CHAPTER 5

Fundamentally nonexpansive mappings in CAT (k) spaces

In this chapter, we study fixed point theorems and A-convergence theorems of the
Ishikawa iteration for fundamentally nonexpansive mappings on CAT (k) spaces with k >

0.
5.1 Basic concepts

Let C' be a nonempty subset of a metric space (X,d). Recall that a mapping 7" :

C — (C is said to be fundamentally nonexpansive if
d(T?(x), T(y)) < d(T(x),y), forall z,y e C.

It is clear that every nonexpansive mapping is fundamentally nonexpansive, but the

converse is not true.
Example 5.1.1. [47] Define a mapping T : [0,2] — [0, 2] by

0, =#2,
1, =z=2.

o) =

Then T is fundamentally nonexpansive, but 7' is not nonexpansive.

Proposition 5.1.1. [47] Every mapping which satisfies condition (C') is fundamentally

nonexpansive, but the inverse is not true.

Example 5.1.2. [20] Suppose X = {(0,0),(0,1),(1,1),(1,2)}. Define

d((z1,91), (22, y2)) = max {|z1 — x2l, [y1 — yal}
Define T on X by
7(0,0)=(1,2), T(0,1)=(0,0), 7T(1,1)=(1,1), T(1,2) = (0,1).

Then T is fundamentally nonexpansive but does not satisfy condition (C).
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Example 5.1.3. Define a mapping 7 : [0, 2] — [0, 2] by

Then T is generalized hybrid but 7" is not fundamentally nonexpansive.

Proof. By taking x = 2,y = 1, we have

A(T(@), T(y)) = d (o, %) -3

but

Ar@).y) =a(51) =5 2 dT*e) 7).
Therefore T' is not fundamentally nonexpansive. Next, we show that T is generalized
hybrid. If z € [0,1),y € [1,2] then d*(T(z),T(y)) = d* (0,3) = 3. We choose a1 (z) =

TIG)GQ(x) T 1%,(13(1') - %)kl(x) e %,k2($) 7 1%5’ we get that

Nej

d*(T(z), T(y)) = 6 = az(z)d*(T'(x), y)

< ay(2)d*(z,y) + az(z)d*(T(z),y) + as(z)(T(y), z) + ki (z)d*(T(z), x)
+ ka(z)d*(T(y),y).

Therefore T is generalized hybrid. O

Lemma 5.1.2. Let C be a nonempty bounded closed convex subset of a complete CAT (k)
space (X,d), and T : C'— C be a fundamentally nonexpansive mapping and F(T) # (),
then F(T) is closed.

Proof. Let {x,} be a sequence in F(T) converging to some point z € C. Since
d(zy, T(2)) = d(T2%(x,), T(2) < d(T(x),2) = d(2n, 2),

limsup d(z,,,T(2)) < limsup d(z,, z) = 0.
n—00 n—00

That is {x,, } converges to T'(z). This implies that T'(z) = z. Therefore F(T) is closed. [

Lemma 5.1.3. Let C be a nonempty subset of a CAT(k) space (X,d), and T : C — C

be a fundamentally nonexpansive mapping. Then
d(z, T(y)) < 3d(T(2), ) +d(z,y),

forallz,y € C.

43



Proof. Since T is fundamentally nonexpansive, we have

d(z, T(y)) < d(z,T(x)) +d(T(z), T*(z)) + d(T*(z), T(y))
< 2d(z,T(z)) +d(T(z),y)
< 3d(z,T(x)) + d(z,y).

This completes the proof. 0

Lemma 5.1.4. (cf. [45]) Let & > 0 and (X,d) be a complete CAT (k) space such that
diam(X) < L\/; for some e € (0,7/2) and let {z,} and {w,} be two sequences in X. Let
{Bn} be a sequence in [0,1] such that 0 < liminf,,_,~ B, < limsup,,_, . Bn < 1. Suppose
that zp+1 = Bnzn+ (1= Brp)wy, for alln € N and limsup,, _, o (d(wp+1, wp) —d(znt1, 2n)) <

0. Then limy o0 d(wWy, 2,) = 0.

Lemma 5.1.5. Let k > 0 and (X,d) be a complete CAT (k) space with diam(X) < %\/;
for some e € (0,7/2). Let C be a nonempty closed convex subset of X, and T : C — C be
a fundamentally nonexpansive mapping, then there exists a sequence {x,} in C such that

limy, 00 d(T'(2,), 1) = 0.

Proof. Define a sequence {z,} in C' by 21 € C and z,41 = o1 (z,) ® (1 — @)z, for n € N,

where « is a real number belonging to (0,1). Then we have
d(T(@n+1), T(wn)) = ad(T?(wn), T(x4)) < ad(T(25),2n) = d(Tp41,20)

for all n € N and hence
d(T(l‘n+1), T(xn)) < d($n+1, x’ﬂ)

This implies that

lim sup (d(T<xn+1)7 T(xn)) i d(xn+17 xn)) < 0.

n—o0

So by Lemma 5.1.4, we have
lim d(T(zy),x,) =

n—oo

This completes the proof. O

5.2 Fixed point theorems

Theorem 5.2.1. Let k > 0 and (X, d) be a complete CAT (k) space with diam(X) < %
for some € € (0,7/2). Let C be a nonempty closed convex subset of X, and T : C'— C be

a fundamentally nonexpansive mapping. Then F(T) is nonempty.
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Proof. Define a sequence {x,} in C by x; € C and 11 = T (x,) ® (1 — a)x, for n € N,
where « is a real number belonging to (0,1) and let A({z,}) = {z}. It follows from
Lemma 2.4.19 that z € C. By Lemma 5.1.5, we have limsup,,_, . d(T'(z,),z,) = 0. By

Lemma 5.1.3, we have
d(xn, T(2)) < 3d(T(xp), xn) + d(zy, 2).
Taking the limit superior on both sides in the above inequality, we obtain

limsup d(x,, T(z)) < limsup d(x,, 2).

n—oo n—oo

Since A({x,}) = {2}, it must be the case that z = T'(z). O
As a consequence of Theorem 5.2.1, we obtain

Corollary 5.2.2. Let (X,d) be a complete CAT(0) space. Let C' be a nonempty bounded
closed convex subset of X, and T : C — C be a fundamentally nonerpansive mapping.

Then F(T) is nonempty.

Corollary 5.2.3. Let £ > 0 and (X,d) be a complete CAT(k) space with diam(X) <
w/2—€
NV
T:C — C be a fundamentally nonexpansive mapping. Then F(T') is nonempty.

for some ¢ € (0,7/2). Let C be a nonempty compact convex subset of X, and

Lemma 5.2.4. Let k > 0 and (X,d) be a complete CAT(r) space with diam(X) < %

for some € € (0,7/2). Let C' be a nonempty closed convex subset of X, and T : C' — C
be a fundamentally nonexpansive mapping. Let {ay} and {B,} be sequences in (0,1).

Suppose x1 € C, and {x,} defined by
Yn = anT(xn) S (1 - an)xnu
Tn+1 = 5nT(yn) @ (1 s | 511)-77717

for all n € N. Then lim,_,o d(xy, z) exists for all z € F(T).

