complete $CAT(\kappa)$ space (X, d), and $T : C \to C$ be a fundamentally nonexpansive mapping and $F(T) \neq \emptyset$, then F(T) is closed.

Proof. Let $\{x_n\}$ be a sequence in F(T) converging to some point $z \in C$. Since

$$d(x_n, T(z)) = d(T^2(x_n), T(z)) \le d(T(x_n), z) = d(x_n, z),$$
$$\limsup_{n \to \infty} d(x_n, T(z)) \le \limsup_{n \to \infty} d(x_n, z) = 0.$$

That is $\{x_n\}$ converges to T(z). This implies that T(z) = z. Therefore F(T) is closed. \Box

Lemma 5.1.3. Let C be a nonempty subset of a $CAT(\kappa)$ space (X, d), and $T : C \to C$ be a fundamentally nonexpansive mapping. Then

$$d(x, T(y)) \le 3d(T(x), x) + d(x, y),$$

for all $x, y \in C$.

Proof. Since T is fundamentally nonexpansive, we have

$$\begin{aligned} d(x,T(y)) &\leq d(x,T(x)) + d(T(x),T^2(x)) + d(T^2(x),T(y)) \\ &\leq 2d(x,T(x)) + d(T(x),y) \\ &\leq 3d(x,T(x)) + d(x,y). \end{aligned}$$

This completes the proof.

Lemma 5.1.4. (cf. [45]) Let $\kappa > 0$ and (X, d) be a complete $CAT(\kappa)$ space such that $diam(X) \leq \frac{\pi/2-\varepsilon}{\sqrt{\kappa}}$ for some $\varepsilon \in (0, \pi/2)$ and let $\{z_n\}$ and $\{w_n\}$ be two sequences in X. Let $\{\beta_n\}$ be a sequence in [0,1] such that $0 < \liminf_{n \to \infty} \beta_n \le \limsup_{n \to \infty} \beta_n < 1$. Suppose that $z_{n+1} = \beta_n z_n + (1 - \beta_n) w_n$ for all $n \in \mathbb{N}$ and $\limsup_{n \to \infty} (d(w_{n+1}, w_n) - d(z_{n+1}, z_n)) \leq 1$ 0. Then $\lim_{n\to\infty} d(w_n, z_n) = 0.$

Lemma 5.1.5. Let $\kappa > 0$ and (X, d) be a complete $CAT(\kappa)$ space with $diam(X) \leq \frac{\pi/2 - \varepsilon}{\sqrt{\kappa}}$ for some $\varepsilon \in (0, \pi/2)$. Let C be a nonempty closed convex subset of X, and $T: C \to C$ be a fundamentally nonexpansive mapping, then there exists a sequence $\{x_n\}$ in C such that $\lim_{n \to \infty} d(T(x_n), x_n) = 0.$

Proof. Define a sequence $\{x_n\}$ in C by $x_1 \in C$ and $x_{n+1} = \alpha T(x_n) \oplus (1-\alpha)x_n$ for $n \in \mathbb{N}$, where α is a real number belonging to (0,1). Then we have

$$d(T(x_{n+1}), T(x_n)) = \alpha d(T^2(x_n), T(x_n)) \le \alpha d(T(x_n), x_n) = d(x_{n+1}, x_n)$$

for all $n \in \mathbb{N}$ and hence

$$d(T(x_{n+1}), T(x_n)) \le d(x_{n+1}, x_n).$$

This implies that

$$\limsup_{n \to \infty} \left(d(T(x_{n+1}), T(x_n)) - d(x_{n+1}, x_n) \right) \le 0.$$

So by Lemma 5.1.4, we have
$$\lim_{n \to \infty} d(T(x_n), x_n) = 0.$$

This completes the proof

5.2Fixed point theorems

Theorem 5.2.1. Let $\kappa > 0$ and (X, d) be a complete $CAT(\kappa)$ space with $diam(X) \leq \frac{\pi/2 - \varepsilon}{\sqrt{\kappa}}$ for some $\varepsilon \in (0, \pi/2)$. Let C be a nonempty closed convex subset of X, and $T: C \to C$ be a fundamentally nonexpansive mapping. Then F(T) is nonempty.

