CHAPTER 2

Preliminaries

In this chapter, we will briefly review some concepts and some results of Semigroup Theory.

2.1 Elementary Concepts

In this thesis, the cardinality of a set X is denoted by |X| and $X = A \cup B$ means X is a disjoint union of A and B.

Definition 2.1.1. A semigroup is a pair (S, \cdot) in which S is a nonempty set and \cdot is a binary associative operation on S, i.e., the equation $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ holds for all $x, y, z \in S$.

Definition 2.1.2. Let S be a semigroup.

(i) If there exists an element 1 of S such that

$$x1 = x = 1x$$
 for all $x \in S$.

then 1 is called an *identity* element of S and S is called a *semigroup with identity* or a *monoid*.

(ii) If there exists an element 0 of S such that

$$x0 = 0 = 0x$$
 for all $x \in S$,

then 0 is called a zero element of S and S is called a semigroup with zero.

A nonempty subset T of a semigroup S is called a *subsemigroup* of S if $xy \in T$ for all $x, y \in T$.

Definition 2.1.3. An element e of a semigroup S is called an *idempotent* if $e = e^2$. The set of all idempotents in S is denoted by E(S).

Definition 2.1.4. Let S be a semigroup with identity 1. An element $a \in S$ is called a unit of S if there exists $b \in S$ such that ab = 1 = ba.

Lemma 2.1.1. Let S be a semigroup with identity 1 and

$$G = \{a \in S \mid a \text{ is a unit of } S\}.$$

Then G is a maximal subgroup of S having 1 as the identity.

Proof. Let $a, b \in G$. Then there exist $a', b' \in S$ such that aa' = 1 = a'a and bb' = 1 = b'b. So (ab)(b'a') = 1 = (b'a')(ab), that is $ab \in G$. It is clear that $1 \in G$, thus G is a monoid. Let $c \in G$. Then c'c = 1 = cc' for some $c' \in S$, it follows that $c' \in G$ and c' is the inverse of c. Thus G is a subgroup of S. Let G' be a subgroup of S containing 1 and $d \in G'$. So there exists $d^{-1} \in G'$ such that $dd^{-1} = 1 = d^{-1}d$, which implies that d is a unit of S and thus $G' \subseteq G$. Therefore, G is a maximal subgroup of S having 1 as the identity. \square

We call the subgroup G of S (in Lemma 2.1.1) the group of units of S.

Definition 2.1.5. Let $A \neq \emptyset$. Then a relation R on A is an equivalence relation on A provided R is:

reflexive:
$$(a, a) \in R$$
 for all $a \in A$;

symmetric: if $(a, b) \in R$, then $(b, a) \in R$ for all $a, b \in A$;

transitive: if $(a,b) \in R$ and $(b,c) \in R$, then $(a,c) \in R$ for all $a,b,c \in A$.

Definition 2.1.6. Let S and T be semigroups. A mapping φ from S into T is called a homomorphism if

$$(xy)\varphi = (x\varphi)(y\varphi)$$
 for all $x, y \in S$.

An injective homomorphism is called a *monomorphism*. A surjective homomorphism is called an *epimorphism*, and if a homomorphism is bijective, then we call it an *isomorphism*. If there exists an isomorphism from S onto T, then we say that S and T are *isomorphic* and write $S \cong T$. If φ is a homomorphism from S into S, then we call it an *endomorphism* of S. An isomorphism from S onto S is called an *automorphism* of S.

2.2 Regularity of Semigroups

Definition 2.2.1. An element a of a semigroup S is called *regular* if there exists x in S such that a = axa. We denote the set of all regular elements of S by Reg S.

An element a of a semigroup S is called *left* [right] regular if there exists x in S such that $a = xa^2$ [$a = a^2x$].

An element a of a semigroup S is called *completely regular* if there exists x in S such that a = axa and ax = xa.

Theorem 2.2.1. Let S be a semigroup and $a \in S$. Then a is completely regular if and only if a is left regular and right regular.

Proof. Assume that a is completely regular. Then a = axa and ax = xa for some $x \in S$. So $a = axa = xa^2$ and $a = axa = a^2x$. Thus a is left regular and right regular.

