
CHAPTER 3

Main Results

The purpose of this chapter is to study the methods for location problems. This

chapter will be divided into three sections: 1) problem size reduction, 2) p-center problem,

and 3) facility location problem. In general, the number of clients and candidate places are

likely to be large in real world applications. The relaxation methods applied to minimize

the size of problem and the bound of error from reduction have been considered in the first

section. In section 2, the p-center problem was studied. The p-center objective function is

to minimize the maximum distance between each client and the assigned facility. That is

to say, the facility location has to be in the middle of all networks which are suitable for

route allocation. In the last section of this chapter, 3 methods have been created to find

solutions for the facility location problem. In each method, different location selections

for various types of facilities will also be taken into consideration.

3.1 Problem Size Reduction

Since the facility location problem is an NP-hard problem, the problem relaxation

has been applied to help solve the problem. If we consider the service nodes between the

clients and each facility location in the network, it is assumed that they are connected

networks. In order to get to the service node on the street (the degree of the service node

equals 2), or the service node at the end of the street (the degree of the service node

equals 1), it has to pass through the service node on the corner of the street (the degree of

the service node is more than 2). For that particular reason, the problem-size reduction

has been applied by considering the service node on the corner of the street only, and the

service node on the street and the one at the end of the street with the closest corner have

been examined to adjust the need value and the product transportation costs.

Next, we show the proposed method to reduce the size of the problem. First, we

define some notations.

Recall I = {1, 2, 3, . . . , n} to be a set of clients or customers,

J = {1, 2, 3, . . . ,m} to be a set of potential facility sites,

fj to be facility setup cost for facility j ∈ J ,
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hi to be supply of client i ∈ I,

sj to be capacity of facility j ∈ J ,

ci,j to be the transportation cost from client i ∈ I to facility j ∈ J . We assume

that I ∪ J is a node set of a complete graph, and ci,j is the minimum transportation cost

between facility j and client i.

Additional notations are defined as follows:

deg(i) is a degree of node i,

Ĩ is set of node who deg(i) > 2, ∀i ∈ I,

Ĩi is a node set combined with node i,

h̃i is a supply of client i ∈ Ĩ after reducing the size of the problem,

ñ(i) is the amount of the node combined with node i,∀i ∈ Ĩ,

c̃i,j is the transportation cost between client i ∈ Ĩ and facility j ∈ J after reducing

the size of the problem.

The problem size reduction methods are separated into 2 parts: creating a set with

the node with the degree of more than 2 and the one with the degree less than or equal to

2, and adjusting the need value and transportation costs. The conclusion for the stated

method can be summarized as follows:

Step 1: Construct a set of nodes having a degree of more than 2 and a set of nodes

having a degree of less than or equal to 2.

let Ĩ = ∅ for i = 1, . . . , n if deg(i) > 2, Ĩ = Ĩ ∪ i.

Step 2: Where a node has a degree of less than or equal to 2, combined to the

nearest node that has a degree of more than 2, (thus reducing the overall number of nodes).

After that, the transportation costs of the removed nodes are estimate by multiplying the

transportation costs of the remaining nodes with the number of associated removed nodes

(c̃k,j = ck,j + ñ(k)ck,j , ∀k ∈ Ĩ , j ∈ J). The supplies of remained nodes are update by

combine the supply associated removed nodes (h̃k = hk +
∑
i∈Ĩk

hi, ∀k ∈ Ĩ).

In this step, we can consider that the node that has a degree less of than or equal

to 2 is then assigned to the same facility as is connected with the nearest node which has

a degree of more than 2.

After using the problem size reduction method, the capaciated facility location

problem (CFP) model has been evaluated using the ˜CFP model presented below.