Proof. Define a sequence $\{x_n\}$ in C by $x_1 \in C$ and $x_{n+1} = \alpha T(x_n) \oplus (1-\alpha)x_n$ for $n \in \mathbb{N}$, where α is a real number belonging to (0,1) and let $A(\{x_n\}) = \{z\}$. It follows from Lemma 2.4.19 that $z \in C$. By Lemma 5.1.5, we have $\limsup_{n\to\infty} d(T(x_n), x_n) = 0$. By Lemma 5.1.3, we have

$$d(x_n, T(z)) \le 3d(T(x_n), x_n) + d(x_n, z).$$

Taking the limit superior on both sides in the above inequality, we obtain

 $\limsup_{n \to \infty} d(x_n, T(z)) \le \limsup_{n \to \infty} d(x_n, z).$

Since $A({x_n}) = {z}$, it must be the case that z = T(z).

As a consequence of Theorem 5.2.1, we obtain

Corollary 5.2.2. Let (X, d) be a complete CAT(0) space. Let C be a nonempty bounded closed convex subset of X, and $T : C \to C$ be a fundamentally nonexpansive mapping. Then F(T) is nonempty.

Corollary 5.2.3. Let $\kappa > 0$ and (X, d) be a complete $CAT(\kappa)$ space with $diam(X) \leq \frac{\pi/2-\varepsilon}{\sqrt{\kappa}}$ for some $\varepsilon \in (0, \pi/2)$. Let C be a nonempty compact convex subset of X, and $T: C \to C$ be a fundamentally nonexpansive mapping. Then F(T) is nonempty.

Lemma 5.2.4. Let $\kappa > 0$ and (X, d) be a complete $CAT(\kappa)$ space with $diam(X) \leq \frac{\pi/2-\varepsilon}{\sqrt{\kappa}}$ for some $\varepsilon \in (0, \pi/2)$. Let C be a nonempty closed convex subset of X, and $T : C \to C$ be a fundamentally nonexpansive mapping. Let $\{\alpha_n\}$ and $\{\beta_n\}$ be sequences in (0, 1). Suppose $x_1 \in C$, and $\{x_n\}$ defined by

 $\begin{cases} y_n = \alpha_n T(x_n) \oplus (1 - \alpha_n) x_n, \\ x_{n+1} = \beta_n T(y_n) \oplus (1 - \beta_n) x_n, \end{cases}$

for all $n \in \mathbb{N}$. Then $\lim_{n \to \infty} d(x_n, z)$ exists for all $z \in F(T)$.

Proof. Let $z \in F(T)$. By Lemma 5.1.3, we have $d(x_{n+1}, z) = d(\beta_n T(y_n) \oplus (1 - \beta_n) x_n, z)$ $\leq \beta_n d(T(y_n), z) + (1 - \beta_n) d(x_n, z)$ $\leq \beta_n [3d(T(z), z) + d(y_n, z)] + (1 - \beta_n) d(x_n, z)$ $\leq \beta_n d(y_n, z) + (1 - \beta_n) d(x_n, z)$ $= \beta_n d(\alpha_n T(x_n) \oplus (1 - \alpha_n) x_n, z) + (1 - \beta_n) d(x_n, z)$

$$\leq \beta_{n}\alpha_{n}d(T(x_{n}),z) + \beta_{n}(1-\alpha_{n})d(x_{n},z) + (1-\beta_{n})d(x_{n},z)$$

$$\leq \beta_{n}\alpha_{n}\left[3d(T(z),z) + d(x_{n},z)\right] + \beta_{n}(1-\alpha_{n})d(x_{n},z) + (1-\beta_{n})d(x_{n},z)$$

$$\leq \beta_{n}\alpha_{n}d(x_{n},z) + \beta_{n}(1-\alpha_{n})d(x_{n},z) + (1-\beta_{n})d(x_{n},z)$$

$$\leq d(x_{n},z).$$
(5.1)

This implies that $\{d(x_n, z)\}$ is bounded and nonincreasing for all $z \in F(T)$. Hence $\lim_{n\to\infty} d(x_n, z)$ exists.

