## CONTENTS

|                                               | Page |
|-----------------------------------------------|------|
| Acknowledgement                               | iii  |
| Abstract in Thai                              | iv   |
| Abstract in English                           | vi   |
| List of Tables                                | x    |
| List of Figures                               | xi   |
| Statement of Originality in Thai              | xiii |
| Statement of Originality in English           | xiv  |
| Chapter 1 Introduction                        | 1    |
| Chapter 2 Basic Concepts and Preliminaries    | 8    |
| 2.1 Basic Concepts                            | 8    |
| 2.2 Methods                                   | 15   |
| 2.3 Location Problems                         | 20   |
| Chapter 3 Main Results                        | 31   |
| 3.1 Problem Size Reduction                    | 31   |
| 3.2 Method for P-center Problem               | 36   |
| 3.3 Method for Facility Location Problem      | 38   |
| Chapter 4 Simulation Results and Case Studies | 46   |
| 4.1 Simulation Results                        | 46   |
| 4.2 Case Studies                              |      |
| Chapter 5 Conclusion and Discussion           | 69   |
| Bibliography                                  | 72   |
| Appendix                                      | 78   |

Curriculum Vitae 89



ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright<sup>©</sup> by Chiang Mai University All rights reserved

#### LIST OF TABLES

|            |                                                                                | Page  |
|------------|--------------------------------------------------------------------------------|-------|
|            | List of literature on covering, $p$ -center, $p$ -median and facility location | 90    |
| problems.  | 9/3/2/19                                                                       | 29    |
| Table 4.1  | Average CPU times of 100 random data sets in the uncapacitated case. $$        | 48    |
| Table 4.2  | The percentage gap between solutions found and the optimal solution in         |       |
| the uncap  | acitated case.                                                                 | 48    |
| Table 4.3  | Average CPU times of 100 random data sets in the capacitated case.             | 49    |
| Table 4.4  | The percentage gap between solutions found and the optimal solution in         |       |
| the capaci | itated case.                                                                   | 49    |
| Table 4.5  | The optimal solution for the municipal waste system in Chiang Mai city.        | 60    |
| Table 4.6  | Solution for municipal waste system in Chiang Mai city.                        | 67    |
| Table 4.7  | Solution for agricultural waste system in Chiang Mai city.                     | 67    |
| Table 4.8  | Solution for municipal waste system in 5 provinces of Northern Thailand        | . 68  |
| Table 4.9  | Solution for agricultural waste system in 5 provinces of Northern Thailand     | l. 68 |
|            | NY NABEL A                                                                     |       |
|            | MAI LINIVERSITA                                                                |       |
|            | ALTERIALER                                                                     |       |
|            | UNIV                                                                           |       |

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright<sup>©</sup> by Chiang Mai University All rights reserved

## LIST OF FIGURES

| Page                                                                                       | e |
|--------------------------------------------------------------------------------------------|---|
| Figure 2.1 Illustration of the search space of the branch and bound algorithm.             | 9 |
| Figure 3.1 Characteristic of the total cost function.                                      | 0 |
| Figure 4.1 Total cost obtained from all 3 methods in terms of the problems with            |   |
| balanced cost. 5                                                                           | 1 |
| Figure 4.2 Total cost obtained from all 3 methods on problems with setup costs             |   |
| higher than transportation costs.                                                          | 2 |
| Figure 4.3 Total cost obtained from all 3 methods on problems with transportation          |   |
| costs higher than setup costs.                                                             | 2 |
| Figure 4.4 Total cost obtained from all 3 methods and CPLEX on problems with               |   |
| balanced costs. 55                                                                         | 3 |
| Figure 4.5 Total cost obtained from all 3 methods and CPLEX on problems with               |   |
| setup cost higher than transportation costs.                                               | 3 |
| Figure 4.6 Total cost obtained from all 3 methods and CPLEX on problems with               |   |
| transportation cost higher than setup costs.                                               | 4 |
| Figure 4.7 Original supply sites with 432 node-link in Chiang Mai city, Thailand.          | 5 |
| Figure 4.8 The 432 node network optimal solution before size reduction. a) 3               |   |
| facilities and client groups b) client groups of facility 1 c) client groups of facility 2 |   |
| d) client groups of facility 3.                                                            | 6 |
| Figure 4.9 345 supply sites with nodes of degree 1 removed in Chiang Mai city,             |   |
| Thailand. 5'                                                                               | 7 |
| Figure 4.10 200 supply sites with nodes of degree 1 and 2 removed in Chiang Mai            |   |
| city, Thailand.                                                                            | 8 |
| Figure 4.11 The 345 node network optimal solution after size reduction with nodes          | - |
| of degree 1 removed. a) 3 facilities and client groups b) client groups of facility 1 c)   |   |
| client groups of facility 2 d) client groups of facility 3.                                | 9 |

