CHAPTER 3

Main Results

The purpose of this chapter is to study the methods for location problems. This
chapter will be divided into three sections: 1) problem size reduction, 2) p-center problem,
and 3) facility location problem. In general, the number of clients and candidate places are
likely to be large in real world applications. The relaxation methods applied to minimize
the size of problem and the bound of error from reduction have been considered in the first
section. In section 2, the p-center problem was studied. The p-center objective function is
to minimize the maximum distance between each client and the assigned facility. That is
to say, the facility location has to be in the middle of all networks which are suitable for
route allocation. In the last section of this chapter, 3 methods have been created to find
solutions for the facility location problem. In each method, different location selections

for various types of facilities will also be taken into consideration.

3.1 Problem Size Reduction

Since the facility location problem is an NP-hard problem, the problem relaxation
has been applied to help solve the problem. If we consider the service nodes between the
clients and each facility location in the network, it is assumed that they are connected
networks. In order to get to the service node on the street (the degree of the service node
equals 2), or the service node at the end of the street (the degree of the service node
equals 1), it has to pass through the service node on the corner of the street (the degree of
the service node is more than 2). For that particular reason, the problem-size reduction
has been applied by considering the service node on the corner of the street only, and the
service node on the street and the one at the end of the street with the closest corner have
been examined to adjust the need value and the product transportation costs.

Next, we show the proposed method to reduce the size of the problem. First, we
define some notations.

Recall I ={1,2,3,...,n} to be a set of clients or customers,

J=1{1,2,3,...,m} to be a set of potential facility sites,

fj to be facility setup cost for facility j € J,
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h; to be supply of client i € I,

sj to be capacity of facility j € J,

ci; to be the transportation cost from client 7 € I to facility j € J. We assume
that I U J is a node set of a complete graph, and ¢; ; is the minimum transportation cost
between facility j and client 4.

Additional notations are defined as follows:

deg(i) is a degree of node 1,

I is set of node who deg(i) > 2, Vi € I,

I; is a node set combined with node 1,

h; is a supply of client i € I after reducing the size of the problem,

7i(i) is the amount of the node combined with node i,Vi € I,

Ci,j is the transportation cost between client i € I and facility j € J after reducing
the size of the problem.

The problem size reduction methods are separated into 2 parts: creating a set with
the node with the degree of more than 2 and the one with the degree less than or equal to
2, and adjusting the need value and transportation costs. The conclusion for the stated
method can be summarized as follows:

Step 1: Construct a set of nodes having a degree of more than 2 and a set of nodes
having a degree of less than or equal to 2.

let I=0fori=1,...,nif deg(i) >2, I =T Uji.

Step 2: Where a node has a degree of less than or equal to 2, combined to the
nearest node that has a degree of more than 2, (thus reducing the overall number of nodes).
After that, the transportation costs of the removed nodes are estimate by multiplying the
transportation costs of the remaining nodes with the number of associated removed nodes
(Crj = ckj + 1(k)erj, Yk € I,je J). The supplies of remained nodes are update by
combine the supply associated removed nodes (fzk =efl; =t Zhi’ Vkel ).

iEik
In this step, we can consider that the node that has a degree less of than or equal

to 2 is then assigned to the same facility as is connected with the nearest node which has
a degree of more than 2.
After using the problem size reduction method, the capaciated facility location

problem (CFP) model has been evaluated using the CF P model presented below.
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(C’FP): minz fiv; + Z Z Ci jTij

JjeJ iel J€J
s.t. Z'ﬁi’j =1, Vi € j,
JjeJ
Zﬁii‘i,j < Sj@j, \V/] € J»
iel
i; ;€ {0,1}, Viel,jeld,
g] € {07 1}7 vj € J7

where 7; ; is a binary decision variable; it is equal to 1 if the client 7 assigned to
facility j, it is equal to O otherwise, 7; is equal to 1 if the facility j is opened, it is equal
to 0 otherwise. Next we will verify the bound of error derived from reducing the problem
size using the stated method with the notations as follows:

Let a:;j, y;-‘, Vi € I,7 € J be the optimal solution of CFP,
Ei gl Yie VL € I,j € J be the optimal solution of CFP,

z* be the optimal value of CFP,

Z* be the optimal value of the problem after reducing the size by the proposed
method,

| - | be the number of element in the set,

abs(:) be the absolute value of a number.

Proposition 3.1.1. The bound of error from reducing the size of a problem less than or

equal to
abs(r|I| + R|I — I| + K|J|)
where

r= max {cg;} — min {cx;},

kel jeJ kel jeJ
R= max {¢;} - min {c;;},
kel,jeJ iel—1,5ed

K= I}lea}{fj} - I;leiy{fj}-
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Proof. Let 2%, 2%, a7, y;, Vi€ I,j € Jand 27, y;, Vi € I,j € J be defined as above.

The bound of error is

abs(2* —2%) = abs((Y_ f355 + D> éng@ig) — O fivf + > cijaiy))

jeJ kel jed jeJ il jeJ
= abs((Q_ fi; = D Jwp) + (3 D @iy = 2D ciiy)
jeJ jeJ kel jed il jeJ

Since ¢ ; = 1+ n(k),

abs(z* — %) = abs((z fi0; — Z fiy5) + Z Z(l + (k) ck,j T 5 — Z Z Cij; ;)

jed jed ki i€ icl jeJ
= abs((3_ 55 = S fi) + 0N (L Alk)ensdhy — 3. D cijal;
jeJ jeJ kel J€J icI—T1J€J
= DD CkiThy)
kel J€J
= abs((Q_ fid = D Fiu)) + Q1D cngfiy — D> cujtih)
jeJ jeJ kel J€J kel J€J
+ (0D ke sFh = Y > cigaiy):
kel j€J icl—fj€J

Consider the first term (Z fj?]j i Z ijj)‘

jeJ JjeJ
Since Zf]yj > |J| mln{fj} and ij < |J] max{f]} then
JjeJ jeJ
(D 5555 = 2 £97) < lmax{f;} — min{f;}) = K]J],
JeJ jeJ

here K = } — min{f;}.
where max{fj} —min{f;}

Consider the second term (Z Z Cr i — Z Z Ch,jTh )
kel Jg&d kel €1
Since :U’,;j, 53}’;]-, Vk € 1,5 € J is a solution of P and P respectively then

2,2 = 22 % T L

kel 7€J kel J€J

chk,ﬂm < Z max {c;} = \I\ max {ckj}

wefied ~k IjeJ

and Zch]xk]>Z mln {c;”}—|I| mln {ij}

kel j€J
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Zch]xk] chijkj <|I| max {ckj}—|I| m1n {ckj}

kel j€J kel j€J
|I|( max {cx;} — min {cy;})
kGI,]EJ kEI,Je‘]
= 7"’]’
where 7 = max {cy;} — min {cp;}.
kel jeJ keljel
Consider the last term (ZZﬁ(k)ckﬁizj . Z Zci’jx;j)
kel J€J iel-1J€J
Consider Z Z ﬁ(k)ckvjj;j‘
kel j€J

Since :EZJ., Vk € I,j € J is a solution of CPF, ZZ.%Z] =
kel j€J

IO T Alk)ergan, <Y (k) max {cx}

. £ d kel,jed
kel jeJ kel S

From 71(k) is the number of nodes that are integrated to node k,Vk € I therefore

S alk) =11 - 1],

kel
" E (k) max {cy;} =|I —I| max {cx }.
/ kel jeJd kel jeJd
kel J J
Consider Z Z c@jzf’j. Since xfj, Vi€ 1,7 € J is a solution of P then
iel-13<J
* ey
Mo =L
el jeJ
LYY ey > Y min ey =1 min {ey).
. _iel-IjeJ ieI—1I,jeJ
ier—1jet iel-I" . ‘ J

i (Zzﬁ(/ﬂ)%ﬂi,j— Z Zcmx” <|I- I|k1r11ax {ex;}— I =I] min  {c;;}

kel j€J 3 5F X JE€J icl-I,jeJ
= I - I|( max {eps}—  min {eij})
kel jed icl—-1,jeJ
= R|I - 1],
where R = max {c;;} — min {c¢;}.
kel jed el—-1,5eJ

-.abs(2* — 2%) < abs(r|I| + R|I — I| + K|J]).

In the next section, we will present the method for p-center problems.
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3.2 Method for P-center Problem

Since the aim of the p-center problem is to minimize the maximum distance between
each client and the facility they are assigned to, the optimal solution of this problem is a
measure of some distance between the client and the facility.

If we consider the elements in the distance matrix, the optimal solution has to be one
of the matrix elements and the amount of elements in that set is mn when m represents
any number of candidate locations for facilities and n is the amount of client nodes. We
have invented the method according to the above information. The p-center problem has
been demonstrated in 2 parts. In the first part, we will predict the radius value in order
to verify the possibility for facility construction in p places in which the location must be
able to serve all the clients under the predicted radius. We will execute that by bisecting
the members which are arranged in ascending order. The bisection method is used to
determine the radius. This method is guaranteed to converge to the optimal solution of
p center problem in log,(mn) iterations. In the second part, we will examine the stated
possibilities. On one hand, if it covers all the customers needs, the predict radius value
will be on the upper bound of the result chart. On the other hand, if it cannot cover all the
needs, the radius value will be on the lower bound of the chart. We will keep examining
that until the margin values between the upper bound are almost the same as these in
the lower bound. The main idea of this method construct is based on the following. First,
we sort all the distances between the client and the facility. Next, we use a series of the
covering problems as well as using the bisection method to select the coverage radius. To
explain the method, we define certain notations as follows:

Recall that d;; is the distance from client ¢ to facility j. We assume I U J to
be a node set of a complete graph, and d;; to be the minimum distance (or shortest
path) between the facility j and the client i. In order to solve the problem, we denote
D1 < Dy < ... < Dyyqq to be the sorted distinct entries of the distance d; ;. Obviously,
the value of the optimal solution is one of the elements in D = {Dy, Da, ..., Dz}

D, and D; are upper bound and lower bound where » and [ are the indices of the
upper bound and lower bound in the set D.

We carried out our idea for solving the p-center problem as follows:

Step 0: Set the upper bound which is the member with the most value in the
distance matrix and the lower bound is the member with the least value in distance
matrix.

Step 1: Evaluating radius which is the middle value between the upper and lower
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bounds of members in the distance matrix arranged in ascending order.

Step 2: Represents the possibility for the mentioned radius by solving the maximal
client coverage problem (MCP1) with the given radius.

Step 3: If the solution of the maximal client coverage problem allows all clients
to be covered with p facilities, set the upper bound to be the radius. Else, set the lower
bound to be the radius.

Step 4: If the lower and upper bounds are close enough to each other, the upper
bound is the solution of the p-center problem. Else, go to Step 1.

The capacitated maximal client coverage problem in Step 2 can be formulated as:

(MCP1): max ZZ@-J (3.1)

i€l jeJ
sty wij <1, Viel, (3.2)
jed
> D, (3.3)
jeJ
dmxm < 5yj, Viel, jeJd, (34)
Zhil'i,j < 55Y;, VjedJ, (3.5)
icl
;€ {0,1}, Viel,jeJ, (3.6)

y; € {0,1}, Vj e J. (3.7)

The objective of function (3.1) is to maximize the covered clients. Recall that n is
the number of clients: if the solution of the maximum coverage problem is less than n,
then all clients cannot be covered by p opened facilities. The constrains (3.2) guarantee
that the each client can be assigned to only 1 facility. Constrain (3.3) requires that the
exact p facilities must be opened. The constraints (3.4) ensure that a client must be
assigned to a facility such that the distance from client 7 to facility j is less than or equal
to the coverage radius §. The last constraints (3.5) are the capacities restriction.

For the uncapacitated case, we assume that h; =1, Vi € [ and s; =n, Vj € J.
Now, we show a step by step method to solve the p-center problem.

Step 1: Set an initial D; = Dy and Dy, = Dyee (I = 1,u = |DJ) and set ¢ =
[(u+1)/2], 6 = D..

Step 2: Solve MCP1 using radius = 4.

Step 3: If the solution of MCP1 < n, set D; =46, | = <.

Else, D,, is set to be § and u = e.
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Step 4: If u—1>1,set e = [(u+1)/2], 6 = D, go to Step 2.
Else, the solution of PC = D,,.

The idea for solving a maximal client coverage problem was carried out as follows:

Step 1: Find clients who connect to only one facility in the given coverage radius,
then open that facility.

Step 2: Assign clients who connect exclusively to the opened facility in step 1 by
using the knapsack problem (KP), delete all clients who have been assigned a facility.

Step 3: If the number of opened facilities is fewer than p, go to Step 4. Else, stop.

Step 4: If there are clients who connect to only one facility in the given coverage
radius go to Step 1. Else, choose one unopened facility having a maximum number of
connecting clients to be opened and go to Step 2.

The knapsack problem used in Step 2 can be formulated as follows:

(KP): max Zhixi,j (3.8)
i€l

s.t. z hiZEiJ‘ < S5, (3'9)
i€l

Tij € {0, 1}, Viel,jeld (3.10)

Our method for solving the knapsack problem was carried out as follows:

Step 1: Construct a candidate set whose distances to the facility are less than the
given radius and whose supplies are less than the facility’s capacities.

Step 2: Assign clients in the candidate set who have a maximum supplies to the
facility.

Step 3: Update the capacity of the facility and update the candidate set.

Step 4: If the candidate set is empty, stop. Else, go to Step 2.

3.3 Method for Facility Location Problem

Capacitated facility location problems are considered hard to solve due to a lack of
the following information:

i) the number of opened facilities,

ii) the location where the facilities should be opened,

iii) how to assign clients to a facility.

The idea of solving the facility location problem is built around the fact that the
problems are relatively easy to solve so long as the number and locations of facilities to

be opened are known. Hence, the number of opened facilities are predetermined by the
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minimum number of 5 that allows for the feasibility of the problem. For that, supplies
of facilities are sorted and added to a set in descending order until the total supplies
can be covered by the total capacities of the facilities in the set. Next, the bisection
method is applied to determine the given number of opened facilities. After that, the
facility location problems are solved using the given number of the opened facilities. Since
the facility location problem consists of setup and transportation costs, the difference
between setup and transportation initiates the utilization of the 3 methods to solve the
facility location problem. When considering setup cost as a function depending on the
amount of the prospected facilities, the function characteristics should increase function.
However, the stated function might not be any of the functions shown in example 1.

Example 1, in building one facility, the initial setup cost include facility A 5 units,
facility B 15 units, and facility C 8 units. If the selection has been made to open 1 facility
which is facility B, the overall initial setup cost is 15 units. If choosing to open 2 facilities
which are facilities A and C, the overall initial setup cost is 13 units. As demonstrated,
the exampled function is not an increasing function according to the increasing amount
of facilities.

From the example, it is demonstrated that if the setup cost for each facility is not
highly different from each of the others, the value for the setup cost function will be
raised. Therefore, we have proposed a proposition and have proved it to guarantee that
the mentioned setup cost function will be the increasing function due to the number of
facilities represented in this part. Conversely, the minimum transportation cost is a non-
increasing function in relation to a number of facilities. The function characteristic should
be the non-increasing function and it should be bounded below.

If the setup cost is an increasing function while the transportation cost is a non-
increasing function, the total cost function has local optima as shown in Figure 3.1 a). On
the other hand, if the setup cost is increasing but the transportation cost is non-increasing

and are also convex, the total cost function has a global optimal as seen in Figure 3.1 b).
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Figure 3.1: Characteristic of the total cost function.

Accordingly, in this part, each method will be separately discussed. The facility
location method divides into 3 parts: 1) predict of the opening facility numbers, 2) find
candidate sites for facilities, and 3) assign clients to facilities. Next, we will explain the
three methods for facility location problems.

Step 0: Let § be the lower bound of the facilities amounts and ~ be the upper
bound of the facilities amounts.

Step 1: Determine the prediction of the opening facility numbers by using bisection
A= (B+7)/2

Step 2: Determine the selection to open the facility A and A + 1 facility through
the use of the different methods. In this step, we propose three criteria to select sites for
the facilities. The method of selection will be discussed later.

Step 3: Use the location from Step 2 for client distribution and the total cost
calculation.

Step 4: If the total cost of the facility with the amount A less than the total cost of
the facility with the amount A 4+ 1, we will adjust the upper bound value of the facilities
numbers. Conversely, if the total of facility with the amount A greater than or equal to
the total of the facility with the amount A + 1, we will adjust the lower bound value.

In the next part, we will explain the second step about the principles for facility

selection for each method.

3.3.1 Method A (Setup Cost Method)

Since the objective of the facility location problem consists of the setup cost and

the transportation cost, if the setup cost is larger than the transportation cost, the opti-
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mization routine will give priority to the setup cost. The setup cost method chooses to
open facilities that minimize the total setup cost. This method is, therefore, suitable for
problems in which the setup cost is larger than the transportation cost.

In this method, the problem is considered as a multi-objective problem. The first
objective is to minimize the setup cost and the second objective is to minimize the trans-
portation cost. The problem is solved by using a greedy algorithm to choose p opened
facilities that minimize the setup cost. Then, clients are assigned to the opened facilities
such that the total transportation cost is minimized. If the solution that minimizes the
setup cost is not unique, the local search is used to find the solutions that minimize the
total transportation costs.

The principle for facility selection in Method A can be summarized as follows:

Step 0: Initialize the set of locations to the empty set and sort candidate place in
non-descending order.

Step 1: Find the node that relates to the minimum setup cost and add it to the
solution.

Step 2: If fewer than A facilities have been added to the solution, the method

continues with Step 1; if not, the method stops.

3.3.2 Method B (Modified P-median Method)

When solving a capacitated facility location problem, it can be useful at some point
to know the minimum of the total transportation cost with p opened facilities. The
objective of the p-median problem is to find that minimum.

For a facility location problem where the transportation cost is higher than the
setup cost, the optimization routine will give priority to the transportation cost. The
facility with the lowest transportation cost found from the p-median problem will be
chosen by this modified method. The local search and greedy algorithm are used to solve
the p-median problem.

The principle for facility selection in method B can be summarized as follows:

Step 0: Initialize the set of locations to the empty set and sort candidate place in
non-descending order.

Step 1: Find the node that relates to the minimum transportation cost and add it
to the solution.

Step 2: If fewer than A facilities have been added to the solution, the method

continues with Step 1; if not, the method stops.
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3.3.3 Method C (Modified P-center Method)

The objective of the p-center problem is to locate p facilities so as to minimize the
maximum distance between these facilities and their assigned clients. In this method,
the farthest distances between the clients and the facilities that they are assigned to are
minimized. The p-center problem is similar to the p-cluster problem where clients in each
cluster are presented in terms of the minimum farthest distance to the opened facilities
in their cluster. As a result, the facilities from the p-center problem are well distributed;
therefore, they are opened by this modified method of facility location problem. For the
principle selection in Method C, we have selected the location for facility using the solution
from p-center problem with the solution-finding method presented in Section 3.2.

Method A, B, and C are constructed based on different aspects. The optimization
routines of Method A, B and C give priorities to the setup cost, to the transportation
cost and to the distribution of facility location, respectively. For information segregation,
the assumptions are created, in this thesis, from the relationship between setup cost
and transportation cost. As the average slope of setup costs is the average between
the setup cost of 1 opened facility and that of all opened facilities, the average slope of
transportation cost is calculated in the same way using the transportation costs. If the
minimum and the average slope of the setup costs are more than double of the minimum
and the average slope of the transportation costs, respectively, it is considered, in this
thesis, the “higher setup” cost case (or Method A). If, in fact, the minimum and the
average slope of transportation costs are more than double of the minimum and the
average slope of setup costs, respectively, this case is considered, in this work, the “higher
transportation” cost (or Method B). If the minimum of the setup costs is between 0.75
and 1.25 multiply that of the transportation costs and the average slope of the setup costs
is between 0.75 and 1.25 multiply that of the transportation costs, the case is defined to
be “balanced” cost and Method C is used. If these assumptions are not met, the problem
is not categorized. The following hypotheses are then constructed to match all methods
with problems in each categories.

Hypothesis 1) Method A works better than the Method B and C for the problems
with higher setup cost.

Hypothesis 2) Method B works better than the Method A and C for problems with
higher transportation cost.

Hypothesis 3) Method C works better than the Method A and B for problems with

balanced cost.
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The hypothesis testing will be given in the next chapter.

In general, the characteristic of setup cost function depending on the amount of
the prospected facilities cannot guarantee that is an increasing function. As shown in
Example 1. Therefore, we propose conditions to guarantee that the characteristic of
setup cost function depending on the amount of the prospected facilities is an increasing
function. To prove conditions is shown in the next section.

First, we define some notations of significance.

Let C' = g be a combinatorial coefficient,

n—r)lr!
|z] be largest integer that does not exceed z,
p(k) be the setup cost with k opened facilities where k € {1,2,...,m}. Given that

m represents the maximum number of opened facilities. It is prominent that there is not

only the p(k) function amount but there will also be C}"* functions.

Proposition 3.3.1. The setup cost function p(k) is an increasing function if there exist

an integer r that satisfies one of these conditions

min{f;}
JjeJ

psrs LI;!lg}v{fj} - fjneif]l{fj}J
Proof. Let p(k) be a setup cost with k opened facilities where k € {1,2,...,m}.
Case I: f; = f;,Vi,je€J
It is easy to see that, in this case p(k) = kf is a linear function. Therefore, the
setup cost function p(k), Vk € {1,2,...,m} is an increasing function.
min{f;}

max{f;} —min{f;}

Case II: 2<r <|

Consider k € {1,2,...,r —1}.

. I}leiy{fj}
Since r < ngf{fj} a mel?{f]}j and k < r,
J J
min{f;} mind f;}

k .
= Lr;lg}{fj} — gleiy{fj}J . r?g}{fj} = r}leig{fj}
Since I}lg}{fj} T gleiy{fj} > 0,
h(max{f;} —min{f;}) < min{f;}
k(r?eaf{fj}) < gleig{fj} + k(g!leig{fj})

< (k4 1)(min{f;)
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Since p(k) is a setup cost with k opened facilities, k(migl{fj}) < p(k) < k(ma}({fj}).
J€e je
We have that p(k) < k(ma}({fj}) <p(k+1).
jE
Hence, p(k) < p(k+ 1), V k € {1,2,...,7 — 1}. This implies that the setup cost

function p(k), k € {1,2,...,r — 1} is an increasing function. O

It is easy to see that, the condition to guarantee that the characteristic of setup cost
function depending on the amount of the prospected facilities is an increasing function if
and only if the setup cost of each facility are similar. The problem in accordance with
such conditions is often a problem finding location for the same type of facilities in the
same area. For example, the problem to find the location for the ATM in the Thonburi
area of Bangkok. The setup cost of this problem is a rental. This rental for each area
are the same prize. Then this problem has an increasing setup cost function. In the next
section the proposition to guarantee that the characteristic of transportation cost function
depending on the amount of the prospected facilities is a non-increasing function.

Let g(k) be a transportation cost with k opened facilities where k € {1,2,...,m}.
Given that m represents a maximum number of opened facilities, ¢(k) is not unique and
q(k) has the C}"* functions of ¢(k),

q* (k) would then be the minimum transportation cost with k opened facilities,

Y, ={j|y; =1,Vj € J} would then be the set of k opened facilities of the feasible
solution,

Yy={j| y;=1vjeJ } would then be the set of k opened facilities of the optimal

solution.

Proposition 3.3.2. The minimum transportation cost function with k opened facilities,

qg*(k), k € {1,2,...,m}, is a non-increasing function.

Proof. Let q(k), ¢*(k), Y}, and Y;* be defined as above.

Since ¢*(k) is the minimum transportation cost with k opened facilities, ¢*(k) <
q(k).

Considering Y}", there exists Yj 1 such that Y" C Yj44.

Therefore, there exists g(k + 1) < ¢*(k)

Since ¢*(k + 1) < q(k + 1), it implies that ¢*(k + 1) < ¢*(k). Therefore, ¢*(k) is a

non-increasing function. O

In general, the facility location problem is according to the proposition 3.3.2. The
initial idea for solving facility location is considered the setup cost function depending on

the amount of the prospected facilities is an increasing function and transportation cost
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function depending on the amount of the prospected facilities is a non-increasing function.
If the facility location problem is according to the proposition 3.31 and 3.3.2, the solution
is obtained from the proposed method convert to the local optimal. To guarantee that,

the prove conditions is shown in the next section.
Proposition 3.3.3. The total cost obtained by the proposed method is a local minimum.

Proof. Recall that o and 8 are the minimum and maximum number of opened facilities.

Let [oy, Bi] be the searching interval at i iteration.

Let C* () be the minimum total cost with o opened facilities.

Thus, the proposed method will terminate if 8; = «; + 1.

From the method, a; is updated if and only if C*(o;+1) < C*(a;), and B; is updated
if and only if C*(5;) < C*(B; + 1).

Hence, at the final step C*(f;) = C*(a; + 1) < C* (i) = C*(B; — 1) and C*(5;) <
C*(B; + 1). Therefore, the total cost obtained from the proposed method is C*(3;) and
that cost is a local minimum.

If o; in all iterations are not updated («; = «) at all iterations, we have determined
that at the final step, C*(a;) < C*(a; + 1) = C*(8;) < C*(B; + 1). Therefore, the total

cost obtained from the proposed method, C* (o), is a local minimum. O

Proposition 3.3.4. If the setup cost with k opened facilities, p*(k), is an increasing
convex function and the minimum transportation cost with k opened facilities, q*(k), is a
convex function where k € {1,2,...,m}, the solution obtained by the proposed method is

a global minimum.

Proof. Since p*(k) and ¢*(k) are convex functions, the minimum total cost C*(k) = p*(k)+
q*(k) is also a convex function. From Theorem 2.1.5 therefore, a local minimum is a global
minimum. From Proposition 3, our method always converges to a local minimum. This

implies that the obtained solution is also a global minimum. O

45