32



( ˜CFP ): min
∑
j∈J

fj ỹj +
∑
i∈Ĩ

∑
j∈J

c̃i,j x̃i,j

s.t.
∑
j∈J

x̃i,j = 1, ∀i ∈ Ĩ ,

∑
i∈Ĩ

h̃ix̃i,j ≤ sj ỹj , ∀j ∈ J,

x̃i,j ∈ {0, 1}, ∀i ∈ Ĩ , j ∈ J,

ỹj ∈ {0, 1}, ∀j ∈ J,

where x̃i,j is a binary decision variable; it is equal to 1 if the client i assigned to

facility j, it is equal to 0 otherwise, ỹj is equal to 1 if the facility j is opened, it is equal

to 0 otherwise. Next we will verify the bound of error derived from reducing the problem

size using the stated method with the notations as follows:

Let x∗i,j , y∗j , ∀i ∈ I, j ∈ J be the optimal solution of CFP,

x̃∗i,j , ỹ∗j , ∀i ∈ Ĩ , j ∈ J be the optimal solution of ˜CFP ,

z∗ be the optimal value of CFP,

z̃∗ be the optimal value of the problem after reducing the size by the proposed

method,

| · | be the number of element in the set,

abs(·) be the absolute value of a number.

Proposition 3.1.1. The bound of error from reducing the size of a problem less than or

equal to

abs(r|Ĩ|+R|I − Ĩ|+K|J |)

where

r = max
k∈Ĩ,j∈J

{ck,j} − min
k∈Ĩ,j∈J

{ck,j},

R = max
k∈Ĩ,j∈J

{ck,j} − min
i∈I−Ĩ,j∈J

{ci,j},

K = max
j∈J

{fj} −min
j∈J

{fj}.
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Proof. Let z∗, z̃∗, x∗i,j , y∗j , ∀i ∈ I, j ∈ J and x̃∗i,j , ỹ∗j , ∀i ∈ Ĩ , j ∈ J be defined as above.

The bound of error is

abs(z̃∗ − z∗) = abs((
∑
j∈J

fj ỹ
∗
j +

∑
k∈Ĩ

∑
j∈J

c̃k,j x̃
∗
k,j)− (

∑
j∈J

fjy
∗
j +

∑
i∈I

∑
j∈J

ci,jx
∗
i,j))

= abs((
∑
j∈J

fj ỹ
∗
j −

∑
j∈J

fjy
∗
j ) + (

∑
k∈Ĩ

∑
j∈J

c̃k,j x̃
∗
k,j −

∑
i∈I

∑
j∈J

ci,jx
∗
i,j)).

Since c̃k,j = 1 + ñ(k),

abs(z̃∗ − z∗) = abs((
∑
j∈J

fj ỹ
∗
j −

∑
j∈J

fjy
∗
j ) +

∑
k∈Ĩ

∑
j∈J

(1 + ñ(k))ck,j x̃
∗
k,j −

∑
i∈I

∑
j∈J

ci,jx
∗
i,j))

= abs((
∑
j∈J

fj ỹ
∗
j −

∑
j∈J

fjy
∗
j ) +

∑
k∈Ĩ

∑
j∈J

(1 + ñ(k))ck,j x̃
∗
k,j −

∑
i∈I−Ĩ

∑
j∈J

ci,jx
∗
i,j

−
∑
k∈Ĩ

∑
j∈J

ck,jx
∗
k,j)

= abs((
∑
j∈J

fj ỹ
∗
j −

∑
j∈J

fjy
∗
j ) + (

∑
k∈Ĩ

∑
j∈J

ck,j x̃
∗
k,j −

∑
k∈Ĩ

∑
j∈J

ck,jx
∗
k,j)

+ (
∑
k∈Ĩ

∑
j∈J

ñ(k)ck,j x̃
∗
k,j −

∑
i∈I−Ĩ

∑
j∈J

ci,jx
∗
i,j).

Consider the first term (
∑
j∈J

fj ỹ
∗
j −

∑
j∈J

fjy
∗
j ).

Since
∑
j∈J

fjy
∗
j ≥ |J |min

j∈J
{fj} and

∑
j∈J

fj ỹ
∗
j ≤ |J |max

j∈J
{fj} then

(
∑
j∈J

fj ỹ
∗
j −

∑
j∈J

fjy
∗
j ) ≤ |J |(max

j∈J
{fj} −min

j∈J
{fj}) = K|J |,

where K = max
j∈J

{fj} −min
j∈J

{fj}.