Lemma 5.2.5. Let $\kappa > 0$ and (X, d) be a complete $CAT(\kappa)$ space with $diam(X) \leq \frac{\pi/2-\varepsilon}{\sqrt{\kappa}}$ for some $\varepsilon \in (0, \pi/2)$. Let C be a nonempty closed convex subset of X, and $T: C \to C$ be a fundamentally nonexpansive mapping. Define a sequence $\{x_n\}$ by $x_1 \in C$ and

$$\begin{cases} y_n = \alpha_n T(x_n) \oplus (1 - \alpha_n) x_n, \\ x_{n+1} = \beta_n T(y_n) \oplus (1 - \beta_n) x_n, \end{cases}$$

for all $n \in \mathbb{N}$, where $\{\alpha_n\}$ and $\{\beta_n\}$ are chosen so that $\beta_n \in [a, b]$ and $\alpha_n \in [0, b]$ or $\beta_n \in [a, 1]$ and $\alpha_n \in [a, b]$ for some a, b with $0 < a \le b < 1$. Then $F(T) \ne \emptyset$ if and only if $\{x_n\}$ is bounded and $\lim_{n\to\infty} d(T(x_n), x_n) = 0$.

Proof. Suppose that $F(T) \neq \emptyset$ and let $z \in F(T)$. Then by Lemma 5.2.4, $\lim_{n\to\infty} d(x_n, z)$ exists and $\{x_n\}$ is bounded. Put

$$\lim_{n \to \infty} d(x_n, z) = c.$$
(5.2)

By Lemma 5.1.3, we have

$$\begin{aligned} d(T(y_n), z) &\leq 3d(T(z), z) + d(y_n, z) \\ &= d(y_n, z) \\ &= d(\alpha_n T(x_n) \oplus (1 - \alpha_n) x_n, z) \\ &\leq \alpha_n d(T(x_n), z) + (1 - \alpha_n) d(x_n, z) \\ &\leq \alpha_n \left[3d(T(z), z) + d(x_n, z) \right] + (1 - \alpha_n) d(x_n, z) \\ &= \alpha_n d(x_n, z) + (1 - \alpha_n) d(x_n, z) = d(x_n, z). \end{aligned}$$

Thus

$$\limsup_{n \to \infty} d\left(T(y_n), z\right) \le \limsup_{n \to \infty} d\left(y_n, z\right) \le \limsup_{n \to \infty} d\left(x_n, z\right) = c.$$
(5.3)

Further, we have

$$c = \lim_{n \to \infty} d(x_{n+1}, z) = \lim_{n \to \infty} d(\beta_n T(y_n) \oplus (1 - \beta_n) x_n, z).$$
(5.4)

We first consider case: If $0 < a \leq \beta_n \leq b < 1$ and $0 \leq \alpha_n \leq b < 1$. By (5.2), (5.3), (5.4) and using Lemma 3.1.5, we obtain $\lim_{n\to\infty} d(T(y_n), x_n) = 0$. Since

$$\begin{aligned} d\left(T(x_{n}), x_{n}\right) &\leq d\left(T(x_{n}), T(y_{n})\right) + d\left(T(y_{n}), x_{n}\right) \\ &\leq d\left(T(x_{n}), T^{2}(y_{n})\right) + d\left(T^{2}(y_{n}), T(y_{n})\right) + d\left(T(y_{n}), x_{n}\right) \\ &\leq d\left(x_{n}, T(y_{n})\right) + d\left(T(y_{n}), y_{n}\right) + d\left(T(y_{n}), x_{n}\right) \\ &\leq 2d\left(x_{n}, T(y_{n})\right) + d\left(T(y_{n}), x_{n}\right) + d\left(x_{n}, y_{n}\right) \\ &\leq 3d\left(x_{n}, T(y_{n})\right) + d\left(x_{n}, y_{n}\right) \\ &= 3d\left(T(y_{n}), x_{n}\right) + d\left(x_{n}, \alpha_{n}T(x_{n}) \oplus (1 - \alpha_{n})x_{n}\right) \\ &\leq 3d\left(T(y_{n}), x_{n}\right) + \alpha_{n}d\left(x_{n}, T(x_{n})\right) + (1 - \alpha_{n})d\left(x_{n}, x_{n}\right) \\ &= \alpha_{n}d\left(T(x_{n}), x_{n}\right) + 3d\left(T(y_{n}), x_{n}\right). \end{aligned}$$

