
CHAPTER 2

Basic Concepts and Preliminaries

This chapter is organized as follows: Section 2.1 presents the basic concepts and

properties of the optimization problem. Section 2.2 presents important methods for solving

the optimization problem. Section 2.3 presents a classification of the location problems

and provides a brief history of those location problems.

2.1 Basic Concepts

Theorem 2.1.1. (Unimodular matrix) [19] Let A be a square integer matrix. A matrix

A is unimodular if the determinant of matrix A has value -1, 0 or 1.

Theorem 2.1.2. (Totally unimodular matrix) [19] Let A be an integer matrix. A

matrix A is totally unimodular if the determinant of every square submatrix of A (also

called minor of matrix A) has value -1, 0 or 1.

Theorem 2.1.3. (Convex set) [19] A set S ∈ Rn is said to be covex if the closed line

segment joining any points x1 and x2 of the set S, that is, (1− λ)x1 + λx2, belongs to the

set S for each λ ∈ [0, 1].

Lemma 2.1.4. (Properties of convex sets) [19] Let S1 and S2 be convex sets in Rn.

Then,

1) The intersection S1 ∩ S2 is a convex set.

2) The sum S1 + S2 of two convex sets is a convex set.

3) The product θS1 of the real number θ and the set S1 is a convex set.

Definition 2.1.1. (Convex combination) [19] Let {x1, x2, . . . , xr} be any finite set of

points in Rn. A convex combination of this set is a point of the form:

λ1x1 + λ2x2 + . . .+ λrxr,

λ1 + λ2 + . . .+ λr = 1,

λ1, λ2, . . . , λr ≥ 0.

8

Definition 2.1.2. (Convex hull) [19] Let S be a set (convex or nonconvex) in Rn. The

convex hull, H(S), of S is defined as the intersection of all convex sets in Rn which contain

S as a subset.

Definition 2.1.3. (Concave function) [19] Let S be a convex subset of Rn, and f(x)

be a real valued function defined on S. The function f(x) is said to be concave if for any

x1, x2 ∈ S, and 0 ≤ λ ≤ 1, we have

f [(1− λ)x1 + λx2] ≥ (1− λ)f(x1) + λf(x2).

Definition 2.1.4. (Strictly concave function) [19] Let S be a convex subset of Rn,

and f(x) be a real valued function defined on S. The function f(x) is said to be strictly

concave if for any x1, x2 ∈ S, and 0 < λ < 1, we have

f [(1− λ)x1 + λx2] > (1− λ)f(x1) + λf(x2).

Definition 2.1.5. (Convex function) [19] Let S be a convex subset of Rn, and f(x)

be a real valued function defined on S. The function f(x) is said to be convex if for any

x1, x2 ∈ S, and 0 ≤ λ ≤ 1, we have

f [(1− λ)x1 + λx2] ≤ (1− λ)f(x1) + λf(x2).

Definition 2.1.6. (Strictly convex function) [19] Let S be a convex subset of Rn,

and f(x) be a real valued function defined on S. The function f(x) is said to be strictly

convex if for any x1, x2 ∈ S, and 0 < λ < 1, we have

f [(1− λ)x1 + λx2] < (1− λ)f(x1) + λf(x2).

Definition 2.1.7. (Discrete convex function) [56] Let S be a subspace of discrete

n−dimensional space. A function f(x) is a discrete convex function if all x1, x2 ∈ S, and

0 ≤ λ ≤ 1, we have

f [(1− λ)x1 + λx2] ≤ (1− λ)f(x1) + λf(x2).

2.1.1 Properties of Convex and Concave Functions

Convex functions can be combined in a number of ways to produce new convex

functions as illustrated by the following:

1) Let f1(x), f2(x), . . . , fn(x) be convex functions on a convex subset S of Rn. Then,

their summation

f1(x) + f2(x) + . . .+ fn(x)

9

is a convex. Furthermore, if at least one fi(x) is strictly convex on S, then their summation

is strictly convex.

2) Let f(x) be convex (strictly convex) on a convex subset S of Rn, and λ is a

positive real number. Then, λf(x) is convex (strictly convex).

3) Let f(x) be convex (strictly convex) on a convex subset S of Rn, and g(x) be an

convex function defined in the range of f(x) in R. Then, the composite function g[f(x)]

is convex (strictly convex) on S.

4) Let f1(x), f2(x), . . . , fn(x) be convex functions and bounded above on a convex

subset S of Rn. Then, the pointwise supremum function

f(x) = max{f1(x), f2(x), . . . , fn(x)}

is a convex function on S.

5) Let f1(x), f2(x), . . . , fn(x) be concave functions and bounded below on a convex

subset S of Rn. Then, the pointwise infimum function

f(x) = min{f1(x), f2(x), . . . , fn(x)}

is a concave function on S.

2.1.2 Feasible Solution, Local and Global Minimum

Consider the minimizing problem (P): min f(x)

subject to x ∈ S.

Definition 2.1.8. (Feasible solution) [19] A point x ∈ S is a feasible solution of

problem (P).