Consider the second term (
∑
k∈Ĩ

∑
j∈J

ck,j x̃
∗
k,j −

∑
k∈Ĩ

∑
j∈J

ck,jx
∗
k,j).

Since x∗k,j , x̃∗k,j , ∀k ∈ Ĩ , j ∈ J is a solution of P and P̃ respectively then∑
k∈Ĩ

∑
j∈J

x̃∗k,j =
∑
k∈Ĩ

∑
j∈J

x∗k,j = 1,

.

∴
∑
k∈Ĩ

∑
j∈J

ck,j x̃
∗
k,j ≤

∑
k∈Ĩ

max
k∈Ĩ,j∈J

{ck,j} = |Ĩ| max
k∈Ĩ,j∈J

{ck,j}

and
∑
k∈Ĩ

∑
j∈J

ck,jx
∗
k,j ≥

∑
k∈Ĩ

min
k∈Ĩ,j∈J

{ck,j} = |Ĩ| min
k∈Ĩ,j∈J

{ck,j}.
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(
∑
k∈Ĩ

∑
j∈J

ck,j x̃
∗
k,j −

∑
k∈Ĩ

∑
j∈J

ck,jx
∗
k,j) ≤ |Ĩ| max

k∈Ĩ,j∈J
{ck,j} − |Ĩ| min

k∈Ĩ,j∈J
{ck,j}

= |Ĩ|( max
k∈Ĩ,j∈J

{ck,j} − min
k∈Ĩ,j∈J

{ck,j})

= r|Ĩ|

where r = max
k∈Ĩ,j∈J

{ck,j} − min
k∈Ĩ,j∈J

{ck,j}.

Consider the last term (
∑
k∈Ĩ

∑
j∈J

ñ(k)ck,j x̃
∗
k,j −

∑
i∈I−Ĩ

∑
j∈J

ci,jx
∗
i,j)

Consider
∑
k∈Ĩ

∑
j∈J

ñ(k)ck,j x̃
∗
k,j .

Since x̃∗k,j , ∀k ∈ Ĩ , j ∈ J is a solution of ˜CPF ,
∑
k∈Ĩ

∑
j∈J

x̃∗k,j = 1.

∴
∑
k∈Ĩ

∑
j∈J

ñ(k)ck,j x̃
∗
k,j ≤

∑
k∈Ĩ

ñ(k) max
k∈Ĩ,j∈J

{ck,j}.

From ñ(k) is the number of nodes that are integrated to node k, ∀k ∈ Ĩ therefore∑
k∈Ĩ

ñ(k) = |I − Ĩ|,

∴
∑
k∈Ĩ

ñ(k) max
k∈Ĩ,j∈J

{ck,j} = |I − Ĩ| max
k∈Ĩ,j∈J

{ck,j}.

Consider
∑
i∈I−Ĩ

∑
j∈J

ci,jx
∗
i,j . Since x∗i,j , ∀i ∈ I, j ∈ J is a solution of P then

∑
i∈I

∑
j∈J

x∗i,j = 1.

∴
∑
i∈I−Ĩ

∑
j∈J

ci,jx
∗
i,j ≥

∑
i∈I−Ĩ

min
i∈I−Ĩ,j∈J

ci,j = |I − Ĩ| min
i∈I−Ĩ,j∈J

{ci,j}.

∴ (
∑
k∈Ĩ

∑
j∈J

ñ(k)ck,j x̃
∗
k,j −

∑
i∈I−Ĩ

∑
j∈J

ci,jx
∗
i,j) ≤ |I − Ĩ| max

k∈Ĩ,j∈J
{ck,j} − |I − Ĩ| min

i∈I−Ĩ,j∈J
{ci,j}

= |I − Ĩ|( max
k∈Ĩ,j∈J

{ck,j} − min
i∈I−Ĩ,j∈J

{ci,j})

= R|I − Ĩ|,

where R = max
k∈Ĩ,j∈J

{ck,j} − min
i∈I−Ĩ,j∈J

{ci,j}.