| Figure 4.12 The 200 node network optimal solution after size reduction with nodes         |          |
|-------------------------------------------------------------------------------------------|----------|
| of degree 1 and 2 removed. a) 3 facilities and client groups b) client groups of facility |          |
| 1 c) client groups of facility 2 d) client groups of facility 3.                          | 60       |
| Figure 4.13 The 345 node network solution of municipal waste system in Chiang             |          |
| Mai city obtain from Method A. a) 3 facilities and client groups b) client groups of      |          |
| facility 1 c) client groups of facility 2 d) client groups of facility 3.                 | 62       |
| Figure 4.14 The 345 node network solution of municipal waste system in Chiang             |          |
| Mai city obtain from Method B. a) 3 facilities and client groups. b) client groups of     |          |
| facility 1. c) client groups of facility 2. d) client groups of facility 3.               | 63       |
| Figure 4.15 The 345 node network solution of municipal waste system in Chiang             |          |
| Mai city obtain from Method C. a) 3 facilities and client groups. b) client groups of     |          |
| facility 1. c) client groups of facility 2. d) client groups of facility 3.               | 64       |
| Figure 4.16 The 345 node network solution obtain of municipal waste system in             |          |
| Chiang Mai city from AIMMS. a) 3 facilities and client groups. b) client groups of        |          |
| facility 1. c) client groups of facility 2. d) client groups of facility 3.               | 65       |
| Figure 4.17 The 345 node network solution of agricultural waste system in Chiang          |          |
| Mai city. a) network solution obtained from Method A. b) network solution obtained        |          |
| from Method B. c) network solution obtained from Method 3. d) network solution            |          |
| obtained from AIMMS.                                                                      | 66       |
|                                                                                           | 0.0      |
| Figure A.1 Flow chart of the size reduction method.                                       | 82       |
| Figure A.2 Flow chart of facility location method.                                        | 83       |
| Figure A.3 Flow chart of Method A.                                                        | 84       |
| Figure A.4 Flow chart of Method B (p-median).                                             | 85       |
| Figure A.5 Flow chart of Method C (p-center).                                             | 86       |
| Figure A.6 Flow chart of maximal client coverage method.                                  | 87<br>88 |
| Figure A.7 Flow chart of method for solving knapsack problem.                             | 88       |
| Copyright <sup>©</sup> by Chiang Mai University                                           |          |
| copyright by chiang man chinecistry                                                       |          |

# ข้อความแห่งการริเริ่ม

ปัญหาโลเคชันเป็นปัญหาที่มีประโยชน์มากและสามารถประยุกต์ใช้งานในหลาย ๆ ด้าน เช่น การส่งผ่านสัญญาณ การสื่อสาร และการขนส่ง เป็นต้น ปัญหานี้จึงเป็นปัญหาที่น่าสนใจที่จะ ทำการศึกษา โดยทั่วไปปัญหาโลเคชันจัดเป็นปัญหา เอ็นพี-แบบยาก ดังนั้นระเบียบวิธีสำหรับ แก้ปัญหาโลเคชันได้ถูกสร้างและนำเสนอในวิทยานิพนธ์ฉบับนี้



ลิชสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright<sup>©</sup> by Chiang Mai University All rights reserved

#### STATEMENT OF ORIGINALITY

The location problem has been useful in various applications such as signal transmission, communication and transportation, etc. Thus, there is value and interest in studying this. In general, those problems are considered NP-hard problem. Therefore, this thesis has been created to present the algorithm method to solve the problems.

