CHAPTER 2

Preliminaries

In this chapter, we will briefly review some concepts and some results of Semigroup

Theory.

2.1 Elementary Concepts

In this thesis, the cardinality of a set X is denoted by |X| and X = A U B means

X is a disjoint union of A and B.

Definition 2.1.1. A semigroup is a pair (.5,-) in which S is a nonempty set and - is a
binary associative operation on S, i.e., the equation (z -y) -z = x - (y - z) holds for all

T,y,z € S.

Definition 2.1.2. Let S be a semigroup.
(1) If there exists an element 1 of S such that

xl=x=1z forallx €5,

then 1 is called an identity element of S and S is called a semigroup with identity or a
monoid.

(ii) If there exists an element 0 of S such that
20=0=0x forall z €S,

then 0 is called a zero element of S and S is called a semigroup with zero.
A nonempty subset 7" of a semigroup S is called a subsemigroup of S if xy € T for

all z,y € T.

Definition 2.1.3. An element e of a semigroup S is called an idempotent if e = 2.

The set of all idempotents in S is denoted by E(S).

Definition 2.1.4. Let S be a semigroup with identity 1. An element a € S is called a
unit of S if there exists b € S such that ab =1 = ba.



Lemma 2.1.1. Let S be a semigroup with identity 1 and
G={a€S|aisaunitof S}
Then G is a mazximal subgroup of S having 1 as the identity.

Proof. Let a,b € G. Then there exist a’,b’ € S such that aa’ =1 = a’a and bb' =1 = V'b.
So (ab)(V'a') =1 = (b/a')(ab), that is ab € G. Tt is clear that 1 € G, thus G is a monoid.
Let ¢ € G. Then dc =1 = ¢c for some ¢ € S, it follows that ¢ € G and ¢’ is the inverse
of ¢. Thus G is a subgroup of S. Let G’ be a subgroup of S containing 1 and d € G’. So
there exists d~! € G’ such that dd~' = 1 = d~'d, which implies that d is a unit of S and

thus G’ C G. Therefore, G is a maximal subgroup of S having 1 as the identity. O
We call the subgroup G of S (in Lemma 2.1.1) the group of units of S.

Definition 2.1.5. Let A # (). Then a relation R on A is an equivalence relation on A

provided R is:

reflezive: (a,a) € R for all a € A;
symmetric: if (a,b) € R, then (b,a) € R for all a,b € A;
transitive: if (a,b) € R and (b, ¢) € R, then (a,c) € R for all a.b,c € A.

Definition 2.1.6. Let S and T be semigroups. A mapping ¢ from S into 7' is called a

homomorphism if

(xy)p = (zp)(yp) forall z,y€S.

An injective homomorphism is called a monomorphism. A surjective homomorphism is
called an epimorphism, and if a homomorphism is bijective, then we call it an isomorphism.
If there exists an isomorphism from S onto T, then we say that S and T are isomorphic
and write S 2 T If ¢ is a homomorphism from S into S, then we call it an endomorphism

of S. An isomorphism from S onto § is called an automorphism of S.

2.2 Regularity of Semigroups

Definition 2.2.1. An element a of a semigroup S is called regular if there exists x in S
such that ¢ = axa. We denote the set of all regular elements of S by Reg 5.

An element a of a semigroup S is called left [right] reqular if there exists x in S such

that a = za? [a = a?z].



An element a of a semigroup S is called completely regular if there exists x in S such

that a = axa and ax = xa.

Theorem 2.2.1. Let S be a semigroup and a € S. Then a is completely reqular if and

only if a is left reqular and right reqular.

Proof. Assume that a is completely regular. Then a = axa and ax = za for some x € S.
So a = axa = za® and a = axa = a®z. Thus a is left regular and right regular.

Conversely, assume that a is left regular and right regular. Then there are x,y € S
such that a = za® and a = ay. So

2y)a = raa = a,

aya = (ra®)ya = z(a

ara = ax(a’y) = a(va?)y = aay = a,
and ay = za%y = za. Then

a(zay)a = (ara)ya = aya = a, and

a(zay) = (aza)y = ay = va = z(aya) = (zay)a.

Thus a is completely regular. O

2.3 Ideals and Green’s Relations

Definition 2.3.1. A nonempty subset A of a semigroup S is called a left ideal of S if
SA C A, a right ideal of S if AS C A, and an (two-sided) ideal of S if it is both a left
and a right ideal.

Note that if S has the identity, then A is an ideal of S if SAS is contained in A.
For any semigroup S, the notation S' means S itself if S contains the identity

element, otherwise, we let S' = S U {1} and define the binary operation on S* by

l-s=s=s-1forallse S, 1-1=1 and
a-b=abfor all a,be S.

Then S becomes a semigroup with the identity element 1.
For any element a in S,
the smallest left ideal of S containing a is Sa U {a} = S'a,
the smallest right ideal of S containing a is aS U {a} = aS*, and
the smallest ideal of S containing a is SaSUaS U Sa U {a} = StaS!,
which we call the principal left ideal, principal right ideal and principal ideal generated by

a, respectively.



In 1951, J. A. Green defined the equivalence relations £, R and J on S by the rules
that, for a,b € S,
alb if and only S'a = S'b,
aRb if and only aS' = bS!, and
aJb if and only S'aS!= S'bS1.

Then he defined the equivalence relations
H=LNRand D=LoR,

and obtained that the composition of £ and R is commutative. This follows that D is the
join LV R, that is, D is the smallest equivalence relation containing £ U R. Moreover,
HCLCDC Jand HC R C D C J. But, in commutative semigroups, we have
H=L=R=D=J. The relations £, R, H, D and J are called Green’s relations
on S. For each a € S5, we denote L—class, R—class, H—class, D—class and J—class

containing a by L, R,, Ha, D, and .J,, respectively.
Theorem 2.3.1. [5] Let S be a semigroup and a,b € S. Then
(1) aLb if and only if a = xb and b = ya for some x,y € S*.
(2) aRb if and only if a = bx and b = ay for some x,y € S'.
(3) aJb if and only if a = xby and b = uav for some x,y,u,v € St.
Corollary 2.3.2. [5] If e is an idempotent in a semigroup S, then H, is a subgroup of S.
Lemma 2.3.3. Let S be a semigroup with identity 1. Then Hy is the group of units of S.

Proof. To prove that for all elements in H; are units of S, let x € Hy. Then x € L1 N Ry
and hence S'z = S'1 and 25! = 1S'. Since 1 € S, we have Sz = S and 25 = S.
So yxr = 1 = xz for some y,z € S. Since y = yl = y(rz) = (yx)z = 1z = z, we get
yx = 1 = xy, which implies that x is a unit of S. Conversely, let a be a unit of S. Then
ab =1 = ba for some b € S. From ba =1, al = a and ab = 1, 1la = a, we have aL1 and

aR1. Thus aH1 and therefore a € H;. O

2.4 Transformation Semigroups

In this section, we list some known results, definitions and notations about trans-

formation semigroups that will be used throughout this thesis.



2.4.1 The Semigroups 7'(X)

Let X be a nonempty set and 7'(X) denote the set of all transformations from X into
itself. Then T(X) is a semigroup under the composition of maps, that is, if o, 8 € T'(X),
then aff € T'(X) is defined by

z(af) = (za)p for all x € X,

and it is called the full transformation semigroup on X. It is known that 7'(X) is a regular
semigroup, that is, for every a € T(X), a = af« for some § € T(X).

For a nonempty subset A of X, we let id4 denote the identity map on A. Then it
is clear that idx is the identity element of T'(X).

In 1955, C. G. Doss and D. D. Miller [3] described Green’s relations and group
‘H—classes of T'(X).

We note that for any o € T'(X), the symbol 7, denotes the decomposition of X

induced by the map «, namely
To = {za™! |z € Xa]}.

Theorem 2.4.1. [2] Let o, 5 € T(X). Then

(1) aLB if and only if Xao = Xf5.

(2) aRp if and only if T, = mg.

(3) aMpB if and only if Xao = X and mo = 7g.

(4) oDp if and only if | Xa| = | XB|.

(5) D=J.

A subset A of X is said to be a cross—section of 7, = {xa~!: x € Xa} if each

xza~! contains exactly one element of A.

Theorem 2.4.2. [2] Let € be an idempotent in T'(X). Then the group H—class H, is iso-

morphic to a permutation group G(A) for some A C X. In this case, A is a cross—section

of me.



2.4.2 Transformation Semigroups with Invariant Sets

For a fixed nonempty subset Y of X, let
SX,)Y)={aeT(X)|YalY}.

Then S(X,Y) is a semigroup of total transformations on X which leave the subset Y of
X invariant. Note that idx, the identity map on X, belong to S(X,Y). K. D. Magill
[6] introduced and studied the semigroup S(X,Y’). The author started in 1966 with
an arbitrary topological space X and let S(X) denote the semigroup of all continuous
functions from X into itself where the binary operation is composition, and let S(X,Y)
denote the subsemigroup of S(X) consisting of all continuous functions on X which leave
a given subset Y of X invariant, that is, map Y into itself. The author investigated the
question of when S(X,Y) is isomorphic to S(Z) for some space Z.

In 1975, J. S. V. Symons [8] considered a special case of Magill’s idea: namely, when
X is endowed with the discrete topology, that is, when S(X,Y) is simply the set of all
maps from X into X which leave Y C X invariant, and he described the automorphism
group of this semigroup.

Later in 2005, S. Nenthein, P. Youngkhong and Y. Kemprasit [7] characterized the
regular elements of S(X,Y) and gave a necessary and sufficient condition for S(X,Y)
to be a regular semigroup, and applied the result to determine the number of regular

elements in S(X,Y) for a finite set X. Then they gave the following results.
Theorem 2.4.3. [7| The following statements hold for the semigroup S(X,Y).
(1) Fora € S(X,Y), « is a reqular element of S(X,Y) if and only if XanNY =Y.
(2) S(X,Y) is reqular if and only if either Y = X or |Y| = 1.

Let Reg S(X,Y)={a € S(X,Y) | XanY =Ya}. Then Reg S(X,Y) is the set of
all regular elements of S(X,Y).

For positive numbers n and r with » < n, the number of partitions of {1,2,...,n}
into r blocks is called the stirling number of the second kind, denoted by S(n,r). It is
known that

r! 7

S(n,r) = — > (-1 (’) (r— i)

Then the number of maps from {1,2,...,n} onto {1,2,...,r} is 71S(n, ).



Theorem 2.4.4. [7] If |X| = n and |Y| = m, then the number of regular elements in
S(X,Y) is

m

3 (T)r!S(m, r)(n —m+ )",

r=1
In 2011, P. Honyam and J. Sanwong [4] gave a necessary and sufficient condition for

Reg S(X,Y) to be a regular subsemigroup of S(X,Y).
Lemma 2.4.5. [4] The following statements are equivalent:
(1) Reg S(X,Y) is a regular subsemigroup of S(X,Y).
(2) S(X,Y) is a reqular semigroup.
B) X=Y or|Y|=1.
Lemma 2.4.6. S(X,Y) has the zero element if and only if |Y| = 1.

Proof. Assume that |Y| = 1. Let Y = {a} and define

X
o & € S(X,Y).
a

Then aff = a = fa for all € S(X,Y) and therefore « is the zero element of S(X,Y).
Conversely, assume that S(X,Y) has the zero element, say o. Suppose that |Y| > 1.
Let b,c € Y be such that b # ¢ and define

X X
8= and v =
b c

Then 8,7 € S(X,Y) and B # ~. Since « is the zero element, we have a8 = a« = ay. But
6 =af and v = ay. Thus f = aff = o = ay = v which is a contradiction. Therefore,
s ¥ O

We note that for any a € S(X,Y) if Z C X, we will denote m,(Z) by
7a(Z) = {za™t |2 € Xan Z}.

Thus 74(Y) = {ya~t |y € XanY}.

For each partitions A and B of a set X, we say that A refines B if for each A € A
there exists B € B such that A C B.

Green’s relations on S(X,Y) were given by P. Honyam and J. Sanwong [4]. For

convenience, we present £, R and H relations here.



Theorem 2.4.7. [4] Let o, € S(X,Y). Then a = ~f for some v € S(X,Y) if and only
if Xa C XB and Ya C Y. Consequently, aLf if and only if Xa = XB and Ya =Y j.

Theorem 2.4.8. [4] Let o, € S(X,Y). Then a = (v for some v € S(X,Y) if and only
if g refines mo and w3(Y') refines mo(Y). Consequently, oRf if and only if 7o = 15 and
ma(Y) = mp(Y).

Corollary 2.4.9. [4] Let a, 8 € S(X,Y). Then oM if and only if Xaa = XB, Ya=Yf
and 7o = g, o (Y) = m3(Y).

We note that for any oo € S(X,Y), the notation a|z : Z — X where Z C X and
G(X) is a permutation group on X.

Recall that each group H—class of T'(X) is isomorphic to a permutation group G(A)
for some A C X (Theorem 2.4.2). Here, for the semigroup S(X,Y), the result depends
on the group which is denoted by G(A, B) and

G(A,B) ={p € G(A) | plp € G(B)}

where B C A for some A C X and B C Y. Then G(A, B) is a subgroup of the permutation
group G(A).

Theorem 2.4.10. [4] Let € be an idempotent in S(X,Y). Then the group H—class H is
isomorphic to G(A, B) for some A C X and B C YNA. In this case, A is a cross—section

of me.
Since S(X,Y) is a semigroup with identity idx, its group of units is as follows.

Lemma 2.4.11. [4] Let G(X,Y) = {a € G(X) | aly € G(Y)}. Then G(X,Y) is the
group of units of S(X,Y).

The following theorem is given by W. Choomanee, P. Honyam and J. Sanwong [1].
Theorem 2.4.12. [1] Let o € S(X,Y). Then the following statements are equivalent:
(1) « is left reqular;
(2) Xa= Xa? and Ya = Ya?;
(3) a? € L.
Theorem 2.4.13. [1] Let o € S(X,Y). Then the following statements are equivalent:
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(1) « is right reqular;
(2) To =72 and o (Y) = mo2(Y);
(3) a? € R,.

We note that for a € S(X,Y), the notation Y’ and X’ are for Yoo and Xa '\ Yo,

respectively.
Lemma 2.4.14. [1] Let a € S(X,Y). If Xa = Xa? is finite and Ya = Ya?, then
(1) (X\Y)aC(X\Y)UY’;
@) X' C X\Y'al;
3) Yo tnY'| =1 forally € Y';
4) |[Pa"*NX'| =1 forall 2’ € X'.
Lemma 2.4.15. [1] Let a« € S(X,Y). If 7o = w2 is finite and 7o (Y) = 7w,2(Y), then
(1) (X\YV)aC (X\Y)UuY’;
(2) X' C X\Y'a™!;
3) [yatnY'|=1 forally €Y’;

(4) |[Za N X' =1 for all 2’ € X'.
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