∴ abs(z̃∗ − z∗) ≤ abs(r|Ĩ|+R|I − Ĩ|+K|J |).

In the next section, we will present the method for p-center problems.
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3.2 Method for P -center Problem

Since the aim of the p-center problem is to minimize the maximum distance between

each client and the facility they are assigned to, the optimal solution of this problem is a

measure of some distance between the client and the facility.

If we consider the elements in the distance matrix, the optimal solution has to be one

of the matrix elements and the amount of elements in that set is mn when m represents

any number of candidate locations for facilities and n is the amount of client nodes. We

have invented the method according to the above information. The p-center problem has

been demonstrated in 2 parts. In the first part, we will predict the radius value in order

to verify the possibility for facility construction in p places in which the location must be

able to serve all the clients under the predicted radius. We will execute that by bisecting

the members which are arranged in ascending order. The bisection method is used to

determine the radius. This method is guaranteed to converge to the optimal solution of

p center problem in log2(mn) iterations. In the second part, we will examine the stated

possibilities. On one hand, if it covers all the customers needs, the predict radius value

will be on the upper bound of the result chart. On the other hand, if it cannot cover all the

needs, the radius value will be on the lower bound of the chart. We will keep examining

that until the margin values between the upper bound are almost the same as these in

the lower bound. The main idea of this method construct is based on the following. First,

we sort all the distances between the client and the facility. Next, we use a series of the

covering problems as well as using the bisection method to select the coverage radius. To

explain the method, we define certain notations as follows:

Recall that di,j is the distance from client i to facility j. We assume I ∪ J to

be a node set of a complete graph, and di,j to be the minimum distance (or shortest

path) between the facility j and the client i. In order to solve the problem, we denote

D1 < D2 < . . . < Dmax to be the sorted distinct entries of the distance di,j . Obviously,

the value of the optimal solution is one of the elements in D = {D1, D2, . . . , Dmax}.

Du and Dl are upper bound and lower bound where u and l are the indices of the

upper bound and lower bound in the set D.

We carried out our idea for solving the p-center problem as follows:

Step 0: Set the upper bound which is the member with the most value in the

distance matrix and the lower bound is the member with the least value in distance

matrix.

Step 1: Evaluating radius which is the middle value between the upper and lower
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bounds of members in the distance matrix arranged in ascending order.

Step 2: Represents the possibility for the mentioned radius by solving the maximal

client coverage problem (MCP1) with the given radius.

Step 3: If the solution of the maximal client coverage problem allows all clients

to be covered with p facilities, set the upper bound to be the radius. Else, set the lower

bound to be the radius.

Step 4: If the lower and upper bounds are close enough to each other, the upper

bound is the solution of the p-center problem. Else, go to Step 1.

The capacitated maximal client coverage problem in Step 2 can be formulated as:

(MCP1): max
∑
i∈I

∑
j∈J

xi,j (3.1)

s.t.
∑
j∈J

xi,j ≤ 1, ∀i ∈ I, (3.2)

∑
j∈J

yj = p, (3.3)

di,jxi,j ≤ δyj , ∀i ∈ I, j ∈ J, (3.4)∑
i∈I

hixi,j ≤ sjyj , ∀j ∈ J, (3.5)

xi,j ∈ {0, 1}, ∀i ∈ I, j ∈ J, (3.6)

yj ∈ {0, 1}, ∀j ∈ J. (3.7)

The objective of function (3.1) is to maximize the covered clients. Recall that n is

the number of clients: if the solution of the maximum coverage problem is less than n,

then all clients cannot be covered by p opened facilities. The constrains (3.2) guarantee

that the each client can be assigned to only 1 facility. Constrain (3.3) requires that the

exact p facilities must be opened. The constraints (3.4) ensure that a client must be

assigned to a facility such that the distance from client i to facility j is less than or equal

to the coverage radius δ. The last constraints (3.5) are the capacities restriction.

For the uncapacitated case, we assume that hi = 1, ∀i ∈ I and sj = n, ∀j ∈ J.

Now, we show a step by step method to solve the p-center problem.

Step 1: Set an initial Dl = D1 and Du = Dmax (l = 1, u = |D|) and set ε =

⌈(u+ l)/2⌉, δ = Dε.

Step 2: Solve MCP1 using radius = δ.

Step 3: If the solution of MCP1 < n, set Dl = δ, l = ε.

Else, Du is set to be δ and u = ε.
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Step 4: If u− l > 1, set ε = ⌈(u+ l)/2⌉, δ = Dε, go to Step 2.

Else, the solution of PC = Du.

The idea for solving a maximal client coverage problem was carried out as follows:

Step 1: Find clients who connect to only one facility in the given coverage radius,

then open that facility.

Step 2: Assign clients who connect exclusively to the opened facility in step 1 by

using the knapsack problem (KP), delete all clients who have been assigned a facility.

Step 3: If the number of opened facilities is fewer than p, go to Step 4. Else, stop.

Step 4: If there are clients who connect to only one facility in the given coverage

radius go to Step 1. Else, choose one unopened facility having a maximum number of

connecting clients to be opened and go to Step 2.

The knapsack problem used in Step 2 can be formulated as follows:

(KP): max
∑
i∈I

hixi,j (3.8)

s.t.
∑
i∈I

hixi,j ≤ sj , (3.9)

xi,j ∈ {0, 1}, ∀i ∈ I, j ∈ J. (3.10)

Our method for solving the knapsack problem was carried out as follows:

Step 1: Construct a candidate set whose distances to the facility are less than the

given radius and whose supplies are less than the facility’s capacities.

Step 2: Assign clients in the candidate set who have a maximum supplies to the

facility.

Step 3: Update the capacity of the facility and update the candidate set.

Step 4: If the candidate set is empty, stop. Else, go to Step 2.

3.3 Method for Facility Location Problem

Capacitated facility location problems are considered hard to solve due to a lack of

the following information:

i) the number of opened facilities,

ii) the location where the facilities should be opened,

iii) how to assign clients to a facility.

The idea of solving the facility location problem is built around the fact that the

problems are relatively easy to solve so long as the number and locations of facilities to

be opened are known. Hence, the number of opened facilities are predetermined by the
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minimum number of β that allows for the feasibility of the problem. For that, supplies

of facilities are sorted and added to a set in descending order until the total supplies

can be covered by the total capacities of the facilities in the set. Next, the bisection

method is applied to determine the given number of opened facilities. After that, the

facility location problems are solved using the given number of the opened facilities. Since

the facility location problem consists of setup and transportation costs, the difference

between setup and transportation initiates the utilization of the 3 methods to solve the

facility location problem. When considering setup cost as a function depending on the

amount of the prospected facilities, the function characteristics should increase function.

However, the stated function might not be any of the functions shown in example 1.

Example 1, in building one facility, the initial setup cost include facility A 5 units,

facility B 15 units, and facility C 8 units. If the selection has been made to open 1 facility

which is facility B, the overall initial setup cost is 15 units. If choosing to open 2 facilities

which are facilities A and C, the overall initial setup cost is 13 units. As demonstrated,

the exampled function is not an increasing function according to the increasing amount

of facilities.

From the example, it is demonstrated that if the setup cost for each facility is not

highly different from each of the others, the value for the setup cost function will be

raised. Therefore, we have proposed a proposition and have proved it to guarantee that

the mentioned setup cost function will be the increasing function due to the number of

facilities represented in this part. Conversely, the minimum transportation cost is a non-

increasing function in relation to a number of facilities. The function characteristic should

be the non-increasing function and it should be bounded below.

If the setup cost is an increasing function while the transportation cost is a non-

increasing function, the total cost function has local optima as shown in Figure 3.1 a). On

the other hand, if the setup cost is increasing but the transportation cost is non-increasing

and are also convex, the total cost function has a global optimal as seen in Figure 3.1 b).
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Figure 3.1: Characteristic of the total cost function.

Accordingly, in this part, each method will be separately discussed. The facility

location method divides into 3 parts: 1) predict of the opening facility numbers, 2) find

candidate sites for facilities, and 3) assign clients to facilities. Next, we will explain the

three methods for facility location problems.

Step 0: Let β be the lower bound of the facilities amounts and γ be the upper

bound of the facilities amounts.

Step 1: Determine the prediction of the opening facility numbers by using bisection

λ = (β + γ)/2.

Step 2: Determine the selection to open the facility λ and λ + 1 facility through

the use of the different methods. In this step, we propose three criteria to select sites for

the facilities. The method of selection will be discussed later.

Step 3: Use the location from Step 2 for client distribution and the total cost

calculation.

Step 4: If the total cost of the facility with the amount λ less than the total cost of

the facility with the amount λ+ 1, we will adjust the upper bound value of the facilities

numbers. Conversely, if the total of facility with the amount λ greater than or equal to

the total of the facility with the amount λ+ 1, we will adjust the lower bound value.

In the next part, we will explain the second step about the principles for facility

selection for each method.

3.3.1 Method A (Setup Cost Method)

Since the objective of the facility location problem consists of the setup cost and

the transportation cost, if the setup cost is larger than the transportation cost, the opti-
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mization routine will give priority to the setup cost. The setup cost method chooses to

open facilities that minimize the total setup cost. This method is, therefore, suitable for

problems in which the setup cost is larger than the transportation cost.

In this method, the problem is considered as a multi-objective problem. The first

objective is to minimize the setup cost and the second objective is to minimize the trans-

portation cost. The problem is solved by using a greedy algorithm to choose p opened

facilities that minimize the setup cost. Then, clients are assigned to the opened facilities

such that the total transportation cost is minimized. If the solution that minimizes the

setup cost is not unique, the local search is used to find the solutions that minimize the

total transportation costs.

The principle for facility selection in Method A can be summarized as follows:

Step 0: Initialize the set of locations to the empty set and sort candidate place in

non-descending order.

Step 1: Find the node that relates to the minimum setup cost and add it to the

solution.

Step 2: If fewer than λ facilities have been added to the solution, the method

continues with Step 1; if not, the method stops.

3.3.2 Method B (Modified P -median Method)

When solving a capacitated facility location problem, it can be useful at some point

to know the minimum of the total transportation cost with p opened facilities. The

objective of the p-median problem is to find that minimum.

For a facility location problem where the transportation cost is higher than the

setup cost, the optimization routine will give priority to the transportation cost. The

facility with the lowest transportation cost found from the p-median problem will be

chosen by this modified method. The local search and greedy algorithm are used to solve

the p-median problem.

The principle for facility selection in method B can be summarized as follows:

Step 0: Initialize the set of locations to the empty set and sort candidate place in

non-descending order.

Step 1: Find the node that relates to the minimum transportation cost and add it

to the solution.

Step 2: If fewer than λ facilities have been added to the solution, the method

continues with Step 1; if not, the method stops.
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3.3.3 Method C (Modified P -center Method)

The objective of the p-center problem is to locate p facilities so as to minimize the

maximum distance between these facilities and their assigned clients. In this method,

the farthest distances between the clients and the facilities that they are assigned to are

minimized. The p-center problem is similar to the p-cluster problem where clients in each

cluster are presented in terms of the minimum farthest distance to the opened facilities

in their cluster. As a result, the facilities from the p-center problem are well distributed;

therefore, they are opened by this modified method of facility location problem. For the

principle selection in Method C, we have selected the location for facility using the solution

from p-center problem with the solution-finding method presented in Section 3.2.

Method A, B, and C are constructed based on different aspects. The optimization

routines of Method A, B and C give priorities to the setup cost, to the transportation

cost and to the distribution of facility location, respectively. For information segregation,

the assumptions are created, in this thesis, from the relationship between setup cost

and transportation cost. As the average slope of setup costs is the average between

the setup cost of 1 opened facility and that of all opened facilities, the average slope of

transportation cost is calculated in the same way using the transportation costs. If the

minimum and the average slope of the setup costs are more than double of the minimum

and the average slope of the transportation costs, respectively, it is considered, in this

thesis, the “higher setup” cost case (or Method A). If, in fact, the minimum and the

average slope of transportation costs are more than double of the minimum and the

average slope of setup costs, respectively, this case is considered, in this work, the “higher

transportation” cost (or Method B). If the minimum of the setup costs is between 0.75

and 1.25 multiply that of the transportation costs and the average slope of the setup costs

is between 0.75 and 1.25 multiply that of the transportation costs, the case is defined to

be “balanced” cost and Method C is used. If these assumptions are not met, the problem

is not categorized. The following hypotheses are then constructed to match all methods

with problems in each categories.

Hypothesis 1) Method A works better than the Method B and C for the problems

with higher setup cost.

Hypothesis 2) Method B works better than the Method A and C for problems with

higher transportation cost.

Hypothesis 3) Method C works better than the Method A and B for problems with

balanced cost.
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The hypothesis testing will be given in the next chapter.

In general, the characteristic of setup cost function depending on the amount of

the prospected facilities cannot guarantee that is an increasing function. As shown in

Example 1. Therefore, we propose conditions to guarantee that the characteristic of

setup cost function depending on the amount of the prospected facilities is an increasing

function. To prove conditions is shown in the next section.

First, we define some notations of significance.

Let Cn
r =

n!

(n− r)!r!
be a combinatorial coefficient,

⌊x⌋ be largest integer that does not exceed x,

p(k) be the setup cost with k opened facilities where k ∈ {1, 2, . . . ,m}. Given that

m represents the maximum number of opened facilities. It is prominent that there is not

only the p(k) function amount but there will also be Cm
k functions.

Proposition 3.3.1. The setup cost function p(k) is an increasing function if there exist

an integer r that satisfies one of these conditions

1) r = m, if fi = fj, ∀i, j ∈ J

2) 2 ≤ r ≤ ⌊
min
j∈J

{fj}

max
j∈J

{fj} −min
j∈J

{fj}
⌋

Proof. Let p(k) be a setup cost with k opened facilities where k ∈ {1, 2, . . . ,m}.

Case I: fi = fj , ∀i, j ∈ J

It is easy to see that, in this case p(k) = kf is a linear function. Therefore, the

setup cost function p(k), ∀k ∈ {1, 2, . . . ,m} is an increasing function.

Case II: 2 ≤ r ≤ ⌊
min
j∈J

{fj}

max
j∈J

{fj} −min
j∈J

{fj}
⌋

Consider k ∈ {1, 2, . . . , r − 1}.

Since r ≤ ⌊
min
j∈J

{fj}

max
j∈J

{fj} −min
j∈J

{fj}
⌋ and k < r,

k < ⌊
min
j∈J

{fj}

max
j∈J

{fj} −min
j∈J

{fj}
⌋ ≤

min
j∈J

{fj}

max
j∈J

{fj} −min
j∈J

{fj}
.

Since max
j∈J

{fj} −min
j∈J

{fj} > 0,

k(max
j∈J

{fj} −min
j∈J

{fj}) < min
j∈J

{fj}

k(max
j∈J

{fj}) < min
j∈J

{fj}+ k(min
j∈J

{fj})

< (k + 1)(min
j∈J

{fj})
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Since p(k) is a setup cost with k opened facilities, k(min
j∈J

{fj}) ≤ p(k) ≤ k(max
j∈J

{fj}).

We have that p(k) < k(max
j∈J

{fj}) ≤ p(k + 1).

Hence, p(k) < p(k + 1), ∀ k ∈ {1, 2, . . . , r − 1}. This implies that the setup cost

function p(k), k ∈ {1, 2, . . . , r − 1} is an increasing function.

It is easy to see that, the condition to guarantee that the characteristic of setup cost

function depending on the amount of the prospected facilities is an increasing function if

and only if the setup cost of each facility are similar. The problem in accordance with

such conditions is often a problem finding location for the same type of facilities in the

same area. For example, the problem to find the location for the ATM in the Thonburi

area of Bangkok. The setup cost of this problem is a rental. This rental for each area

are the same prize. Then this problem has an increasing setup cost function. In the next

section the proposition to guarantee that the characteristic of transportation cost function

depending on the amount of the prospected facilities is a non-increasing function.

Let q(k) be a transportation cost with k opened facilities where k ∈ {1, 2, . . . ,m}.

Given that m represents a maximum number of opened facilities, q(k) is not unique and

q(k) has the Cm
k functions of q(k),

q∗(k) would then be the minimum transportation cost with k opened facilities,

Yk = {j | yj = 1, ∀j ∈ J} would then be the set of k opened facilities of the feasible

solution,

Y ∗
k = {j | y∗j = 1, ∀j ∈ J} would then be the set of k opened facilities of the optimal

solution.

Proposition 3.3.2. The minimum transportation cost function with k opened facilities,

q∗(k), k ∈ {1, 2, . . . ,m}, is a non-increasing function.

Proof. Let q(k), q∗(k), Yk and Y ∗
k be defined as above.

Since q∗(k) is the minimum transportation cost with k opened facilities, q∗(k) ≤

q(k).

Considering Y ∗
k , there exists Yk+1 such that Y ∗

k ⊂ Yk+1.

Therefore, there exists q(k + 1) ≤ q∗(k)

Since q∗(k + 1) ≤ q(k + 1), it implies that q∗(k + 1) ≤ q∗(k). Therefore, q∗(k) is a

non-increasing function.

In general, the facility location problem is according to the proposition 3.3.2. The

initial idea for solving facility location is considered the setup cost function depending on

the amount of the prospected facilities is an increasing function and transportation cost
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function depending on the amount of the prospected facilities is a non-increasing function.

If the facility location problem is according to the proposition 3.31 and 3.3.2, the solution

is obtained from the proposed method convert to the local optimal. To guarantee that,

the prove conditions is shown in the next section.

Proposition 3.3.3. The total cost obtained by the proposed method is a local minimum.

Proof. Recall that α and β are the minimum and maximum number of opened facilities.

Let [αi, βi] be the searching interval at i iteration.

Let C∗(α) be the minimum total cost with α opened facilities.

Thus, the proposed method will terminate if βi = αi + 1.

From the method, αi is updated if and only if C∗(αi+1) < C∗(αi), and βi is updated

if and only if C∗(βi) ≤ C∗(βi + 1).

Hence, at the final step C∗(βi) = C∗(αi + 1) < C∗(αi) = C∗(βi − 1) and C∗(βi) ≤

C∗(βi + 1). Therefore, the total cost obtained from the proposed method is C∗(βi) and

that cost is a local minimum.

If αi in all iterations are not updated (αi = α) at all iterations, we have determined

that at the final step, C∗(αi) ≤ C∗(αi + 1) = C∗(βi) ≤ C∗(βi + 1). Therefore, the total

cost obtained from the proposed method, C∗(αi), is a local minimum.

Proposition 3.3.4. If the setup cost with k opened facilities, p∗(k), is an increasing

convex function and the minimum transportation cost with k opened facilities, q∗(k), is a

convex function where k ∈ {1, 2, . . . ,m}, the solution obtained by the proposed method is

a global minimum.

Proof. Since p∗(k) and q∗(k) are convex functions, the minimum total cost C∗(k) = p∗(k)+

q∗(k) is also a convex function. From Theorem 2.1.5 therefore, a local minimum is a global

minimum. From Proposition 3, our method always converges to a local minimum. This

implies that the obtained solution is also a global minimum.
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