Then $(1 - \alpha_n)d(T(x_n), x_n) \le 3d(T(y_n), x_n)$ Since $0 \le \alpha_n \le b < 1$, we obtain

$$(1-b)d(T(x_n), x_n) \le (1-\alpha_n)d(T(x_n), x_n) \le 3d(T(y_n), x_n)$$

Thus

$$d\left(T(x_n), x_n\right) \leq \frac{3}{1-b} d\left(T(y_n), x_n\right).$$

Therefore

$$\lim_{n \to \infty} d\left(T(x_n), x_n\right) \le \frac{3}{1-b} \lim_{n \to \infty} d\left(T(y_n), x_n\right) = 0$$

On the other hand, if $0 < a \le \beta_n \le 1$ and $0 < a \le \alpha_n \le b < 1$, then by Lemma 5.1.3 we have $d(T(x_n), z) \le 3d(T(z), z) + d(x_n, z) = d(x_n, z)$ for all $n \in \mathbb{N}$. This implies that

Now,

$$\begin{aligned} \lim_{n \to \infty} \sup d(T(x_n), z) \leq c. \end{aligned}$$
(5.5)

$$\begin{aligned} & \text{Now,} \end{aligned}$$

$$d(x_{n+1}, z) = d(\beta_n T(y_n) \oplus (1 - \beta_n) x_n, z) \\ & \leq \beta_n d(T(y_n), z) + (1 - \beta_n) d(x_n, z) \\ & \leq \beta_n [3d(T(z), z) + d(y_n, z)] + (1 - \beta_n) d(x_n, z) \\ & = \beta_n d(y_n, z) + (1 - \beta_n) d(x_n, z) \\ & = \beta_n d(y_n, z) + d(x_n, z) - \beta_n d(x_n, z). \end{aligned}$$

This implies that

$$\frac{d(x_{n+1},z) - d(x_n,z)}{\beta_n} \le d(y_n,z) - d(x_n,z).$$

Hence

$$c \le \liminf_{n \to \infty} d\left(y_n, z\right).$$

By (5.3) we have, $\limsup_{n\to\infty} d(y_n, z) \leq c$ thus

$$\liminf_{n \to \infty} d(y_n, z) = c = \limsup_{n \to \infty} d(y_n, z),$$

yielding

$$c = \lim_{n \to \infty} d(y_n, z) = \lim_{n \to \infty} d(\alpha_n T(x_n) \oplus (1 - \alpha_n) x_n, z).$$
(5.6)

Since $\lim_{n\to\infty} d(x_n, z)$ exists, by (5.2), (5.5) (5.6) and using Lemma 3.1.5, we have

$$\lim_{n \to \infty} d\left(x_n, T(x_n)\right) = 0$$

Conversely, suppose that $\{x_n\}$ is bounded and $\lim_{n\to\infty} d(T(x_n), x_n) = 0$. Let $A(\{x_n\}) = \{z\}$. By Lemma 5.1.3, we have

$$d(x_n, T(z)) \le 3d(T(x_n), x_n) + d(x_n, z).$$

Taking the limit superior on both sides in the above inequality, we obtain

$$\limsup_{n \to \infty} d(x_n, T(z)) \le \limsup_{n \to \infty} \left(3d(T(x_n), x_n) + d(x_n, z) \right).$$

Since $\limsup_{n\to\infty} d(x_n, T(x_n)) = 0$, $\limsup_{n\to\infty} d(x_n, T(z)) \le \limsup_{n\to\infty} d(x_n, z)$. By the uniqueness of asymptotic center, we obtain T(z) = z. Therefore, z is a fixed point of T.

Theorem 5.2.6. Let $\kappa > 0$ and (X, d) be a complete $CAT(\kappa)$ space with $diam(X) \leq \frac{\pi/2-\varepsilon}{\sqrt{\kappa}}$ for some $\varepsilon \in (0, \pi/2)$. Let C be a nonempty closed convex subset of X, and T : $C \to C$ be a fundamentally nonexpansive mapping. Let $\{x_n\}$ be a sequence in C with $\lim_{n\to\infty} d(T(x_n), x_n) = 0$ and $\Delta - \lim_{n\to\infty} x_n = z$. Then $z \in C$ and z = T(z).