Conversely, assume that a is left regular and right regular. Then there are $x, y \in S$ such that $a = xa^2$ and $a = a^2y$. So

$$aya = (xa^2)ya = x(a^2y)a = xaa = a,$$

 $axa = ax(a^2y) = a(xa^2)y = aay = a,$

and $ay = xa^2y = xa$. Then

$$a(xay)a = (axa)ya = aya = a$$
, and
 $a(xay) = (axa)y = ay = xa = x(aya) = (xay)a$.

Thus a is completely regular.

2.3 Ideals and Green's Relations

Definition 2.3.1. A nonempty subset A of a semigroup S is called a *left ideal* of S if $SA \subseteq A$, a *right ideal* of S if $AS \subseteq A$, and an (*two-sided*) *ideal* of S if it is both a left and a right ideal.

Note that if S has the identity, then A is an ideal of S if SAS is contained in A.

For any semigroup S, the notation S^1 means S itself if S contains the identity element, otherwise, we let $S^1 = S \cup \{1\}$ and define the binary operation on S^1 by

$$1 \cdot s = s = s \cdot 1$$
 for all $s \in S, \ 1 \cdot 1 = 1$ and
$$a \cdot b = ab \text{ for all } a, b \in S.$$

Then S^1 becomes a semigroup with the identity element 1.

For any element a in S,

the smallest left ideal of S containing a is $Sa \cup \{a\} = S^1a$, the smallest right ideal of S containing a is $aS \cup \{a\} = aS^1$, and the smallest ideal of S containing a is $SaS \cup aS \cup Sa \cup \{a\} = S^1aS^1$,

which we call the *principal left ideal*, *principal right ideal* and *principal ideal generated by* a, respectively.

In 1951, J. A. Green defined the equivalence relations \mathcal{L} , \mathcal{R} and \mathcal{J} on S by the rules that, for $a, b \in S$,

$$a\mathcal{L}b$$
 if and only $S^1a=S^1b,$ $a\mathcal{R}b$ if and only $aS^1=bS^1,$ and $a\mathcal{J}b$ if and only $S^1aS^1=S^1bS^1,$

Then he defined the equivalence relations

$$\mathcal{H} = \mathcal{L} \cap \mathcal{R}$$
 and $\mathcal{D} = \mathcal{L} \circ \mathcal{R}$,

and obtained that the composition of \mathcal{L} and \mathcal{R} is commutative. This follows that \mathcal{D} is the $join \ \mathcal{L} \lor \mathcal{R}$, that is, \mathcal{D} is the smallest equivalence relation containing $\mathcal{L} \cup \mathcal{R}$. Moreover, $\mathcal{H} \subseteq \mathcal{L} \subseteq \mathcal{D} \subseteq \mathcal{J}$ and $\mathcal{H} \subseteq \mathcal{R} \subseteq \mathcal{D} \subseteq \mathcal{J}$. But, in commutative semigroups, we have $\mathcal{H} = \mathcal{L} = \mathcal{R} = \mathcal{D} = \mathcal{J}$. The relations \mathcal{L} , \mathcal{R} , \mathcal{H} , \mathcal{D} and \mathcal{J} are called *Green's relations* on S. For each $a \in S$, we denote \mathcal{L} -class, \mathcal{R} -class, \mathcal{H} -class, \mathcal{D} -class and \mathcal{J} -class containing a by L_a , R_a , H_a , D_a and J_a , respectively.

Theorem 2.3.1. [5] Let S be a semigroup and $a, b \in S$. Then

- (1) $a\mathcal{L}b$ if and only if a = xb and b = ya for some $x, y \in S^1$.
- (2) $a\mathcal{R}b$ if and only if a = bx and b = ay for some $x, y \in S^1$.
- (3) $a\mathcal{J}b$ if and only if a = xby and b = uav for some $x, y, u, v \in S^1$.

Corollary 2.3.2. [5] If e is an idempotent in a semigroup S, then H_e is a subgroup of S.

Lemma 2.3.3. Let S be a semigroup with identity 1. Then H_1 is the group of units of S.