Definition 2.1.9. (Local minimum) [19] Suppose that x∗ ∈ S and that there exists an

ϵ > 0 such that

f(x) ≥ f(x∗) ∀x ∈ S : ∥x− x∗∥ < ϵ

then x∗ is a local minimum.

Definition 2.1.10. (Global minimum) [19] Suppose that x∗ ∈ S and

f(x) ≥ f(x∗) ∀x ∈ S

then x∗ is a global minimum.

10

Definition 2.1.11. (Unique global minimum) [19] Suppose that x∗ ∈ S and

f(x) > f(x∗) ∀x ∈ S

then x∗ is the unique global minimum.

Theorem 2.1.5. [19] Let S be a nonempty convex set in Rn and x∗ ∈ S be a local

minimum.

1) If f(x) is convex, then x∗ is a global minimum.

2) If f(x) is strictly convex, then x∗ is a unique global minimum.

2.1.3 Network Theory

Let G = (V,E,W) be a weighted network with a node (vertex) set V , an edge (arc)

set E, and the weight set W which specifies weights wi,j for the edges (i, j) ∈ E. If i and

j are nodes of V , then an edge of the form (i, j) or (j, i) is said to join i and j.

Definition 2.1.12. (Simple graph) Two or more edges joining the same pair of nodes

are called multiple edges, and an edge joining a node to it self is call a loop. A graph with

no loops and no multiple edges is called a simple graph.

Definition 2.1.13. (Degree of vertex) Let v ∈ V . The number of all nodes which are

adjacent to the node v is called the degree of v, denote by deg(v).

Definition 2.1.14. (Complete graph) A graph G = (V,E,W) is said to be complete

if every two distinct nodes of G are adjacent. A complete graph of order n is denoted by

Kn. Therefore, Kn has the maximum possible size for a graph with n nodes.

Definition 2.1.15. (Connected graph) A graph G = (V,E,W) is said to be connected

if every two distinct nodes of G, there exist a sequence a1, a2, . . . , an in V such that

a1 = u, a2 = v and (ai, ai+1) ∈ E for all i = 1, 2, . . . , n− 1.

Definition 2.1.16. (Path and trail) A walk consists of an alternating sequence of nodes

and edges, the consecutive elements of which are incidental and begins and ends with a

node. A trail is a walk without repeated edges. A path is a walk without repeated nodes.

Theorem 2.1.6. (Tree) [10] A graph G = (V,E,W) is a tree if and only if every two

nodes of G are connected by a unique path.

11

Shortest Path Problem

The shortest path problem is the problem of determining the shortest path from

the origin node o ∈ V to the destination node d ∈ V . The shortest path problem model

can be formulated as follows:

min
∑
i∈V

∑
j∈V

wi,jxi,j (2.1)

s.t.
∑

j∈V−{o}

xo,j = 1, origin node o ∈ V , (2.2)

∑
j∈V

xj,i −
∑
j∈V

xi,j = 0, ∀i ∈ V − {o, d}, intermediate nodes, (2.3)

∑
j∈V−{d}

xj,d = 1, destination node d ∈ V , (2.4)

xi,j ∈ {0, 1}, ∀i, j ∈ V, (2.5)

where xi,j = 1 if the edge (i, j) is on the shortest path, xi,j = 0 otherwise. The objective

(2.1) is to find the shortest path between the origin and the destination nodes. The

first constraint (2.2) is to guarantee that the origin node has only 1 edge out. The

second constraint (2.3) is to ensure that the edge in and edge out of the intermediate

node i ∈ V − {o, d} must be equal. The last constraint (2.4) is to guarantee that the

destination node has only 1 edge out. The important algorithm for solving this solution

is Dijkstra’s algorithm.

Maximum Flow Problem

The maximum flow problem is a problem of the network with flow capacities on

the edges. Addressing this problem involves finding the maximum capacity flow from the

origin node (source) to the destination node (sink). Each edge (i, j) ∈ E has the capacity

ci,j that is the maximum flow that can traverse (in either direction). If the edge (i, j) ∈ E

has unlimited capacity, ci,j = +∞. The maximum flow problem model can be formulated

12

as follows:

max f (2.6)

s.t. f −
∑

j∈V−{o}

xo,j = 0, origin node o ∈ V , (2.7)

∑
j∈V

xj,i −
∑
j∈V

xi,j = 0, ∀i ∈ V − {o, d}, intermediate nodes, (2.8)

−f +
∑

j∈V−{d}

xj,d = 0, destination node d ∈ V , (2.9)

0 ≤ xi,j ≤ ci,j , ∀i, j ∈ V, (2.10)

where xi,j ∈ R is amount of flow from node i to node j. The objective (2.6) is to find the

maximum capacity f flow from the origin node (source) o ∈ V to the destination node

(sink) d ∈ V . The first constraint (2.7) is to guarantee that the total flow f out of o must

use the edges of the form (o, j). The second constraints (2.8) are to ensure that the flow

in and flow out of the intermediate node i ∈ V −{o, d} must be equal. The last constraint

(2.9) is to guarantee that the total flow f in d must use the edges of the form (j, d).

2.1.4 Integer Linear Programming

Integer linear programming (ILP) deals with the class of the optimization problems

in which some or all variables are integers. In this thesis, we focus on integer linear pro-

graming in which all variables are integers. The standard form of integer linear programing

can be formulated as follows:

(ILP): min cTx (2.11)

s.t. Ax ≤ b, (2.12)

x ∈ (Z∗)n, (2.13)

where Z∗ = Z+ ∪ 0, x ∈ (Z∗)n is a vector of the n variables, c ∈ Rn, b ∈ Rm are vectors of

the coefficients, and A ∈ Rm×n is a matrix of the coefficients.

Integer linear programing is proved to be an NP-hard problem but it has also been

proved that some special structures of problems can be solved in polynomial time. One

of the most interesting matrix structures is a totally unimodular matrix. For problems

with a totally unimodular constrained matrix, we can find the integer optimal solution by

solving its LP relaxation. For example, when the constrained matrix of the assignment

problem is totally unimodular, the problem can be solved using a linear programming

technique.

13

The assignment problem (AP) consists of n jobs and n agents which are available

for carrying out the jobs. Each agent can carry out exactly one job, and each agent has

different levels of efficiency in carrying out the jobs. How should we assign the agents to

the jobs in order to maximize overall efficiency?

A model of assignment problem can be formulated as follows:

(AP): max
∑
i∈I

∑
j∈J

pi,jxi,j (2.14)

s.t.
∑
j∈J

xi,j = 1, ∀i ∈ I, (2.15)

∑
i∈I

xi,j = 1, ∀j ∈ J, (2.16)

xi,j ∈ {0, 1}, ∀i ∈ I, j ∈ J, (2.17)

where I = {1, 2, 3, . . . , n} is a set of agents, J = {1, 2, 3, . . . , n} is a set of jobs, pi,j is the

efficiency of the agent, i does job j, and xi,j is the decision variable, taking value 1 if the

agent i assigned to job j, and 0 otherwise.

The objective of function (2.14) is to maximize the total efficiency. The constraints

(2.15) ensure all agents must be assigned to certain job. The constraints (2.16) guarantee

that all jobs must be assigned by some agent. The matrix form of the assignment problem

can be considered as follows:

(AP): maxPX (2.18)

s.t. AX = b, (2.19)

X ∈ {0, 1}n2
(2.20)

where

A =



1 1 · · · 1

1 1 · · · 1

· · ·

1 1 · · · 1

1 1 1

1 1 1

· · · · · · · · · · · ·

1 1 1


n+n,n2

, b =


1

1

. . .

1


n+n,1

,

P = [p1,1, p1,2, . . . , p1,n, p2,1, p2,2, . . . , p2,n, . . . , pn,1, pn,2, . . . , pn,n],

X = [x1,1, x1,2, . . . , x1,n, x2,1, x2,2, . . . , x2,n, . . . , xn,1, xn,2, . . . , xn,n]
T .

14

The matrix A is a totally unimodular matrix.

Another interesting integer linear problem is the knapsack problem. The objective

of the knapsack problem is to choose items such that the total size of the chosen items

is smaller than or equal to the knapsack capacity and the profit of the chosen items are

maximized. The following notations have been introduced to formulate the mathematical

model. Let

N = {1, 2, 3, . . . , n} be a set of items,

si be the size of item i where si is a positive constant number,

pi be the profit of item i where pi is a positive constant number,

C be the knapsack capacity,

xi =

1 if item i should be included in the knapsack, and

0 otherwise.

The knapsack problem model can be formulated as follows:

max

n∑
i=1

pixi (2.21)

s.t.
n∑

i=1

sixi ≤ C, (2.22)

xi ∈ {0, 1}, ∀i ∈ N. (2.23)

The objective of function (2.21) is to maximize the total profit. The constraint

(2.22) is a capacity restriction.

2.2 Methods

This section presents important methods for solving the optimization problem.

2.2.1 Simplex Method

The simplex method is a procedure that is used to solve linear programming prob-

lems. Developed by George Dantzig in 1947, it has proven to be a remarkably efficient

method that is used routinely to solve huge problems on today’s computers. Before

starting, we need to highlight the point that every linear program can be converted into

15

standard form

max z = c1x1 + c2x2 + . . . cnxn

s.t. a1,1x1 + a1,2x2 + . . .+ a1,nxn = b1,

a2,1x1 + a2,2x2 + . . .+ a2,nxn = b2,

. . .

am,1x1 + am,2x2 + . . .+ am,nxn = bm,

x1, x2, . . . , xn ≥ 0.

If the problem is min z, convert it to max−z.

If a constraint is in less than or equal form (a1,1x1 + a1,2x2 + . . . + a1,nxn ≤ b1),

convert it into standard form by adding a nonnegative slack variable si to the left hand

side of inequality (a1,1x1 + a1,2x2 + . . .+ a1,nxn + si = b1).

If a constraint is in greater than or equal form (a1,1x1 + a1,2x2 + . . .+ a1,nxn ≥ b1),

convert it into standard form by subtracting a nonnegative surplus variable si to the left

hand side of inequality (a1,1x1 + a1,2x2 + . . .+ a1,nxn − si = b1).

If some variable xi is unrestricted in sign, replace it everywhere in the formulation

by x∗i − x∗∗i , where x∗i , x
∗∗
i ≥ 0.

Any linear programming problem can have a feasible solutions and a bounded fea-

sible region. The problem must posses corner point feasible solutions (a corner point

feasible solution is a solution that lies at a corner of the feasible region) and at least one

optimal solution. Furthermore, the best corner point feasible solution must be an opti-

mal solution. Thus, if a problem has exactly one optimal solution, it must be a corner

point feasible solution. If the problem has multiple optimal solutions, at least two must

be corner point feasible solutions. The simplex method focuses solely on corner feasible

solutions. This method is an iterative algorithm with the following structure.

Step 1: Find the initial corner point feasible solution.

Step 2: If the current corner point feasible solution is an optimal solution, stop.

Else, go to Step 3.

Step 3: Find a better corner point feasible solution.

2.2.2 Linear Programing Relaxation

Linear programming relaxation (LP relaxation) is use to relax the integer program-

ing problem to the Linear programing problem by considering the integer variable to real

number. For the example, the binary variable xi of AP will be relax to 0 ≤ xi ≤ 1. The

16

resulting of this relaxation is a linear program. Note that the optimal solution to the LP

relaxation is not necessarily integer. However, the feasible region of the LP relaxation is

larger than the feasible region of the integer programing problem. This implies that the

optimal value of the LP relaxation is a lower bound of the optimal value of original integer

programing problem.

2.2.3 Lagrangian Relaxation

Consider the following general optimization problem, which we call the primal prob-

lem.

max f(x)

s.t. gi(x) ≥ bi, i = 1, 2, . . . ,m,

x ∈ X,

where the functions f(x), and gi(x), i = 1, 2, ..,m can be arbitrary functions. The fea-

sible region of the problem consists of explicit constraints (including nonnegativity and

integrality restrictions) which are represented by a set X. We assume that the problem

would be easy to solve in the absence of constraints. Lagrangian relaxation relaxes con-

straints gi(x) ≥ bi, i = 1, 2, ...,m by moving that constraints to the objective function

with associated Lagrange multipliers ui ≥ 0, i = 1, ...,m which results in the following:

L(x, u) = f(x) +
m∑
i=1

ui(bi − gi(x)).

2.2.4 Branch and Bound

The basic concept of the branch and bound method for solving the integer problem is

to divide (branching) and conquer (fathoming). Since the original problem is too difficult

to be solved directly, it is divided into smaller subproblems so that these subproblems can

be conquered. A general branch and bound method for solving the integer problem can

be stated as follows:

Step 1: List of candidate subproblems that consist of the integer problem alone,

and set z∗ = ∞.

Step 2: If the list of candidate subproblems is empty, then the optimal solution

is the current incumbent. If an incumbent does not exist, then the integer problem is

infeasible.

Step 3: Select one of the subproblems in the candidate list to become the current

candidate subproblem.

17

Step 4: Solve a relaxed current candidate subproblem (e.g. LP relaxation) and

denote its solution by zRCS .

Step 5: Apply the three fathoming criteria:

1) If the relaxed current candidate subproblem has no feasible solution; go to Step

2.

2) If zRCS ≥ z∗, then the current candidate subproblem has no feasible solution

better than the incumbent; go to Step 2.

3) If the optimal solution of the relaxed current candidate subproblem is feasible

for the current candidate subproblem (e.g. integral), then it is an optimal of the current

candidate subproblem. If zRCS ≤ z∗, then record this solution as the new incumbent;

that is, z∗ = zRCS . Go to Step 2.

Step 6: Separate the current candidate subproblem and add its children nodes to

the list of candidate subproblems. Go to Step 2.

An illustration of the search space of the branch and bound algorithm is shown in

Figure 2.1. For more information about this method can read in [19], [30].

2.2.5 Cutting Plane

The cutting plane method is a technique used to solve the integer linear program-

ing by modifying the linear programming solution until the integer solution is obtained.

It does not partition the feasible region into subdivisions, as in branch and bound ap-

proaches, but instead works with a single linear program, which it refined by adding new

constraints. The new constraints successively reduce the feasible region until an integer

optimal solution is found. This method was proposed by Gomory in the 1950’s. The

constraints of the LP problem in basic canonical form are written as:∑
j∈N

ai,jxj + x∗i = bi, ∀i = 1, 2, . . . ,m, ai,j ∈ R

where N is a set of nonbasic variables, and x∗i is a basic variable.

We can obtain another constraint, which preserves all the integer feasible solutions,

through two steps:

1) The constraint rounding down its coefficients∑
j∈N

⌊ai,j⌋xj + x∗i = bi, ∀i = 1, 2, . . . ,m.

2) The constraint rounding down the right-hand-side∑
j∈N

ai,jxj + x∗i = ⌊bi, ⌋ ∀i = 1, 2, . . . ,m.

18

Figure 2.1: Illustration of the search space of the branch and bound algorithm.

2.2.6 Branch and Cut

A branch and cut algorithm is a combination of a branch and bound algorithm and a

cutting plane method. A general branch and cut algorithm method for solving an integer

problem can be stated as follows:

Step 1: Define a list of candidate subproblems to consist of the integer problem

alone, and set z∗ = ∞.

Step 2: If the list of candidate subproblems is empty, then the optimal solution

is the current incumbent. If an incumbent does not exist, then the integer problem is

infeasible.

Step 3: Select one of the subproblems in the candidate list to become the current

candidate subproblem.

Step 4: Solve the relaxed current candidate subproblem (e.g. LP relaxation) and

19

denote its solution by zRCS . If the relaxed current candidate subproblem has no feasible

solution; go to Step 2.

Step 5: If the optimal solution of the relax current candidate subproblem is in-

feasible for the current candidate subproblem, add new constraints to the relax current

candidate subproblem and go to Step 4.

Step 6: If zRCS ≤ z∗, then record this solution as the new incumbent; that is,

z∗ = zRCS . Go to Step 2.

2.2.7 Dijkstras Algorithm

Dijkstras algorithm is applied to find the length of all the shortest paths in a directed

graph with non-negative weights on the edges, from a source vertex s to every other vertex

vi in the graph. We define the distance di to be the length of the shortest path from s

to vertex vi. Dijkstras algorithm maintains a set of vertices S ⊆ V , with two properties.

Firstly, S is a set of vertices in the graph nearest to s; that is:

∀vi ∈ S, ∀vj ∈ V − S, di ≤ dj .

And secondly, for all vertices vj ∈ S, there is a shortest path from s to vj using only

vertices of S as intermediates. There might be several different choices for S; Dijkstras

algorithm chooses one arbitrarily.

For each outside vertex dj ∈ V − Sk, we define an estimated distance:

destj = min
vi∈S

di + wij .

Since the estimated distance is the length of some path to dj , it is upper bound on the

length of the true shortest path from s.

2.3 Location Problems

In this section, we classify location problems related to the objective functions as

follows: 1) covering problems, 2) p-median problems, 3) p-center problems and 4) facility

location problems. We define the notation to be used in this thesis as follows:

Let I = {1, 2, 3, . . . , n} be a set of clients or customers,

J = {1, 2, 3, . . . ,m} be a set of potential facility sites,

fj be facility setup cost for facility j ∈ J ,

hi be supply of client i ∈ I,

sj be capacity of facility j ∈ J ,

20

di,j be the distance from client i ∈ I to facility j ∈ J . We assume I ∪J is a node set

of a complete graph, and di,j is the minimum distances (or shortest path) between facility

j and client i,

ci,j be the transportation cost from client i ∈ I to facility j ∈ J . We assume I ∪ J

is a node set of a complete graph, and ci,j is the minimum transportation cost between

facility j and client i,

β be the first feasible or a minimum number of opened facilities,

γ be a maximum number of opened facilities,

xi,j =

1 if client i is assigned to facility j, and

0 otherwise,

yj =

1 if facility j is opened, and

0 otherwise.

2.3.1 Covering Problem

The covering problem is one of the most popular forms of location problem. This

problem is used to find the optimum place to locate a facility in relation to the customers

served, based on the idea that the distance from customer to facility is equal or less than

the coverage distance or coverage radius. This problem can be classified into two major

types according to the objective. If the objective of the problem tries to minimize the

location cost by satisfying a specified coverage distance, this problem is called the set

covering problem (SCP). Another type is a maximal covering location problem (MCLP).

The objective of this type is to maximize the amount of demand covered within the

coverage distances by locating a given fixed number of opened facilities.

The mathematical model of the set covering problem can be formulated as follows:

(SCP): min
∑
j∈J

fjyj (2.24)

s.t.
∑
j∈J

xi,j = 1, ∀i ∈ I, (2.25)

di,jxi,j ≤ δyj , ∀i ∈ I, j ∈ J, (2.26)

xi,j ∈ {0, 1}, ∀i ∈ I, j ∈ J, (2.27)

yj ∈ {0, 1}, ∀j ∈ J, (2.28)

where δ is a given coverage radius.

21

The objective function (2.24) is to minimize the total cost of locating the facilities.

The constraints (2.25) ensure that all clients must be assigned to some facility. The

constraints (2.26) guarantee that a client must be assigned to an opened facility such that

the distance from client i to facility j is less than or equal to the coverage radius δ.

The mathematical model above considers that all customers have the same demand

size and that all facilities have no limitation of capacity. However, most real-world applica-

tions consider facilities to have limitations of capacity. Current and Storbeck [14] proposed

a capacitated version of a set covering problem. They added capacities restriction to the

SCP model by adding (2.29) to the SCP model.∑
i∈I

hixi,j ≤ sjyj , ∀ j ∈ J. (2.29)

Moreover, they also proposed a capacitated maximal covering location problem. The

mathematical model of the capacitated maximal covering problem can be formulated as

follows:

(MCLP): max
∑
i∈I

hizi (2.30)

s.t. zi ≤
∑
j∈J

xi,j , ∀i ∈ I, (2.31)

∑
j∈J

yj = p, (2.32)

di,jxi,j ≤ δyj , ∀i ∈ I, j ∈ J, (2.33)

xi,j ∈ {0, 1}, ∀i ∈ I, j ∈ J, (2.34)

yj ∈ {0, 1}, ∀j ∈ J, (2.35)

zi ∈ {0, 1}, ∀i ∈ I, (2.36)

where zi is a binary decision variable; it is equal to 1 if the client i is covered by some

opened facility within the coverage radius, it is equal to 0 otherwise, p is the given number

of facilities that can be open and δ is a given coverage radius.

The objective of function (2.30) is to maximize the coverage demands of the clients.

Constraint (2.31) guarantees that zi will be equal to 0 if a node i is not covered. Constraint

(2.32) requires that the exact p facilities must be opened. The constraints (2.33) ensure

that a client must be assigned to a facility such that the distance from client i to facility

j is less than or equal to the coverage radius δ.

Since a covering problem is an NP hard problem [21], many methods have been

developed in order to solve this problem. Next we will summarize certain methods to

solve a covering problem.

22

In 1974, Church and Revelle [13] described an uncapacitated maximal covering

problem. They solved the problem by using a branch and bound method. For this,

they proposed both greedy adding and greedy adding with substitution methods. After

that, Bazaraa and Goode [4] proposed a quadratic set covering problem. They change

the locating facility cost fjyj in objective function (2.24) to the cost of the relationship

between each pair of the facilities yifjyj but they did not explain the application of their

model. This problem is a non-linear binary model. They solved the problem by using a

cutting plane method.

A three stage method to solve a set covering problem was proposed by Beasley [5].

This method consists of a dual ascent procedure, sub-gradient and solve the dual problem

of the LP relaxation problem. This method can be used to solve problems that include

up to 400 candidate nodes and 4,000 covered nodes. After that, Beasley [6] developed

a heuristic method for a set covering problem by using the Lagrangian relaxation and

sub-gradient optimization method. This method can solve the problem for up to 1,000

candidate nodes and 10,000 covered nodes. Later, Lee and Lee [39] proposed a hierarchical

covering location model. This problem is a partial coverage problem. They proposed a

two phase method for a hierarchical covering location problem. The first phase is used

to find a good initial solution through the use of a hierarchical allocation method. The

second phase is used to improve the solution by using a tabu search and an allocation

heuristic method.

Some researchers have studied set covering problems by transforming them to an-

other problem. For example, Afif et al. [1] proposed a transformation approach to convert

a set covering problem to a maximum flow problem. They used the Ford and Fulkerson

algorithm to solve the maximum flow problem. This algorithm is a polynomial time

algorithm.

2.3.2 P -Center Problem

The p-center problem (PC) is a class of the location problem that has a specific

objective function of minimizing the maximum distance between each client and the fa-

cility it is assigned to, providing that the number of opened facilities are not greater than

p. This problem can be partitioned into the uncapacitated and capacitated cases. The

uncapacitated case is a basic p-center problem that does not include the demands of the

clients and the capacities of the facilities. In the capacitated case, each client has a certain

demand to meet and the facilities have certain capacity restrictions i.e. the total demands

23

of the clients assigned to a facility cannot exceed the facility’s capacity. The p-center

problem has been studied together with the covering and p-median problems.

The model of the uncapacitated p-center problem (UPC) can be formulated as

follows:

(UPC): min w (2.37)

s.t. di,jxi,j ≤ w, ∀i ∈ I, ∀j ∈ J (2.38)∑
j∈J

yj ≤ p, (2.39)

∑
j∈J

xi,j = 1, ∀i ∈ I, (2.40)

xi,j ≤ yj , ∀i ∈ I, j ∈ J (2.41)

xi,j ∈ {0, 1}, ∀i ∈ I, j ∈ J, (2.42)

yj ∈ {0, 1}, ∀j ∈ J, (2.43)

where p is the limited number of facilities that can be opened, w in the objective

function (2.37) and the first constraints (2.38) are the maximum distance between a client

and the facility it is assigned to.

The objective of function (2.37) is to minimize the maximum distance between each

client and the facility it is assigned to. The first constraints (2.38) are to ensure that

w is the maximum distance between the client and the facility it is assigned to. The

second constraint (2.39) is to guarantee that at most p facilities can be open. The third

constraints are to ensure that each client is assigned to some facility. The last constraints

(2.41) are to guarantee that the client is assigned to the opened facility.

The model of the capacitated p-center problem (CPC) can be formulated as the

UPC model with the addition of the capacity restriction to the UPC model by changing

constraints (2.41) into∑
i∈I

hixi,j ≤ sjyj , ∀ j ∈ J. (2.44)

The uncapacitated p-center problem has been proposed by Hakimi [27]. He wanted

to find the optimum location to build the switching center between a communication

network and police station in a highway system. He formulated the problem by considering

a finite graph G with V being the set of nodes in graph G. He found the location for the

police station P such that P is a subset of V , |P | = p and the maximum distance between

all nodes in P and V is at a minimum.

24

Since this problem is an NP hard problem [21, 36] many researchers have proposed

methods to solve this problem. Next we will summarize the methods to solve the p-

center problem. An O(n) time algorithm for the 1-center problem was presented in [45].

He considered this problem as a tree graph and found the node which was nearest the

center of the graph. After that, Hochbaum and Shmoys [31] proposed a heuristic for the

uncapacitated p-center problem as follows. Initially, all distances in a graph are sorted in

nondecreasing order. An edge with the minimum distances in a graph after removing all

edges with higher distances would be fewer than p.

In 1970, Minieka [41] first used a series of set covering problems to solve uncapaci-

tated p-center problems. The set covering problem is solved by giving the coverage radius.

If a set covering problem can be the coverage by the p opened facilities, the minimum cov-

erage radius is the solution of the p-center problem. Later, Mark and Daskin [40] proposed

a modification using the maximum cover version of this approach. After that, Ilhan and

Pinar [33] applied this idea to a method, under which at each step, a cover distance was

chosen and increased until all clients can be covered within this distance by using it at

most p facilities.

A polynomial exact algorithm for the capacitated p-center problem in tree networks

has been developed by Jaeger and Goldberg [34]. The method described in the article

solves set-covering subproblems on trees with a polynomial algorithm. Blaser [7] designed

an exact algorithm for the p-partial vertex cover problem and showed that this problem

can be solved in polynomial time for a certain p.

In 2006, Ozsoy and Pinar [46] used [33] idea to solve the capacitated case by label-

ing the quantity of demand to the clients and the capacity of the facility. Then, Maria

Albareda [2] improved their result by considering only clients in a given radius and im-

proved the result using Lagrangian relaxation. Later, Dantrakul and Likasiri [15] develop

a maximal client coverage algorithm to solve the p-center problem by combining the set

covering problem, greedy algorithm and bisection method. The algorithms are given for

both uncapacitated and capacitated cases.

2.3.3 P -Median Problem

The p-median problem is a problem involved with locating p facilities such that

the sum of the distance or transportation cost from each client to its assigned facility

is minimized. This problem has also been proposed by Hakimi [26, 27]. The model of

25

p-median problem can be formulated as follows:

(UPM): min
∑
i∈I

∑
j∈J

ci,jxi,j (2.45)

s.t.
∑
j∈J

yj ≤ p, ∀j ∈ J, (2.46)

∑
j∈J

xi,j = 1, ∀i ∈ I, (2.47)

xi,j ≤ yj , ∀i ∈ I, j ∈ J, (2.48)

xi,j ∈ {0, 1}, ∀i ∈ I, j ∈ J, (2.49)

yj ∈ {0, 1}, ∀j ∈ J. (2.50)

The objective of function (2.45) is to minimize the total transportation cost. Con-

straints (2.46) ensure that most p facilities can be opened. The second (2.47) constraints

are to ensure that each client is assigned to some facility. The last constraints (2.48) are

to guarantee that the client is assigned to the opened facility.

The model of the capacitated p-median problem (CPM) can be formulated as the

UPM model, with the addition of capacities restriction to the UPM model by changing

constraints (2.48) into∑
i∈I

hixi,j ≤ sjyj , ∀j ∈ J. (2.51)

Many heuristic and exact methods have been proposed to solve this problem. Next we

will summarize the methods developed to solve the p-median problem.

Kuehn and Hamburger [37] proposed a greedy heuristic to solve the p-median prob-

lem. This method starts with an empty set of open facilities. Next, the facilities with the

most reduced costs are added one by one until the number of opened facilities is equal to

p.

The stingy heuristic has been proposed by Feldman et al. [18]. This method is

similar to the greedy heuristic. It starts with all facilities opened, and then the facilities

with the least increase costs are removed one by one until the number of opened facilities

is equal to p. Later, Salhi and Atkinson [50] modified the stingy heuristic by starting with

a subset of the candidate facilities.

A Lagrangian heuristic for solving the p-median problem has been proposed by

Galvao [20]. He relaxed the constraints (2.47) of UPM by using Lagrangian multipliers.

The problem after relaxing can be formulated as follows:

min
∑
i∈I

∑
j∈J

(ci,j − ui)xi,j +
∑
i∈I

ui, (2.52)

26

s.t. (2.46), (2.48), (2.49) and (2.50), where ui are called Lagrangian multipliers. Next,

he gave the value of Lagrangian multipliers ui and solved the problem to find xi,j , yj .

However, this method cannot guarantee a feasible solution xi,j , yj .

A tabu search for solving the p-median problem has been proposed by Glover [22, 23].

The tabu search is an improved version of the local search. The main idea is similar to

that of the local search but with the addition of some rules that exclude certain structures

(the so-called “forbidden solution”), known as the tabu list.

Typically, a local search heuristic starts with any feasible solution, and improves the

solution at each iteration. If the solution cannot be improved, that solution is called the

local minimum solution. At each step, it considers only local operations that can improve

the cost of the solution. The local search heuristic for facility location was proposed by

Kuehn and Hamburger in 1963 [37].

To escape local optima, Hansen and Mladenovic [29] present a variable neighborhood

search algorithm for solving the p-median problem. The algorithm performs an intensive

local search (similar to the interchange algorithm outlined above) on the current solution

until it settles in a local optimum. It then searches by randomly selecting a solution from

a neighborhood at a distance of k from the current best solution. The process continues,

incrementing k, until some exogenously specified maximum value of k is attained. The

algorithm compares very well with conventional heuristics as well as the enhancements

provided by the tabu search.

2.3.4 Facility Location Problem

The facility location problem is a basis model that has been used in supply chain

design. The objective of this problem is to find the optimal place to locate the facilities

and assign clients to facilities, with the aim of minimizing the total cost. This total cost

consists of the transportation cost that is incurred in traveling between the facilities and

the clients and the cost of locating the facilities. This problem is similar to the p-median

problem but does not limit the number of locating facilities, and does consider the cost

27

of locating facilities. The facility location problem can be formulated as follows:

(UFP): min
∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

ci,jxi,j (2.53)

s.t.
∑
j∈J

xi,j = 1, ∀i ∈ I, (2.54)

xi,j ≤ yj , ∀i ∈ I, j ∈ J, (2.55)

xi,j ∈ {0, 1}, ∀i ∈ I, j ∈ J, (2.56)

yj ∈ {0, 1}, ∀j ∈ J. (2.57)

The objective function (2.53) is to minimize the total cost. Constraints (2.54)

ensure that each client is assigned to some facility. Constraints (2.55) are also utilized to

guarantee that the client is assigned to the opened facility.

The model of the capacitated facility location problem (CFP) can be formulated as

the UFP model with the addition of capacity restriction to the UFP model by changing

the constraints (2.55) into∑
i∈I

hixi,j ≤ sjyj , ∀j ∈ J. (2.58)

Note that some studies have modified the uncapacitated case by using CFP by

considering hi = 1, ∀i ∈ I and sj = n, ∀j ∈ J.

There are many ways to solve facility location problems including the dual-based

algorithm proposed by Erlenkotter [17]. The main idea of this algorithm is to use the dual

problem of the LP relaxation to find a bound for the primal objective function.

Other popular methods include local search, greedy heuristics, tabu search, neigh-

borhood search, etc. The main concept of the above methods is similar to the methods

for covering, p-median and p-center problems.

In addition to the above-mentioned scenarios, some researchers have studied facility

location problems by making some specific assumptions. For example, a general setup

cost function for the uncapacitated facility location problem has been described [25] with

the conclusion that if this function is concave, it can be solved in polynomial time. The

general setup cost function for the capacitated facility location problem has also been

studied [55].

Next, we will describe the method applied to solve the location problem in Table

2.1.

28

Table 2.1: List of literature on covering, p-center, p-median and facility location problems.

Author name year study area algorithm

Hakimi [27] 1964 p-center, p-median -
Hakimi [26] 1965 p-center, p-median -
Minieka [41] 1970 p-center series of sets

covering problem
Toregas et al. [53] 1971 p-center -
Church and Revelle [13] 1974 maximal covering greedy
Bazaraa and Goode [4] 1975 quadratic set covering cutting plane
Erlenkotter [17] 1978 facility location dual-based
Kariv and Hakimi [36] 1979 p-center -
Gonzalez [24] 1985 p-center greedy
Hochbaum and Shmoys [31] 1985 p-center graph removed
Beasley [5] 1987 set covering tree search
Garey and Johnson [21] 1990 p-median -
Olariu [45] 1990 1-center tree networks
Jaeger and Goldberg [34] 1994 p-center tree networks
Afif et al. [1] 1995 set covering convert to maximum flow
Daskin [16] 2000 p-center series of maximum

covering problem
Ilhan snd Pinar [33] 2001 p-center series of sets

covering problem
Hansen et al.[29] 2001 p-median neighborhood search
Blaser [7] 2003 partial covering improve bounded

of subgraph
Hajiaghayi et al. [25] 2003 general cost function greedy

facility location
Mladenovic et al. [43] 2003 p-center tabu search and

neighborhood search
Pallottino et al. [47] 2004 p-center local search
Scaparra et al. [51] 2004 p-center local search
Wu et al. [55] 2006 general cost function Lagrangian heuristic

facility location
Huang et al. [32] 2006 set covering LFCP-ant
Mladenovic et al. [42] 2006 facility location Erlenkotter-Korkel
Ozsoy and Pinar [46] 2006 p-center series of sets

covering problem
Janacek [35] 2008 facility location Erlenkotter-Korkel
Hansen et al. [28] 2009 p-median neighborhood search
Albareda-Sambola et al. [2] 2010 p-center Lagrangian relaxation

and series of sets
covering problem

Almeida and Ararujo [3] 2010 p-median metaheuristic search
Chen and Yuan [11] 2010 set covering tabu search
Lee and Lee [39] 2010 hierarchical covering two phase

29

Lai et al. [38] 2010 facility location hybrid Benders and genetic

Rainwater et al. [49] 2011 facility location neighborhood search

Zarandi et al. [57] 2011 facility location with Simulate Annealing

fuzzy travel times

Dantrakul and Likasiri [15] 2012 p-center maximal client coverage

Sun [52] 2012 facility location tabu search

Murali et al. [44] 2012 facility location under locate-allocate

demand uncertainty

Rahmaniani et al. [48] 2013 facility location under neighborhood search

uncertainty

Brimberg and Danzer [8] 2013 p-median in the plane local search

Zare Mehrjerdi and 2013 facility location greedy

Nadizadeh [58]

Brimberg et al. [9] 2014 p-median local search

30