Proof. Let z € F(T). By Lemma 5.1.3, we have

d(@nt1,2) = d(BuT (yn) & (1 = Bn)an, 2)
< Bnd(T(yn), 2) + (1 = Bn)d(an, 2)
< B [3d(T(2), 2) + d(yn, 2)] + (1 = Bn)d(wn, 2)
< Bnd(yn, 2) + (1 = Bp)d(zn, 2)
= Bnd(cnT(25) © (1 — an)tn, 2) + (1 = Bp)d(ay, 2)
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< Brand(T(zn), 2) + Bn(l — an)d(n, 2) + (1 = Bn)d(zn, 2)

< Bnan Bd(T(2), 2) + d(wn, 2)] + Bu(1 — an)d(zn, 2) + (1 = Bn)d(2n, 2)

< Brand(xn, 2) + Bn(l — an)d(zn, 2) + (1 = Bn)d(zn, 2)

< d(zp, 2). (5.1)

This implies that {d(zp,2)} is bounded and nonincreasing for all z € F(T). Hence

limy, s 00 d(xy, 2) exists. O

Lemma 5.2.5. Let k > 0 and (X, d) be a complete CAT (k) space with diam(X) < W/j;

for some € € (0,7/2). Let C be a nonempty closed convex subset of X, and T : C' — C be

a fundamentally nonexpansive mapping. Define a sequence {x,} by z1 € C' and

Yn = anT(mn) Bl an)xn;

Tn4+1 = ﬁnT(yn) ® (1 = 5n)xn7
for all n € N, where {a,,} and {B,} are chosen so that 3, € [a,b] and a, € [0,b] or
Bn € [a,1] and o, € [a,b] for some a,b with 0 < a <b < 1. Then F(T) # 0 if and only if
{zn} is bounded and limy,_,oc d(T(xy), ) = 0.

Proof. Suppose that F(T') # 0 and let z € F(T). Then by Lemma 5.2.4, lim,,_,o d(xy, 2)
exists and {x,} is bounded. Put

lim d(z,,2) = c. (5.2)

n—o0

By Lemma 5.1.3, we have

d(T(yn), 2) < 3d(T(2),2) + d(yn, 2)
= d(yn, 2)
= d(anT (zn) ® (1 — an)an, )
< and(T(2n), 2) + (1 — an)d(n, 2)
an [3d(T(2), 2) + d(zn, 2)] + (1 — an)d(zn, 2)
= apd(ry, z) + (1 — an)d(zp, 2) = d(xy, 2).

Thus
limsupd (T (yn), z) < hmsupd(yn,z) <limsupd (zy, z) = c. (5.3)

n—oo n—oo

Further, we have

c= lim d(xpt1,2) = nlggo d(ﬁnT(yn) @ (1 — Bn)xn, z) (5.4)

n—oo
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We first consider case: f 0 <a <, <b<land0<aq, <b<1.
By (5.2), (5.3), (5.4) and using Lemma 3.1.5, we obtain lim, o d (T'(yn), ) = 0.

Since

< d(T(xn), T*(yn)) + d (T (yn), T(yn)) + d (T (yn), n)
d T(yn),yn) +d(T(yn), Tn)

T(Yn), Yn)

= and (T(xy), xn) + 3d (T (yn), n) -

Then (1 — ap)d (T(xy), zn) < 3d(T(yn), Tn)-

Since 0 < a, < b < 1, we obtain
(1 =0)d (T (zn),zn) < (1 = an)d (T(zn), zn) < 3d(T(yn),zn) -
Thus
A(T(n),20) < 1o d (T 0)
Therefore

lim d(T(zp), xn) < lim d(T(yn),xn) = 0.

n—00 1—5bno0

On the other hand, if 0 <a < 8, <1land 0 < a < a, <b < 1, then by Lemma 5.1.3 we
have d(T(x,),2) < 3d(T(z),z) + d(zp, z) = d(x,, 2) for all n € N. This implies that

limsupd(T'(z,),2) < c. (5.5)

n—oo

Now,

d(¥n41,2) = d(BaT (yn) ® (1 — Bn)an, 2)
< Bnd (T(yn), 2) + (1 = Bn)d (20, 2)
< BnBd(T(2), 2) + d (yn, 2)| + (1 = Bn)d (2, 2)
= Bnd (Yn, 2) + (1 = Bn)d (2n, 2)
= Bnd (Yn, 2) + d (zn, 2) = Bnd (zn, 2) -
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This implies that
d(xnt1,2) —d(zp, 2)