Proof. Since $\Delta - \lim_{n \to \infty} x_n = z$, by Lemma 2.4.19, we have $z \in C$. It follows from Lemma 5.1.3 that

$$d(x_n, T(z)) \le 3d(T(x_n), x_n) + d(x_n, z).$$

Taking the limit superior on both sides in the above inequality, we obtain

$$\limsup_{n \to \infty} d(x_n, T(z)) \le \limsup_{n \to \infty} d(x_n, z).$$

By the uniqueness of asymptotic center, we obtain z = T(z).

Lemma 5.2.7. Let $\kappa > 0$ and (X, d) be a complete $CAT(\kappa)$ space with $diam(X) \leq \frac{\pi/2-\varepsilon}{\sqrt{\kappa}}$ for some $\varepsilon \in (0, \pi/2)$. Let C be a nonempty closed convex subset of X, and $T : C \to C$ be a fundamentally nonexpansive mapping. Suppose $\{x_n\}$ is a sequence in C such that $\lim_{n\to\infty} d(T(x_n), x_n) = 0$ and $\{d(x_n, v)\}$ converges for all $v \in F(T)$, then $\omega_w(x_n) \subseteq F(T)$. Here $\omega_w(x_n) := \bigcup A(\{u_n\})$ where the union is taken over all subsequences $\{u_n\}$ of $\{x_n\}$. Moreover, $\omega_w(x_n)$ consists of exactly one point.

Proof. Let $u \in \omega_w(x_n)$. Then there exists a subsequence $\{u_n\}$ of $\{x_n\}$ such that $A(\{u_n\}) = \{u\}$. By Lemma 2.4.19, there exists a subsequence $\{v_n\}$ of $\{u_n\}$ such that $\Delta - \lim_{n \to \infty} v_n = v \in C$. By Theorem 5.2.6, $v \in F(T)$. By Lemma 2.4.20, u = v. This shows that $\omega_w(x_n) \subseteq F(T)$. Next, we show that $\omega_w(x_n)$ consists of exactly one point. Let $\{u_n\}$ be subsequence of $\{x_n\}$ with $A(\{u_n\}) = \{u\}$ and let $A(\{x_n\}) = \{x\}$. Since $u \in \omega_w(x_n) \subseteq F(T)$, we have $\{d(x_n, u)\}$ converges. Again, by Lemma 2.4.20, x = u. This completes the proof.

5.3 Δ and strong convergence theorems

Theorem 5.3.1. Let $\kappa > 0$ and (X, d) be a complete $CAT(\kappa)$ space with $diam(X) \leq \frac{\pi/2-\varepsilon}{\sqrt{\kappa}}$ for some $\varepsilon \in (0, \pi/2)$. Let C be a nonempty closed convex subset of X, and $T: C \to C$ be a fundamentally nonexpansive mapping. Define a sequence $\{x_n\}$ by $x_1 \in C$ and

$$\begin{cases} y_n = \alpha_n T(x_n) \oplus (1 - \alpha_n) x_n, \\ x_{n+1} = \beta_n T(y_n) \oplus (1 - \beta_n) x_n, \end{cases}$$

for all $n \in \mathbb{N}$, where $\{\alpha_n\}$ and $\{\beta_n\}$ are chosen so that $\beta_n \in [a, b]$ and $\alpha_n \in [0, b]$ or $\beta_n \in [a, 1]$ and $\alpha_n \in [a, b]$ for some a, b with $0 < a \le b < 1$. Then $\{x_n\}$ Δ -converges to a fixed point of T.

Proof. By Theorem 5.2.1, $F(T) \neq \emptyset$. Let $z \in F(T)$, by (5.1) we have $d(x_{n+1}, z) \leq d(x_n, z)$ for all $n \geq 1$. Then $\{d(x_n, z)\}$ is bounded and nonincreasing for each $z \in F(T)$, so it is convergent, by Lemma 5.2.5 we have $\lim_{n\to\infty} d(T(x_n), x_n) = 0$. By using Lemma 5.2.7, we obtain that $\omega_w(x_n)$ consists of exactly one point and is contained in F(T). This shows that $\{x_n\}$ Δ -converges to an element of F(T).

Theorem 5.3.2. Let $\kappa > 0$ and (X, d) be a complete $CAT(\kappa)$ space with $diam(X) \leq \frac{\pi/2 - \varepsilon}{\sqrt{\kappa}}$ for some $\varepsilon \in (0, \pi/2)$. Let C be a nonempty compact convex subset of X, and $T : C \to C$ be a fundamentally nonexpansive mapping. Define a sequence $\{x_n\}$ by $x_1 \in C$ and

$$\begin{cases} y_n = \alpha_n T(x_n) \oplus (1 - \alpha_n) x_n, \\ x_{n+1} = \beta_n T(y_n) \oplus (1 - \beta_n) x_n, \end{cases}$$

for all $n \in \mathbb{N}$, where $\{\alpha_n\}$ and $\{\beta_n\}$ are chosen so that $\beta_n \in [a, b]$ and $\alpha_n \in [0, b]$ or $\beta_n \in [a, 1]$ and $\alpha_n \in [a, b]$ for some a, b with $0 < a \le b < 1$. Then $\{x_n\}$ converge strongly to a fixed point of T.

Proof. By Corollary 5.2.3, $F(T) \neq \emptyset$. Then by Lemma 5.2.5, we have $\lim_{n\to\infty} d(T(x_n), x_n) = 0$. Since C is compact, there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $\{x_{n_k}\}$ converges strongly to z for some $z \in C$. By Lemma 5.1.3 we have

$$d(x_{n_k}, T(z)) \le 3d(T(x_{n_k}), x_{n_k}) + d(x_{n_k}, z), \qquad \forall k \in \mathbb{N}.$$

Therefore $\{x_{n_k}\}$ converges to T(z). This implies T(z) = z. That is, z is a fixed point of T. By Lemma 5.2.4, we have $\lim_{n\to\infty} d(x_n, z)$ exists. Thus $\{x_n\}$ converges strongly to a fixed point of T.

Theorem 5.3.3. Let $\kappa > 0$ and (X, d) be a complete $CAT(\kappa)$ space with $diam(X) \leq \frac{\pi/2 - \varepsilon}{\sqrt{\kappa}}$ for some $\varepsilon \in (0, \pi/2)$. Let C be a nonempty closed convex subset of X, and $T : C \to C$ be a fundamentally nonexpansive mapping. Define a sequence $\{x_n\}$ by $x_1 \in C$ and

$$\begin{cases} y_n = \alpha_n T(x_n) \oplus (1 - \alpha_n) x_n, \\ x_{n+1} = \beta_n T(y_n) \oplus (1 - \beta_n) x_n, \end{cases}$$

for all $n \in \mathbb{N}$, where $\{\alpha_n\}$ and $\{\beta_n\}$ are chosen so that $\beta_n \in [a, b]$ and $\alpha_n \in [0, b]$ or $\beta_n \in [a, 1]$ and $\alpha_n \in [a, b]$ for some a, b with $0 < a \le b < 1$. Suppose T satisfies condition (I). Then $\{x_n\}$ converges strongly to some fixed point of T.

Proof. By condition (I), we have
$$f(d(x_n, F(T))) \leq d(x_n, T(x_n)) \quad \text{ for all } n \in \mathbb{N}.$$

It follows from Lemma 5.2.5 that

$$\lim_{n \to \infty} f\left(d\left(x_n, F(T)\right)\right) = 0.$$

We can choose a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ and a sequence $\{z_k\}$ in F(T) such that

$$d(x_{n_k}, z_k) \le \frac{1}{2^k} \quad \text{for all} \quad k \in \mathbb{N}.$$
(5.7)

By (5.1), we have

$$d(x_{n_{k+1}}, z_k) \le d(x_{n_k}, z_k) \le \frac{1}{2^k}.$$

Hence

$$d(z_{k+1}, z_k) \le d(z_{k+1}, x_{n_{k+1}}) + d(x_{n_{k+1}}, z_k)$$

$$\le \frac{1}{2^{(k+1)}} + \frac{1}{2^k}$$

$$< \frac{1}{2^{k-1}} \to 0 \text{ as } k \to \infty.$$

This shows that $\{z_k\}$ is a Cauchy sequence in F(T). Since F(T) is closed in X, there exists a point $z \in F(T)$ such that $\lim_{k\to\infty} z_k = z$. It follows from (5.7) that $\lim_{k\to\infty} x_{n_k} = z$. Since $\lim_{n\to\infty} d(x_n, z)$ exists, it must be the case that $\lim_{n\to\infty} d(x_n, z) = 0$. Therefore we obtain the desired result.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved