
CHAPTER 2

Basic Concepts and Preliminaries

In this chapter, we recall and give some useful definitions, and results which

will be used in the later chapter.

2.1 System of Linear Equations

In this part, we present the necessary definitions, examples and theorems

concerning system of linear equations. A linear equation in variables x1, x2, ..., xn of

equation that can be written in the from

a1x1 + a2x2 + · · ·+ anxn = b

where b and the coefficients a1, a2, ..., an are real numbers.

A system of linear equations is a collection of one or more linear equations involving

the same variables say x1, x2, ..., xn such as

6x1 + 5x2 = −6

−4x1 + 2x2 = 3.

A solution of the system n variables is a list (s1, s2, ..., sn) of numbers that makes

each equation a true statement when the values s1, s2, ..., sn are substituted for x1, x2, ..., xn

respectively. We call (s1, s2, ..., sn) is an ordered n-tuple. With this notation it is under-

stood that all variables appear in the same order in each equation. If n = 2, then n-tuple

is called an ordered pair, and if n = 3, then it is called an ordered triple.

Linear system in two unknowns arise in connection with intersections of lines. For

example, consider the linear system

a1x1 + a2x2 = c1

b1x1 + b2x2 = c2

in which the graphs of the equations are line in the xy-plane. Each solution of this system

corresponds to a point of intersection of the lines, so there are three possibilities:

1. No solution, or

2. Exactly one solution, or
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3. Infinitely many solutions.

In general, a system of linear equations is said to be consistent if it has either one

solution or infinitely many solutions; a system is inconsistent if it has no solution.

Matrix Notation

In order to solve a system of linear equations, we usually write it into a matrix form.

Given the system

x1 − 2x2 + x3 = 0

2x1 − x2 + 4x3 = 1

3x1 − x2 − 5x3 = 2

which the coefficients of each variable aligned in columns the matrix
1 −2 1

2 −1 4

3 −1 −5


is called the coefficient matrix of the system and

1 −2 1 0

2 −1 4 1

3 −1 −5 2


is called the augmented matrix of the system. An augmented matrix of a system consists

of the coefficient matrix with and added column containing the constants from the right

sides of the equations. The size of a matrix tells how many rows and columns it has.

The augmented matrix above has 3 rows and 4 columns and is called a 3 × 4 (read 3 by

4) matrix. If m and n are positive integers, an m × n matrix is a rectangular array of

numbers with m rows and n columns.

Normally, for solving a system of linear equations, we use algebraic operations as

follows:

1. Multiply an equation through by a nonzero constant.

2. Interchange two equations.

3. Add a constant times one equation to another.

A system of linear equations can be written in the matrix form, AX = B we call

[A|B] an augmented matrix. In order to solve the equation AX = B, we usually use the

following three operations on augmented matrix:

1. Multiply a row through by a nonzero constant.
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2. Interchange two rows.

3. Add a constant times one row to another.

They are called elementary row operations on a matrix.

Definition 2.1.1. [3] A rectangular matrix is in echelon form (or row echelon form) if it

has the following three properties:

1. All nonzero rows are above any rows of all zeros.

2. Each leading entry of a row is in a column to the right of the leading entry of

the row above it.

3. All entries in a column below a leading entry are zeros.

If a matrix in echelon form satisfies the following additional conditions, then it is in

reduced echelon form (or reduced row echelon form):

4. The leading entry in each nonzero row is 1.

5. Each leading 1 is the only nonzero entry in its column.

Matrix multiplication

Definition 2.1.2. [4] If A is an m×n matrix and B is an n× r matrix, then the product

C = AB is an m× r matrix. The (i, j)-entry of the product is computed as follows:

cij = ai1b1j + ai2b2j + · · ·+ ainbnj =

n∑
k=1

aikbkj .

Example 2.1.1. Let A =

 1 2

1 4

 and B =

 2 −1 4

1 3 2

. Find AB.

Solution. AB =

1 2

1 4

 2 −1 4

1 3 2

 =

1(2) + 2(1) 1(−1) + 2(3) 1(4) + 2(2)

1(2) + 4(1) 1(−1) + 4(3) 1(4) + 4(2)


=

4 5 8

6 11 12

 .

Determinant

Let A =

a11 a12

a21 a22

 be a 2× 2 matrix. We define the determinant of A by

detA = a11a22 − a12a21.

Definition 2.1.3. [1] Let A = [aij ] be an n× n matrix. Let Mij be the (n− 1)× (n− 1)

submatrix of A obtained by deleting the ith row and jth column of A. The determinant

det(Mij) is called the minor of aij . The cofactor Cij of aij is defined as

Cij = (−1)i+jdetMij .
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Theorem 2.1.2. [4] The Laplace Expansion Theorem

The determinant of n× n matrix A = [aij ], where n ≥ 2, can be computed as

detA = ai1Ci1 + ai2Ci2 + · · ·+ ainCin =

n∑
j=1

aijCij

(which is the cofactor expansion along the ith row) and also as

detA = a1jC1j + a2jC2j + · · ·+ anjCnj =

n∑
i=1

aijCij

(which is the cofactor expansion along the jth column).

Definition 2.1.4. A square matrix is called upper (lower) triangular if all its elements

below (above) the main diagonal are zero.

Theorem 2.1.3. [1] The determinant of a triangular matrix is the product of the entries

on its main diagonal. Specifically, if A = [aij ] is n× n triangular matrix, then

detA = a11a22 · · · ann.

Properties of determinants [4] : Let A be a square matrix.

1. If a multiple of one row of A is added to another row to produce a matrix B, then

detB = detA.

2. If two row of A are interchanged to produce B, then detB = −detA.

3. If one row of A is multiplied by k to produce B, then detB = kdetA.

Inverse of Matrix

Definition 2.1.5. [1] An n × n matrix A is called nonsingular (or invertible) if there

exists an n× n matrix B such that

AB = BA = In.

The matrix B is called an inverse of A. If there exists no such matrix B, then A is called

nonsingular (or noninvertible).

We shall now write the inverse of A, if it exist, as A−1. Thus

AA−1 = A−1A = In.
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Example 2.1.4. If A =

1 2

4 7

 and C =

−7 2

4 −1

, then
AC =

1 2

4 7

−7 2

4 −1

 =

1 0

0 1

 and CA =

−7 2

4 −1

1 2

4 7

 =

1 0

0 1

.
Thus C = A−1.

Definition 2.1.6. [1] Let A = [aij ] be an n×n matrix and let B be a matrix of cofactors

of A. Then the adjoint of A, written adjA, is the transpose of n× n matrix B, that is

adjA = Bt =


C11 · · · Cn1

...
. . .

...

C1n · · · Cnn

 .

Theorem 2.1.5. [4] If A is an invertible n×n matrix, then the system of linear equations

given by AX = B has unique solution X = A−1B for any matrix B with size n× 1.

Theorem 2.1.6. [Gauss-Jordan Elimination] If augmented [A|B] is row reduce to [I|P ],

then P is the solution of the equation AX = B.

Elementary Matrices

Definition 2.1.7. [4] An elementary matrix is any matrix that can be obtained by per-

forming an elementary row operation on an identity matrix.

Example 2.1.7. Elementary matrices and Row operations: Listed below are four ele-

mentary matrices and the operations that produce them.

1 0

0 −7

 Multiply the second row of I2 by −7.
0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

 Interchange the first and second rows of I4.


1 0 0

0 1 0

0 2 1

 Add 2 times the second row of I3 to the third row.


1 0 0

0 1 0

0 0 −1

 Multiply the third row of I3 by −1.
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Theorem 2.1.8. [4] Let E be the elementary matrix obtained by performing an elementary

row operation on In. If the same elementary row operation is performed on an n×r matrix

A, the result is the same as the matrix EA.

Theorem 2.1.9. [4] Let A be a square matrix. If a sequence of elementary row operations

reduces A to I, then the same sequence of elementary row operations transforms I into

A−1.

Definition 2.1.8. [2] The number of nonzero rows in the row-echelon form of a matrix

is known as its rank.

Theorem 2.1.10. [2] Consider the nonhomogeneous equations AX = B where A is m×n.

One of the following possibilities must hold:

(a). If the rank of the augmented matrix [A|B] is greater than the rank of A, then the

system of equations is inconsistent.

(b). If the rank of [A|B] is equal to the rank of A, this begin equal to the number of

unknowns, then the equations have a unique solution.

(c). If the rank of [A|B] is equal to the rank of A, this begin less than the number of

unknows, then the equations have an infinity of solutions.

Computation of A−1[6]

To calculate the inverse of a nonsingular size n × n matrix A, we can proceed as

follows:

Step 1. From the size n× 2n matrix [A|I].

Step 2. Use elementary row operations to transform [A|I] to the form [I|B].

In this final form, B = A−1.

Example 2.1.11. Find the inverse of the matrix


1 2 3

2 5 3

1 0 8

 .

Solution.


1 2 3 1 0 0

2 5 3 0 1 0

1 0 8 0 0 1

 ∼


1 2 3 1 0 0

0 1 −3 −2 1 0

0 −2 5 −1 0 1

 r2 := r2 − 2r1

r3 := r3 − r1

∼


1 2 3 1 0 0

0 1 −3 −2 1 0

0 0 −1 −5 2 1


r3 := r3 + 2r2
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∼


1 2 3 1 0 0

0 1 −3 −2 1 0

0 0 1 5 −2 −1


r3 := (−1)r3

∼


1 2 0 −14 6 3

0 1 0 13 −5 −3

0 0 1 5 −2 −1


r1 := r1 − 3r3

r2 := r2 + 3r3

∼


1 0 0 −40 16 9

0 1 0 13 −5 −3

0 0 1 5 −2 −1


r1 := r1 − 2r2

Thus A−1 =


−40 16 9

13 −5 −3

5 −2 −1

.

2.2 Solving System of Linear Equations

2.2.1 Gaussian Elimination

Row-reduce the coefficient matrix to row echelon form, solve for the last unknown,

and then use back substitution to solve for the other unknown.

Example 2.2.1. Find the solution of linear system

x+ y + z = 2

2x− 3y + 4z = −1

x+ 5y + 3z = 6.

Solution. The augmented matrix is


1 1 1 2

2 −3 4 −1

1 5 3 6

 .

Row-reduce the coefficient matrix to row echelon form.


1 1 1 2

2 −3 4 −1

1 5 3 6

 ∼


1 1 1 2

0 −5 2 −5

0 4 2 4

 r2 := r2 − 2r1

r3 := r3 − r1
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∼


1 1 1 2

0 −5 2 −5

0 0
18

5
0


r3 := r3 +

4

5
r2

.

Then we have

18

5
z = 0 (2.1)

−5y + 2z = −5 (2.2)

x+ y + z = 2 (2.3)

From (2.1) we have z = 0.

Substitute z = 0 in (2.2), we have y = 1.

Substitute z = 0 and y = 1 in (2.3), we have x = 1.

Hence the solution are x = 1, y = 1 and z = 0.

2.2.2 Gauss-Jordan Elimination

Row-reduce the coefficient matrix to reduced row echelon form.

Example 2.2.2. Find the solutions of linear system

2x+ y = 7

x+ 2y = 8.

Solution. The augmented matrix is

 2 1 7

1 2 8

 .

Row-reduce the coefficient matrix to reduced row echelon form.

 2 1 7

1 2 8

 ∼

 1 1
2

7
2

1 2 8

 r1 :=
1
2r1

∼

 1 1
2

7
2

0 3
2

9
2


r2 := r2 − r1

∼

 1 1
2

7
2

0 1 3


r2 :=

2
3r2

∼

 1 0 2

0 1 3

 r1 := r1 − 1
2r2 .

Hence x = 2 and y = 3.
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2.2.3 Using X = A−1B

By Theorem 2.1.5 if A is an invertible n× n matrix, then for each n× 1 matrix B,

the system of equation AX = B has exactly one solution, namely, X = A−1B.

Example 2.2.3. Find the solutions of linear system

x1 + 3x2 = 8

x1 − 2x2 = 3.

Solution. From the linear system we have

1 3

1 −2

x1
x2

 =

8
3

 .

We know that A =

1 3

1 −2

 , X =

x1
x2

 , B =

8
3

.
First, we find A−1 by Row-reduce A to In.

Consider

 1 3 1 0

1 2 0 1

 ∼

 1 3 1 0

0 −5 −1 1


r2 := r2 − r1

∼

 1 3 1 0

0 1 1
5 −1

5


r2 := r2 − 1

5r2

∼

 1 0 2
5

3
5

0 1 1
5 −1

5

 r1 := r1 − 3r2
.