B

Hence

¢ <liminfd (yn, 2) .
n—oo

By (5.3) we have, limsup,, . d (yn, z) < c thus

liminf d (y, z) = ¢ = limsupd (y,, 2) ,

n=+00 n—00

yielding
c= lim d(yp,2) = li_>m d(anT(xn) D (1 — an)xn, z). (5.6)

n—o0
Since limy, o0 d (T, 2) exists, by (5.2), (5.5) (5.6) and using Lemma 3.1.5, we have

lim d(x,,T(x,)) = 0.

n—oo

Conversely, suppose that {x,} is bounded and lim,, o0 d (T (2y,), ) =

Let A({zn}) = {z}. By Lemma 5.1.3, we have

d(xn, T(2)) < 3d(T(xp), xn) + d(zy, 2).

Taking the limit superior on both sides in the above inequality, we obtain

limsup d (zn,T(2)) < limsup (3d(T(zr), 2n) + d(zn, 2)).
n—oo

n—oo
Since limsup,,_, . d (zpn, T (zy,)) = 0, limsup,, , d (2, T(2)) < limsup,,_, d (zn,z). By
the uniqueness of asymptotic center, we obtain T'(z) = z. Therefore, z is a fixed point of

T. O

Theorem 5.2.6. Let k > 0 and (X, d) be a complete CAT (k) space with diam(X) <
% for some ¢ € (0,7/2). Let C' be a nonempty closed convexr subset of X, and T :
C — C be a fundamentally nonexpansive mapping. Let {x,} be a sequence in C with

limy, o0 d(T' (%), 20) =0 and A — limy, 00, = 2. Then z € C and z = T(z2).

Proof. Since A — lim,, oo, = z, by Lemma 2.4.19, we have z € C. It follows from
Lemma 5.1.3 that
d(xn, T(2)) < 3d(T(xp), xn) + d(zy, 2).
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Taking the limit superior on both sides in the above inequality, we obtain

limsup d(x,, T(z)) < limsup d(x,, 2).

n—oo n—oo

By the uniqueness of asymptotic center, we obtain z = T'(2). O

Lemma 5.2.7. Let k > 0 and (X, d) be a complete CAT(x) space with diam(X) < ﬁ\/;
for some € € (0,7/2). Let C' be a nonempty closed convexr subset of X, and T : C' — C
be a fundamentally nonexpansive mapping. Suppose {x,} is a sequence in C such that
limy, 00 d(T'(2), ) = 0 and {d(zy,v)} converges for allv € F(T'), then wy(z,) C F(T).
Here wy(xy) :=J A ({un}) where the union is taken over all subsequences {un,} of {xn}.

Moreover, wy,(xy) consists of exactly one point.

Proof. Let u € wy(xy,). Then there exists a subsequence {u, } of {z,} such that A({u,}) =
{u}. By Lemma 2.4.19, there exists a subsequence {v;, } of {u, } such that A—lim,,_, v, =
v € C. By Theorem 5.2.6, v € F(T). By Lemma 2.4.20, v = v. This shows that wy,(x,) C
F(T'). Next, we show that w,,(x,) consists of exactly one point. Let {uy} be subsequence
of {x,} with A({un}) = {u} and let A({z,}) = {z}. Since u € wy(z,) C F(T'), we have
{d(xn,u)} converges. Again, by Lemma 2.4.20, x = u. This completes the proof. O

5.3 A and strong convergence theorems

Theorem 5.3.1. Let k > 0 and (X, d) be a complete CAT (k) space with diam(X) < L\/;
for some € € (0,7/2). Let C be a nonempty closed convez subset of X, and T : C' — C be

a fundamentally nonexpansive mapping. Define a sequence {x,} by 1 € C and

Yn = anT($n> 57} (1 = an)xnu
Tpt1 = BT (yn) @ (1 = Bn)wn,

for all n € N, where {a,,} and {B,} are chosen so that 3, € [a,b] and a, € [0,b] or
Bn € la,1] and oy, € [a,b] for some a,b with 0 < a < b < 1. Then {x,} A-converges to a
fized point of T.

Proof. By Theorem 5.2.1, F(T) # (. Let z € F(T), by (5.1) we have d (zp41,2) < d (xy, 2)
for all n > 1. Then {d (zn,2) } is bounded and nonincreasing for each z € F (T, so it is
convergent, by Lemma 5.2.5 we have lim,, o d (T'(zy), zn) = 0. By using Lemma 5.2.7,
we obtain that w,, (x,) consists of exactly one point and is contained in F' (7). This shows
that {z,} A-converges to an element of F (T).

O
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Theorem 5.3.2. Let k > 0 and (X, d) be a complete CAT (k) space with diam(X) < %\/;
for some € € (0,7/2). Let C be a nonempty compact convex subset of X, and T : C — C

be a fundamentally nonexpansive mapping. Define a sequence {x,} by x1 € C' and
Yn = anT(xn) & (1 — ap)zy,
Tn+1 = ﬁnT(yn) @ (1 - 5n)xn7

for all n € N, where {a,,} and {B,} are chosen so that 5, € [a,b] and a, € [0,b] or
Bn € [a,1] and oy, € [a,b] for some a,b with 0 < a < b < 1. Then {z,} converge strongly
to a fixed point of T.

Proof. By Corollary 5.2.3, F'(T') # (). Then by Lemma 5.2.5, we have lim,,_,oc d(T'(xy,), ) =
0. Since C is compact, there exists a subsequence {z,, } of {x,} such that {z,, } converges

strongly to z for some z € C. By Lemma 5.1.3 we have
d(zy,, T(2)) < 3d(T(xn,), Tn,) + d(zn,, 2), vk € N.

Therefore {z,, } converges to T'(z). This implies T'(z) = z. That is, z is a fixed point of
T. By Lemma 5.2.4, we have lim,,—,o d(z, z) exists. Thus {z,,} converges strongly to a

fixed point of T O

Theorem 5.3.3. Let k > 0 and (X, d) be a complete CAT (k) space with diam(X) < L\/E_E

for some e € (0,7m/2). Let C be a nonempty closed convex subset of X, and T : C — C be

a fundamentally nonexpansive mapping. Define a sequence {x,} by 1 € C and

Yn = anT(mn) @& (1 - Oén)l'n,
Tpt1 = BT (yn) @ (1 = Bn)Tn,

for all n € N, where {a,,} and {B,} are chosen so that 5, € [a,b] and oy, € [0,b] or
Bn € la, 1] and oy, € [a,b] for some a,b with 0 < a < b < 1. Suppose T satisfies condition

(I). Then {x,} converges strongly to some fixed point of T
Proof. By condition (I), we have
fd(xn, F(T))) <d(xn,T(x,)) forall neN.
It follows from Lemma 5.2.5 that
T (d (@, F(T)) =0,

We can choose a subsequence {z,, } of {x,} and a sequence {z;} in F'(T") such that

1
d(zp,,zK) < oF for all k€ N. (5.7)
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By (5.1), we have

1
d(l’nk+1, Zk:) S d(xnkv Zk) S ?

Hence

d(2k+17 Zk) S d(zk—‘rlv mnk+1) + d(xnk+1 ) Zk)

< 1 1
= 9(k+1) + ok

1
<F—>O as k — oo.

This shows that {zx} is a Cauchy sequence in F/(T'). Since F/(T') is closed in X, there exists
a point z € F(T') such that limy_, 2, = z. It follows from (5.7) that limy_,o0 2y, = 2.
Since limy, o0 d(zp, 2) exists, it must be the case that lim,,_ d(x,, 2) = 0. Therefore we

obtain the desired result. ]
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