Proof. To prove that for all elements in H_1 are units of S, let $x \in H_1$. Then $x \in L_1 \cap R_1$ and hence $S^1x = S^11$ and $xS^1 = 1S^1$. Since $1 \in S$, we have Sx = S and xS = S. So yx = 1 = xz for some $y, z \in S$. Since y = y1 = y(xz) = (yx)z = 1z = z, we get yx = 1 = xy, which implies that x is a unit of S. Conversely, let a be a unit of S. Then ab = 1 = ba for some $b \in S$. From ba = 1, a1 = a and ab = 1, 1a = a, we have $a\mathcal{L}1$ and $a\mathcal{R}1$. Thus $a\mathcal{H}1$ and therefore $a \in H_1$.

2.4 Transformation Semigroups

In this section, we list some known results, definitions and notations about transformation semigroups that will be used throughout this thesis.

2.4.1 The Semigroups T(X)

Let X be a nonempty set and T(X) denote the set of all transformations from X into itself. Then T(X) is a semigroup under the composition of maps, that is, if $\alpha, \beta \in T(X)$, then $\alpha\beta \in T(X)$ is defined by

$$x(\alpha\beta) = (x\alpha)\beta$$
 for all $x \in X$,

and it is called the *full transformation semigroup* on X. It is known that T(X) is a regular semigroup, that is, for every $\alpha \in T(X)$, $\alpha = \alpha \beta \alpha$ for some $\beta \in T(X)$.

For a nonempty subset A of X, we let id_A denote the identity map on A. Then it is clear that id_X is the identity element of T(X).

In 1955, C. G. Doss and D. D. Miller [3] described Green's relations and group \mathcal{H} -classes of T(X).

We note that for any $\alpha \in T(X)$, the symbol π_{α} denotes the decomposition of X induced by the map α , namely

$$\pi_{\alpha} = \{ x \alpha^{-1} \mid x \in X \alpha \}.$$

Theorem 2.4.1. [2] Let $\alpha, \beta \in T(X)$. Then

- (1) $\alpha \mathcal{L}\beta$ if and only if $X\alpha = X\beta$.
- (2) $\alpha \mathcal{R} \beta$ if and only if $\pi_{\alpha} = \pi_{\beta}$.
- (3) $\alpha \mathcal{H} \beta$ if and only if $X \alpha = X \beta$ and $\pi_{\alpha} = \pi_{\beta}$.
- (4) $\alpha \mathcal{D}\beta$ if and only if $|X\alpha| = |X\beta|$.
- (5) $\mathcal{D} = \mathcal{J}$.

A subset A of X is said to be a cross-section of $\pi_{\alpha} = \{x\alpha^{-1} : x \in X\alpha\}$ if each $x\alpha^{-1}$ contains exactly one element of A.

Theorem 2.4.2. [2] Let ϵ be an idempotent in T(X). Then the group $\mathcal{H}-class\ H_{\epsilon}$ is isomorphic to a permutation group G(A) for some $A\subseteq X$. In this case, A is a cross–section of π_{ϵ} .

2.4.2 Transformation Semigroups with Invariant Sets

For a fixed nonempty subset Y of X, let

$$S(X,Y) = \{ \alpha \in T(X) \mid Y\alpha \subseteq Y \}.$$

Then S(X,Y) is a semigroup of total transformations on X which leave the subset Y of X invariant. Note that id_X , the identity map on X, belong to S(X,Y). K. D. Magill [6] introduced and studied the semigroup S(X,Y). The author started in 1966 with an arbitrary topological space X and let S(X) denote the semigroup of all continuous functions from X into itself where the binary operation is composition, and let S(X,Y) denote the subsemigroup of S(X) consisting of all continuous functions on X which leave a given subset Y of X invariant, that is, map Y into itself. The author investigated the question of when S(X,Y) is isomorphic to S(Z) for some space Z.

In 1975, J. S. V. Symons [8] considered a special case of Magill's idea: namely, when X is endowed with the discrete topology, that is, when S(X,Y) is simply the set of all maps from X into X which leave $Y \subseteq X$ invariant, and he described the automorphism group of this semigroup.

Later in 2005, S. Nenthein, P. Youngkhong and Y. Kemprasit [7] characterized the regular elements of S(X,Y) and gave a necessary and sufficient condition for S(X,Y) to be a regular semigroup, and applied the result to determine the number of regular elements in S(X,Y) for a finite set X. Then they gave the following results.