Then we have A−1 =

2
5

3
5

1
5 −1

5

.
Since X = A−1B, x1

x2

 =

2
5

3
5

1
5 −1

5

8
3


x1
x2

 =

5
1

 .

Hence x1 = 5 and x2 = 1.
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2.2.4 Cramer’s rule

Let [1]

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

...
...

...

an1x1 + an2x2 + · · ·+ annxn = bn

be a linear system of n equations in n unknowns and let A = [aij ] be a coefficient matrix

so that we can write the given system as AX = B, where

B =


b1

b2
...

bn

 .

If detA ̸= 0, then the system has unique solution. This solution is

x1 =
detA1

detA
, x2 =

detA2

detA
, · · · , xn =

detAn

detA
,

where Ai is the matrix obtained by replacing the ith column of A by B.

Example 2.2.4. Find the solutions of linear system

x+ y + 2z = 9

2x+ 4y − 3z = 1

3x+ 6y − 5z = 0.

Solution. From the linear system we have


1 1 2

2 4 −3

3 6 −5



x

y

z

 =


9

1

0


We know that

A =


1 1 2

2 4 −3

3 6 −5

 , X =


x

y

z

 , B =


9

1

0

 .

First, we find detA, detA1, detA2, detA3.

detA =

∣∣∣∣∣∣∣∣∣
1 1 2

2 4 −3

3 6 −5

∣∣∣∣∣∣∣∣∣ = −1, detA1 =

∣∣∣∣∣∣∣∣∣
9 1 2

1 4 −3

0 6 −5

∣∣∣∣∣∣∣∣∣ = −1,
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detA2 =

∣∣∣∣∣∣∣∣∣
1 9 2

2 1 −3

3 0 −5

∣∣∣∣∣∣∣∣∣ = −2, detA3 =

∣∣∣∣∣∣∣∣∣
1 1 9

2 4 1

3 6 0

∣∣∣∣∣∣∣∣∣ = −3.

Then the solutions are

x =
detA1

detA
=

−1

−1
= 1, y =

detA2

detA
=

−2

−1
= 2, z =

detA3

detA
=

−3

−1
= 3.

There for x = 1, y = 2, z = 3.

2.2.5 LU-Decomposition

Definition 2.2.1. A factorization of a square matrix A as A = LU , where L is lower

triangular and U is upper triangular is called an LU -decomposition of A.

Suppose A can be reduced to an echelon form U using only row replacements that

add a multiple of one row to another row below it. In this case, there exist unit lower

triangular elementary matrices E1, ..., Ep such that

Ep · · ·E2E1A = U.

Since elementary matrices are invertible, we can solve for A as

A = E−1
1 E−1

2 · · ·E−1
p U.

or more briefly as

A = LU,

where

L = E−1
1 E−1

2 · · ·E−1
p .

The Method of LU-Decomposition

Step 1. Rewrite the system AX = B as

LUX = B. (2.4)

Find U and L from Ep · · ·E2E1A = U and L = E−1
1 E−1

2 · · ·E−1
p .

Step 2. Define a new n× 1 matrix Y by

UX = Y. (2.5)

Use (2.5) to rewrite (2.4) as LY = B and solve this system for Y .

Step 3. Substitute Y in (2.5) and solve for X.
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Example 2.2.5. Find the solution of linear system

3x1 + 2x2 + x3 = 7

x1 − 2x2 + 2x3 = −3

4x1 − x2 + 3x3 = 2.

Solution. From the linear system, we can write


3 2 1

1 −2 2

4 −1 3



x1

x2

x3

 =


7

−3

2

 .

Let

A =


3 2 1

1 −2 2

4 −1 3

 , X =


x1

x2

x3

 , B =


7

−3

2

 .

First, we find U by row reducing of A,

A =


3 2 1

1 −2 2

4 −1 3

 ∼


3 2 1

0 −8
3

5
3

0 −11
3

5
3

 r2 := r2 − 1
3r1

r3 := r3 − 4
3r1

∼


3 2 1

0 −8
3

5
3

0 0 −5
8


r3 := r3 − 11

8 r2

= U.

By row operation we have E1, E2, E3 that is :

E1 =


1 0 0

−1
3 1 0

0 0 1

 , E2 =


1 0 0

0 1 0

−4
3 0 1

 , E3 =


1 0 0

0 1 0

0 −11
8 1

 .

Then E−1
1 , E−1

2 , E−1
3 are

E−1
1 =


1 0 0

1
3 1 0

0 0 1

 , E−1
2 =


1 0 0

0 1 0

4
3 0 1

 , E−1
3 =


1 0 0

0 1 0

0 11
8 1

 .
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We can find L by E−1
1 , E−1

2 , E−1
3 so that

L =


1 0 0

1
3 1 0

0 0 1



1 0 0

0 1 0

4
3 0 1



1 0 0

0 1 0

0 11
8 1

 =


1 0 0

1
3 1 0

4
3

11
8 1

 .

So A = LU , we get 
3 2 1

1 −2 2

4 −1 3

 =


1 0 0

1
3 1 0

4
3

11
8 1




3 2 1

0 −8
3

5
3

0 0 −5
8

 .

Second, from AX = B, we have that LUX = B.

define a new n× 1 matrix Y by UX = Y , then LY = B that is
1 0 0

1
3 1 0

4
3

11
8 1



y1

y2

y3

 =


7

−3

2


So we have

y1 = 7

1

3
y1 + y2 = −3

4

3
y1 +

11

8
y2 + y3 = 2.

Solve this system for Y we have y1 = 7, y2 = −16
3 , y3 = 0.

Finally, substitute Y in UX = Y and solve for X, then


3 2 1

0 −8
3

5
3

0 0 −5
8



x1

x2

x3

 =


7

−16
3

0

 .

So we have

3x1 + 2x2 + x3 = 7

−8

3
x2 +

5

3
x3 = −16

3

−5

8
x3 = 0.

Solve this system for X we have x1 = 1, x2 = 2, x3 = 0.

Hence the solutions of the system are x1 = 1, x2 = 2, x3 = 0.
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Algorithm for finding A−1

In 2014, Jafree et al.[5] introduced an algorithm for finding A−1 by constructing

the dictionary of matrix as follows : For matrix A of size n× n, we define the dictionary

matrix D(A) by

x1 x2 x3 · · · xn

D(A) =

y1

y2
...

yn


a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n
...

...
...

. . .
...

an1 an2 an3 · · · ann

 .

Step 1. Set H := {1, 2, ..., n}, B := {y1, y2, ..., yn}, N := {x1, x2, ..., xn}. Construct dictio-

nary of the matrix A, i.e. D(A).

Step 2. Set P := {p : yp ∈ B}.

Step 3. If P = ∅, goto Step 6, otherwise, choose p ∈ P and

let L := {k : apk ̸= 0, xk ∈ N}.

Step 4. If L = ∅, then inverse does not exist and exit. Otherwise, for any p ∈ P, k ∈ L

taking

apj :=
apj
apk

, ∀j ∈ H − {k},

mi := − aik
apk

, ∀i ∈ H − {p},

aik := mi, ∀i ∈ H − {p},

aij := aij + apj ×mi, ∀i ∈ H − {p},∀j ∈ H − {k},

apk :=
1

apk
.

Step 5. B := (B ∪ {xk})− {yp}, N := (N − {xk}) ∪ {yp}. Update D(A) and goto Step 2.

Step 6. A−1 = [aij ], xi ∈ B, yj ∈ N for all i, j ∈ H and exit.

Consider Algorithm for finding A−1 and finding A−1 by row operaton [A|I] to [I|A−1]

Algorithm for finding A−1

We have

x1 x2 x3 · · · xn

D(A) =

y1

y2
...

yn


a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n
...

...
...

. . .
...

an1 an2 an3 · · · ann

 .
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If we choose p = 1, k = 1 such that a11 ̸= 0. By step 4, we get

y1 x2 x3 · · · xn

D(A) =

x1

y2
...

yn


1

a11
a12
a11

a13
a11

· · · a1n
a11

−a21
a11

a22 − a21
a11

a12 a23 − a31
a11

a13 · · · a2n − a21
a11

a1n
...

...
...

. . .
...

−an1
a11

an2 − an1
a11

a12 an3 − an1
a11

a13 · · · ann − an1
a11

a1n

 .

Finding A−1 by row operaton [A|I] to [I|A−1].

If we use the row operations for finding A−1 in Step 4, we obtain the following :

[A|I] =


a11 a12 a13 · · · a1n 1 0 0 · · · 0

a21 a22 a23 · · · a2n 0 1 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...

an1 an2 an3 · · · ann 0 0 0 · · · 1



∼


1 a12

a11
a13
a11

· · · a1n
a11

1
a11

0 0 · · · 0

a21 a22 a23 · · · a2n 0 1 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...

an1 an2 an3 · · · ann 0 0 0 · · · 1


r1 :=

1
a11

r1

∼


1 a12

a11
· · · a1n

a11
1

a11
0 0 · · · 0

0 a22 − a21
a12
a11

· · · a2n − a21
a1n
a11

−a21
a11

1 0 · · · 0
...

...
. . .

...
...

...
...

. . .
...

0 an2 − an1
a12
a11

· · · ann − an1
a1n
a11

−an1
a11

0 0 · · · 1


r2 := r2 − a21r1

rn := rn − an1r1.

We note that the first column of D(A) is the same as the (n+1)th column of [A|I].

After the nth iteration, we obtain [A|I] ∼ [I|A−1] and D(A) = A−1.
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Example 2.2.6. Find the inverse of A =


1 3 −3 2

1 3 1 4

0 1 3 −1

4 1 3 5

.
Solution. Step 1. Set D(A) by

x1 x2 x3 x4

D(A) =

y1

y2

y3

y4


1 3 −3 2

1 3 1 4

0 1 3 −1

4 1 3 5


and H := {1, 2, 3, 4}, N := {x1, x2, x3, x4}, B := {y1, y2, y3, y4}.

Iteration 1 :

Step 2. Set P := {1, 2, 3, 4}.

Step 3. Since P ̸= ∅, taking p = 1, we get L := {1, 2, 3, 4}.

Step 4. Since L ̸= ∅, taking k = 1, then

a12 :=
a12
a11

= 3, a13 :=
a13
a11

= −3, a14 :=
a14
a11

= 2,

m2 = −a21
a11

= −1, m3 = −a31
a11

= 0, m4 = −a41
a11

= −4,

a21 := m2 = −1, a31 := m3 = 0, a41 := m4 = −4,

a22 := a22 + a12m2 = 0, a23 := a23 + a13m2 = 4,

a24 := a24 + a14m2 = 2, a32 := a32 + a12m3 = 1,

a33 := a33 + a13m3 = 3, a34 := a34 + a14m3 = −1,

a42 := a42 + a12m4 = −11, a43 := a43 + a13m4 = 15,

a44 := a44 + a14m4 = −3, a11 :=
1

a11
= 1.

Step 5. B := (B ∪ {x1})− {y1} = {x1, y2, y3, y4},

N := (N − {x1}) ∪ {y1} = {y1, x2, x3, x4} and

y1 x2 x3 x4

D(A) =

x1

y2

y3

y4


1 3 −3 2

−1 0 4 2

0 1 3 −1

−4 −11 15 −3

 .

Iteration 2 :

Step 2. Set P = {2, 3, 4}.

Step 3. Since P ̸= ∅, taking p = 2, we get L = {3, 4}.
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Step 4. Since L ̸= ∅, taking k = 3, then

a21 :=
a21
a23

= −1
4 , a22 :=

a22
a23

= 0, a24 :=
a24
a23

= 1
2 ,

m1 = −a13
a23

= 3
4 , m3 = −a33

a23
= −3

4 , m4 = −a43
a23

= −15
4 ,

a13 := m1 =
3
4 , a33 := m3 = −3

4 , a43 := m4 = −15
4 ,

a11 := a11 + a21m1 =
1
4 , a12 := a12 + a22m1 = 3,

a14 := a14 + a24m1 =
7
2 , a31 := a31 + a21m3 =

3
4 ,

a32 := a32 + a22m3 = 1, a34 := a34 + a24m3 = −5
2 ,

a41 := a41 + a21m4 =
1
4 , a42 := a42 + a22m4 = −11,

a44 := a44 + a24m4 = −21
2 , a23 :=

1
a23

= 1
4 .

Step 5. B := (B ∪ {x3})− {y2} = {x1, x3, y3, y4},

N := (N − {x3}) ∪ {y2} = {y1, x2, y2, x4} and

y1 x2 y2 x4

D(A) =

x1

x3

y3

y4


1
4 3 3

4
7
2

−1
4 0 1

4
1
2

3
4 1 −3

4 −5
2

−1
4 −11 −15

4 −21
2

 .

Iteration 3 :

Step 2. Set P = {3, 4}.

Step 3. Since P ̸= ∅, taking p = 3, we get L = {2, 4}.

Step 4. Since L ̸= ∅, taking k = 2, then

a31 :=
a31
a32

= 3
4 , a33 :=

a33
a32

= −3
4 , a34 :=

a34
a32

= −5
2 ,

m1 = −a12
a32

= −3, m2 = −a22
a32

= 0, m4 = −a42
a32

= 11,

a12 := m1 = −3, a22 := m2 = 0, a42 := m4 = 11,

a11 := a11 + a31m1 = −2, a13 := a13 + a33m1 = 3,

a14 := a14 + a34m1 = 11, a21 := a21 + a31m2 = −1
4 ,

a23 := a23 + a33m2 =
1
4 , a24 := a24 + a34m2 =

1
2 ,

a41 := a41 + a31m4 = 8, a43 := a43 + a33m4 = −12,

a44 := a44 + a34m4 = −38, a32 :=
1

a32
= 1.

Step 5. B := (B ∪ {x2})− {y3} = {x1, x3, x2, y4},

N := (N − {x2}) ∪ {y3} = {y1, y3, y2, x4} and
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y1 y3 y2 x4

D(A) =

x1

x3

x2

y4


−2 −3 3 11

−1
4 0 1

4
1
2

3
4 1 −3

4 −5
2

8 11 −12 −38

 .

Iteration 4 :

Step 2. Set P = {4}.

Step 3. Since P ̸= ∅, taking p = 4, we get L = {4}.

Step 4. Since L ̸= ∅, taking k = 4, then

a41 :=
a41
a44

= − 4
19 , a42 :=

a42
a44

= −11
38 , a43 :=

a43
a44

= 6
19 ,

m1 = −a14
a44

= 11
38 , m2 = −a24

a44
= 1

76 , m3 = −a34
a44

= − 5
76 ,

a14 := m1 =
11
38 , a24 := m2 =

1
76 , a34 := m3 = − 5

76 ,

a11 := a11 + a41m1 =
6
19 , a12 := a12 + a42m1 =

7
38 ,

a13 := a13 + a43m1 = − 9
19 , a21 := a21 + a41m2 = −11

76 ,

a22 := a22 + a42m2 =
11
76 , a23 := a23 + a43m2 =

7
76 ,

a31 := a31 + a41m3 =
17
76 a32 := a32 + a42m3 =

21
76 ,

a33 := a33 + a43m3 =
3
76 , a44 :=

1
a44

= − 1
38 .

Step 5. B := (B ∪ {x4})− {y4} = {x1, x3, x2, x4},

N := (N − {x4}) ∪ {y4} = {y1, y3, y2, y4} and

y1 y3 y2 y4

D(A) =

x1

x3

x2

x4


6
19

7
38 − 9

19
11
38

−11
76

11
76

7
76

1
76

17
76

21
76

3
76 − 5

76

− 4
19 −11

38
6
19 − 1

38

 .

So P = ∅. Now place the elements with respect to indices of variables in B and N . For

example, here H = {1, 2, 3, 4}, so x1 ∈ B, y1 ∈ N , implies a11 = 6
19 . Also x1 ∈ B, y3 ∈ N

implies a13 =
7
38 . Similarly placing the remaining elements we get

y1 y2 y3 y4

D(A) =

x1

x2

x3

x4


6
19 − 9

19
7
38

11
38

17
76

3
76

21
76 − 5

76

−11
76

7
76

11
76

1
76

− 4
19

6
19 −11

38 − 1
38

 .
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Hence A−1 = D(A) =


6
19 − 9

19
7
38

11
38

17
76

3
76

21
76 − 5

76

−11
76

7
76

11
76

1
76

− 4
19

6
19 −11

38 − 1
38

 .

Example 2.2.7. Find the solution of linear systems

x+ 5y + z = 10

4x+ 3y + 4z = 6

2x+ y + 7z = −3.

Solution. From the linear system, we have


1 5 1

4 3 4

2 1 7



x

y

z

 =


10

6

−3

 .

Let

A =


1 5 1

4 3 4

2 1 7

 , X =


x

y

z

 , B =


10

6

−3

 .

First, we find A−1 by the algorithm of Jafree et al.

Step 1. Set D(A) by

x1 x2 x3

D(A) =

y1

y2

y3


1 5 1

4 3 4

2 1 7


and H := {1, 2, 3}, N := {x1, x2, x3}, B := {y1, y2, y3}.

Iteration 1 :

Step 2. Set P := {1, 2, 3}.

Step 3. Since P ̸= ∅, taking p = 1, we get L := {1, 2, 3}.

Step 4. Since L ̸= ∅, taking k = 1, then

a12 :=
a12
a11

= 5, a13 :=
a13
a11

= 1,

m2 = −a21
a11

= −4, m3 = −a31
a11

= −2,

a21 := m2 = −4, a31 := m3 = −2,

a22 := a22 + a12m2 = −17, a23 := a23 + a13m2 = 0,
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a32 := a32 + a12m3 = −9, a33 := a33 + a13m3 = 5, a11 :=
1

a11
= 1.

Step 5. B := (B ∪ {x1})− {y1} = {x1, y2, y3},

N := (N − {x1}) ∪ {y1} = {y1, x2, x3} and

y1 x2 x3

D(A) =

x1

y2

y3


1 5 1

−4 −17 0

−2 −9 5

 .

Iteration 2 :

Step 2. Set P := {2, 3}.

Step 3. Since P ̸= ∅, taking p = 2, we get L := {2, 3}.

Step 4. Since L ̸= ∅, taking k = 2, then

a21 :=
a21
a22

= 4
17 , a23 :=

a23
a22

= 0,

m1 = −a12
a22

= 5
17 , m3 = −a32

a22
= − 9

17 ,

a12 := m1 =
5
17 , a32 := m3 = − 9

17 ,

a11 := a11 + a21m1 = − 3
17 , a13 := a13 + a23m1 = 1,

a31 := a31 + a21m3 =
2
17 , a33 := a33 + a23m3 = 5, a22 :=

1
a22

= − 1
17 .

Step 5. B := (B ∪ {x2})− {y2} = {x1, x2, y3},

N := (N − {x2}) ∪ {y2} = {y1, y2, x3} and

y1 y2 x3

D(A) =

x1

x2

y3


− 3

17
5
17 1

4
17 − 1

17 0

2
17 − 9

17 5

 .

Iteration 3 :

Step 2. Set P = {3}.

Step 3. Since P ̸= ∅, taking p = 3, we get L = {3}.

Step 4. Since L ̸= ∅, taking k = 3, then

a31 :=
a31
a33

= 2
85 , a32 :=

a32
a33

= − 9
85 ,

m1 = −a13
a33

= −1
5 , m2 = −a23

a33
= 0,

a13 := m1 = −1
5 , a23 := m2 = 0,

a11 := a11 + a31m1 = −1
5 , a12 := a12 + a32m1 =

2
5 ,

a21 := a21 + a31m2 =
4
17 , a22 := a22 + a32m2 = − 1

17 , a33 :=
1

a33
= 1

5 .

Step 5. B := (B ∪ {x3})− {y3} = {x1, x2, x3},
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N := (N − {x3}) ∪ {y3} = {y1, y2, y3} and

y1 y2 y3

D(A) =

x1

x2

x3


−1

5
2
5 −1

5

4
17 − 1

17 0

2
85 − 9

85
1
5

 .

So P = ∅ .

Step 6. Inverse exits.

Hence

A−1 =


−1

5
2
5 −1

5

4
17 − 1

17 0

2
85 − 9

85
1
5

 .

Finally, we can find X by use A−1 that is X = A−1B.

So, we have


x

y

z

 =


−1

5
2
5 −1

5

4
17 − 1

17 0

2
85 − 9

85
1
5



10

6

−3

 =


1

2

−1

 .

Therefore the solution are x = 1, y = 2, z = −1.
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