Theorem 2.4.3. [7] The following statements hold for the semigroup S(X,Y).

- (1) For $\alpha \in S(X,Y)$, α is a regular element of S(X,Y) if and only if $X\alpha \cap Y = Y\alpha$.
- (2) S(X,Y) is regular if and only if either Y=X or |Y|=1.

Let Reg $S(X,Y)=\{\alpha\in S(X,Y)\mid X\alpha\cap Y=Y\alpha\}$. Then Reg S(X,Y) is the set of all regular elements of S(X,Y).

For positive numbers n and r with $r \leq n$, the number of partitions of $\{1, 2, ..., n\}$ into r blocks is called the *stirling number of the second kind*, denoted by S(n, r). It is known that

$$S(n,r) = \frac{1}{r!} \sum_{i=0}^{r} (-1)^{i} \binom{r}{i} (r-i)^{n}.$$

Then the number of maps from $\{1, 2, ..., n\}$ onto $\{1, 2, ..., r\}$ is r!S(n, r).

Theorem 2.4.4. [7] If |X| = n and |Y| = m, then the number of regular elements in S(X,Y) is

$$\sum_{r=1}^{m} {m \choose r} r! S(m,r) (n-m+r)^{n-m}.$$

In 2011, P. Honyam and J. Sanwong [4] gave a necessary and sufficient condition for Reg S(X,Y) to be a regular subsemigroup of S(X,Y).

Lemma 2.4.5. [4] The following statements are equivalent:

- (1) Reg S(X,Y) is a regular subsemigroup of S(X,Y).
- (2) S(X,Y) is a regular semigroup.
- (3) X = Y or |Y| = 1.

Lemma 2.4.6. S(X,Y) has the zero element if and only if |Y| = 1

Proof. Assume that |Y| = 1. Let $Y = \{a\}$ and define

$$\alpha = \begin{pmatrix} X \\ a \end{pmatrix} \in S(X, Y).$$

Then $\alpha\beta = \alpha = \beta\alpha$ for all $\beta \in S(X,Y)$ and therefore α is the zero element of S(X,Y).

Conversely, assume that S(X,Y) has the zero element, say α . Suppose that |Y| > 1. Let $b, c \in Y$ be such that $b \neq c$ and define

$$\beta = \begin{pmatrix} X \\ b \end{pmatrix} \text{ and } \gamma = \begin{pmatrix} X \\ c \end{pmatrix}$$

Then $\beta, \gamma \in S(X, Y)$ and $\beta \neq \gamma$. Since α is the zero element, we have $\alpha\beta = \alpha = \alpha\gamma$. But $\beta = \alpha\beta$ and $\gamma = \alpha\gamma$. Thus $\beta = \alpha\beta = \alpha = \alpha\gamma = \gamma$ which is a contradiction. Therefore, |Y| = 1.

We note that for any $\alpha \in S(X,Y)$ if $Z \subseteq X$, we will denote $\pi_{\alpha}(Z)$ by

$$\pi_{\alpha}(Z) = \{ x\alpha^{-1} \mid x \in X\alpha \cap Z \}.$$

Thus $\pi_{\alpha}(Y) = \{y\alpha^{-1} \mid y \in X\alpha \cap Y\}.$

For each partitions \mathcal{A} and \mathcal{B} of a set X, we say that \mathcal{A} refines \mathcal{B} if for each $A \in \mathcal{A}$ there exists $B \in \mathcal{B}$ such that $A \subseteq B$.

Green's relations on S(X,Y) were given by P. Honyam and J. Sanwong [4]. For convenience, we present \mathcal{L}, \mathcal{R} and \mathcal{H} relations here.

Theorem 2.4.7. [4] Let $\alpha, \beta \in S(X, Y)$. Then $\alpha = \gamma \beta$ for some $\gamma \in S(X, Y)$ if and only if $X\alpha \subseteq X\beta$ and $Y\alpha \subseteq Y\beta$. Consequently, $\alpha \mathcal{L}\beta$ if and only if $X\alpha = X\beta$ and $Y\alpha = Y\beta$.

Theorem 2.4.8. [4] Let $\alpha, \beta \in S(X, Y)$. Then $\alpha = \beta \gamma$ for some $\gamma \in S(X, Y)$ if and only if π_{β} refines π_{α} and $\pi_{\beta}(Y)$ refines $\pi_{\alpha}(Y)$. Consequently, $\alpha \mathcal{R}\beta$ if and only if $\pi_{\alpha} = \pi_{\beta}$ and $\pi_{\alpha}(Y) = \pi_{\beta}(Y)$.

Corollary 2.4.9. [4] Let $\alpha, \beta \in S(X, Y)$. Then $\alpha \mathcal{H}\beta$ if and only if $X\alpha = X\beta$, $Y\alpha = Y\beta$ and $\pi_{\alpha} = \pi_{\beta}$, $\pi_{\alpha}(Y) = \pi_{\beta}(Y)$.

We note that for any $\alpha \in S(X,Y)$, the notation $\alpha|_Z: Z \to X$ where $Z \subseteq X$ and G(X) is a permutation group on X.

Recall that each group \mathcal{H} -class of T(X) is isomorphic to a permutation group G(A) for some $A \subseteq X$ (Theorem 2.4.2). Here, for the semigroup S(X,Y), the result depends on the group which is denoted by G(A,B) and

$$G(A,B) = \{ \rho \in G(A) \mid \rho|_B \in G(B) \}$$

where $B \subseteq A$ for some $A \subseteq X$ and $B \subseteq Y$. Then G(A, B) is a subgroup of the permutation group G(A).

Theorem 2.4.10. [4] Let ϵ be an idempotent in S(X,Y). Then the group $\mathcal{H}-class\ H_{\epsilon}$ is isomorphic to G(A,B) for some $A\subseteq X$ and $B\subseteq Y\cap A$. In this case, A is a cross–section of π_{ϵ} .

Since S(X,Y) is a semigroup with identity id_X , its group of units is as follows.

Lemma 2.4.11. [4] Let $G(X,Y) = \{\alpha \in G(X) \mid \alpha|_Y \in G(Y)\}$. Then G(X,Y) is the group of units of S(X,Y).

The following theorem is given by W. Choomanee, P. Honyam and J. Sanwong [1].

Theorem 2.4.12. [1] Let $\alpha \in S(X,Y)$. Then the following statements are equivalent:

- (1) α is left regular;
- (2) $X\alpha = X\alpha^2$ and $Y\alpha = Y\alpha^2$;
- (3) $\alpha^2 \in L_{\alpha}$.

Theorem 2.4.13. [1] Let $\alpha \in S(X,Y)$. Then the following statements are equivalent:

- (1) α is right regular;
- (2) $\pi_{\alpha} = \pi_{\alpha^2} \text{ and } \pi_{\alpha}(Y) = \pi_{\alpha^2}(Y);$
- (3) $\alpha^2 \in R_{\alpha}$.

We note that for $\alpha \in S(X,Y)$, the notation Y' and X' are for $Y\alpha$ and $X\alpha \setminus Y\alpha$, respectively.

Lemma 2.4.14. [1] Let $\alpha \in S(X,Y)$. If $X\alpha = X\alpha^2$ is finite and $Y\alpha = Y\alpha^2$, then

- (1) $(X \setminus Y)\alpha \subseteq (X \setminus Y) \cup Y';$
- (2) $X' \subseteq X \setminus Y'\alpha^{-1}$;
- (3) $|y'\alpha^{-1} \cap Y'| = 1 \text{ for all } y' \in Y';$
- (4) $|x'\alpha^{-1} \cap X'| = 1 \text{ for all } x' \in X'.$

Lemma 2.4.15. [1] Let $\alpha \in S(X,Y)$. If $\pi_{\alpha} = \pi_{\alpha^2}$ is finite and $\pi_{\alpha}(Y) = \pi_{\alpha^2}(Y)$, then

- (1) $(X \setminus Y)\alpha \subseteq (X \setminus Y) \cup Y';$
- (2) $X' \subseteq X \setminus Y'\alpha^{-1}$;
- (3) $|y'\alpha^{-1} \cap Y'| = 1 \text{ for all } y' \in Y';$
- (4) $|x'\alpha^{-1} \cap X'| = 1 \text{ for all } x' \in X'.$

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved