CHAPTER 3

Main Results

In this chapter, we study transformation semigroups with two invariant subsets and describe Green's relations \mathcal{L} and \mathcal{R} , and group \mathcal{H} -classes of $S(X, Y_1, Y_2)$. Moreover, we characterize regular, left regular, right regular and completely regular elements on $S(X, Y_1, Y_2)$ and consider the relationships of these elements. Moreover, we count the numbers of regular elements of $S(X, Y_1, Y_2)$ when X is a finite set.

3.1 Transformation Semigroups with Two Invariant Subsets

For two nonempty subsets Y_1 , Y_2 of X with $Y_1 \cap Y_2 = \emptyset$, let

$$S(X, Y_1, Y_2) = \{ \alpha \in T(X) \mid Y_1 \alpha \subseteq Y_1, Y_2 \alpha \subseteq Y_2 \}$$

For $\alpha, \beta \in S(X, Y_1, Y_2)$, we have $Y_1\alpha \subseteq Y_1, Y_2\alpha \subseteq Y_2, Y_1\beta \subseteq Y_1$ and $Y_2\beta \subseteq Y_2$. So $Y_1\alpha\beta \subseteq Y_1\beta \subseteq Y_1$ and $Y_2\alpha\beta \subseteq Y_2\beta \subseteq Y_2$, hence $\alpha\beta \in S(X, Y_1, Y_2)$. Then $S(X, Y_1, Y_2)$ is a semigroup of total transformations on X which leave subsets Y_1, Y_2 of X invariant. Note that id_X , the identity map on X, belong to $S(X, Y_1, Y_2)$ and $S(X, Y_1, Y_2) = S(X, Y_1) \cap S(X, Y_2)$.

As in A. H. Clifford and G. B. Preston [2] vol. 2, p. 241, we shall use the notation

$$\alpha = \left(\begin{array}{c} X_i \\ a_i \end{array}\right)$$

to mean that $\alpha \in T(X)$ and take as understood that the subscript i belongs to some (unmentioned) index set I, the abbreviation $\{a_i\}$ denotes $\{a_i \mid i \in I\}$, and that $X\alpha = \{a_i\}$ and $a_i\alpha^{-1} = X_i$ for all $i \in I$.

With the above notation, for any $\alpha \in S(X, Y_1, Y_2)$ we can write

$$\alpha = \begin{pmatrix} A_i & B_j & C_k & D_l & E_m \\ a_i & b_j & c_k & d_l & e_m \end{pmatrix},$$

where $A_i \cap Y_1 \neq \emptyset \neq B_j \cap Y_2$; $C_k, D_l, E_m \subseteq X \setminus (Y_1 \cup Y_2)$; $\{a_i\} \subseteq Y_1, \{b_j\} \subseteq Y_2, \{c_k\} \subseteq Y_1 \setminus \{a_i\}, \{d_l\} \subseteq Y_2 \setminus \{b_j\}$ and $\{e_m\} \subseteq X \setminus (Y_1 \cup Y_2)$. Here, I and J are nonempty sets, but K, L or M can be empty.

Example 1. Let $X = \{1, 2, 3, 4\}$, $Y_1 = \{1, 2\}$, $Y_2 = \{3\}$ and $Y = \{1, 2, 3\}$. Define

$$\alpha = \begin{pmatrix} \{1,2\} & \{3,4\} \\ 1 & 3 \end{pmatrix}, \ \beta = \begin{pmatrix} \{1,2\} & \{3,4\} \\ 3 & 1 \end{pmatrix}.$$

Hence $Y_1\alpha = \{1\} \subseteq Y_1$, $Y_2\alpha = \{3\} = Y_2$ and $Y\alpha = \{1,3\} \subseteq Y$, so $\alpha \in S(X,Y_1,Y_2) \cap S(X,Y)$. Since $Y\beta = \{1,3\} \subseteq Y$, $Y_1\beta = \{3\} \not\subseteq Y_1$ and $Y_2\beta = \{1\} \not\subseteq Y_2$, we have $\beta \in S(X,Y) \setminus S(X,Y_1,Y_2)$. Thus $S(X,Y_1,Y_2) \subsetneq S(X,Y)$.

Note that if $Y = Y_1 \cup Y_2$, then $S(X, Y_1, Y_2)$ is a proper subsemigroup of S(X, Y) since $S(X, Y_1, Y_2) \subseteq S(X, Y)$ and there exists

$$\alpha = \begin{pmatrix} Y_1 & X \setminus Y_1 \\ a & b \end{pmatrix} \in S(X, Y) \setminus S(X, Y_1, Y_2),$$

where $a \in Y_2$ and $b \in Y_1$.

Remark 3.1.1. We note that if |X| = 2, then $|Y_1| = 1 = |Y_2|$ and $X \setminus (Y_1 \cup Y_2) = \emptyset$. In this case

$$S(X, Y_1, Y_2) = \left\{ \begin{pmatrix} a & b \\ a & b \end{pmatrix} \right\},\,$$

where $Y_1 = \{a\}$ and $Y_2 = \{b\}$.

Theorem 3.1.2. $S(X, Y_1, Y_2)$ has the zero element if and only if |X| = 2.

Proof. Assume that |X| = 2. Then $|S(X, Y_1, Y_2)| = 1$ which implies that $S(X, Y_1, Y_2)$ has the zero element.

Conversely, assume that $S(X, Y_1, Y_2)$ has the zero element, say α . Suppose that |X| > 2. Let $a \in Y_1$, $b \in Y_2$ and $c \in X \setminus \{a, b\}$. We consider in three cases:

Case 1: $c \in X \setminus (Y_1 \cup Y_2)$. Define

$$\beta = \begin{pmatrix} Y_1 & X \setminus Y_1 \\ a & b \end{pmatrix}, \ \gamma = \begin{pmatrix} X \setminus Y_2 & Y_2 \\ a & b \end{pmatrix}.$$

Then $\beta, \gamma \in S(X, Y_1, Y_2)$ and $\beta \neq \gamma$. Since α is the zero element, we have $\beta \alpha = \alpha = \gamma \alpha$. But

$$\beta \alpha = \begin{pmatrix} Y_1 & X \setminus Y_1 \\ a\alpha & b\alpha \end{pmatrix}, \ \gamma \alpha = \begin{pmatrix} X \setminus Y_2 & Y_2 \\ a\alpha & b\alpha \end{pmatrix}.$$

Since $a\alpha \in Y_1, b\alpha \in Y_2$ and $Y_1 \cap Y_2 = \emptyset$, we have $a\alpha \neq b\alpha$ and hence $\beta\alpha \neq \gamma\alpha$ which is a contradiction.

Case 2: $c \in Y_1$. Define

$$\beta = \begin{pmatrix} Y_1 & X \setminus Y_1 \\ a & b \end{pmatrix}, \ \gamma = \begin{pmatrix} Y_1 & X \setminus Y_1 \\ c & b \end{pmatrix}.$$

Then $\beta, \gamma \in S(X, Y_1, Y_2)$ and $\beta \neq \gamma$. Since α is the zero element, we have $\alpha\beta = \alpha = \alpha\gamma$. But $Y_1\alpha\beta = (Y_1\alpha)\beta = \{a\}$ and $Y_1\alpha\gamma = (Y_1\alpha)\gamma = \{c\}$. So $Y_1\alpha = Y_1\alpha\beta = \{a\} \neq \{c\} = Y_1\alpha\gamma = Y_1\alpha$ which is a contradiction.

Case 3: $c \in Y_2$. Define

$$\beta = \begin{pmatrix} X \setminus Y_2 & Y_2 \\ a & b \end{pmatrix}, \ \gamma = \begin{pmatrix} X \setminus Y_2 & Y_2 \\ a & c \end{pmatrix}$$

Then $\beta, \gamma \in S(X, Y_1, Y_2)$ and $\beta \neq \gamma$. Since α is the zero element, we have $\alpha\beta = \alpha = \alpha\gamma$. But $Y_2\alpha\beta = (Y_2\alpha)\beta = \{b\}$ and $Y_2\alpha\gamma = (Y_2\alpha)\gamma = \{c\}$. So $Y_2\alpha = Y_2\alpha\beta = \{b\} \neq \{c\} = Y_2\alpha\gamma = Y_2\alpha$ which is a contradiction.

Therefore,
$$|X| = 2$$
.

3.2 Green's Relations on $S(X, Y_1, Y_2)$

In this section, we describe Green's relations \mathcal{L} and \mathcal{R} for $S(X, Y_1, Y_2)$ and apply these results to obtain its group \mathcal{H} -classes. Since the identity map $id_X \in S(X, Y_1, Y_2)$, it follows that $S(X, Y_1, Y_2)^1 = S(X, Y_1, Y_2)$.

Note that for each α , $\beta \in S(X, Y_1, Y_2)$, if $\alpha \mathcal{L}\beta$ on $S(X, Y_1, Y_2)$, then $\alpha = \gamma \beta$ and $\beta = \delta \alpha$ for some $\gamma, \delta \in S(X, Y_1, Y_2) = S(X, Y_1) \cap S(X, Y_2)$ and so $\alpha \mathcal{L}\beta$ on $S(X, Y_1)$ and $\alpha \mathcal{L}\beta$ on $S(X, Y_2)$. Also, if $\alpha \mathcal{R}\beta$ on $S(X, Y_1, Y_2)$, then $\alpha \mathcal{R}\beta$ on $S(X, Y_1)$ and $\alpha \mathcal{R}\beta$ on $S(X, Y_2)$.

Theorem 3.2.1. Let α , $\beta \in S(X, Y_1, Y_2)$. Then $\alpha = \gamma \beta$ for some $\gamma \in S(X, Y_1, Y_2)$ if and only if $X\alpha \subseteq X\beta$, $Y_1\alpha \subseteq Y_1\beta$ and $Y_2\alpha \subseteq Y_2\beta$. Consequently, $\alpha \mathcal{L}\beta$ if and only if $X\alpha = X\beta$, $Y_1\alpha = Y_1\beta$ and $Y_2\alpha = Y_2\beta$.

Proof. Assume that $\alpha = \gamma \beta$ for some $\gamma \in S(X, Y_1, Y_2)$. Since $S(X, Y_1, Y_2) = S(X, Y_1) \cap S(X, Y_2)$, we have $\gamma \in S(X, Y_1)$ and $\gamma \in S(X, Y_2)$ such that $\alpha = \gamma \beta$. By Theorem 2.4.7, we have $X\alpha \subseteq X\beta$, $Y_1\alpha \subseteq Y_1\beta$ and $Y_2\alpha \subseteq Y_2\beta$.

Conversely, suppose that $X\alpha \subseteq X\beta$, $Y_1\alpha \subseteq Y_1\beta$ and $Y_2\alpha \subseteq Y_2\beta$. So

 $Y_1\alpha|_{Y_1} \subseteq Y_1\beta|_{Y_1}$ and $Y_2\alpha|_{Y_2} \subseteq Y_2\beta|_{Y_2}$ where $\alpha|_{Y_1}$, $\beta|_{Y_1} \in T(Y_1)$ and $\alpha|_{Y_2}$, $\beta|_{Y_2} \in T(Y_2)$. Then there exist $\delta_1 \in T(Y_1)$ and $\delta_2 \in T(Y_2)$ such that $\alpha|_{Y_1} = \delta_1(\beta|_{Y_1})$ and $\alpha|_{Y_2} = \delta_2(\beta|_{Y_2})$, that is, $y_1\alpha = (y_1\delta_1)\beta$ for each $y_1 \in Y_1$ and $y_2\alpha = (y_2\delta_2)\beta$ for each $y_2 \in Y_2$. Now, for each $x \notin Y_1 \cup Y_2$, there exists $x' \in X$ such that $x\alpha = x'\beta$ since $X\alpha \subseteq X\beta$. Then for each $x \in X \setminus (Y_1 \cup Y_2)$, choose such an x' and extend $\delta_1 \in T(Y_1)$ and $\delta_2 \in T(Y_2)$ to $\gamma \in T(X)$ by

$$x\gamma = \begin{cases} x\delta_1, & \text{if } x \in Y_1, \\ x\delta_2, & \text{if } x \in Y_2, \\ x', & \text{if } x \in X \setminus (Y_1 \cup Y_2). \end{cases}$$

For each $y_1 \in Y_1$, we have $y_1 \gamma = y_1 \delta_1 \in Y_1$, that means $Y_1 \gamma \subseteq Y_1$. For each $y_2 \in Y_2$, we get $y_2 \gamma = y_2 \delta_2 \in Y_2$ and hence $Y_2 \gamma \subseteq Y_2$. Thus $\gamma \in S(X, Y_1, Y_2)$. For each $x \in X$, if $x \in Y_1$, then $x(\gamma\beta) = (x\gamma)\beta = (x\delta_1)\beta = x(\delta_1\beta) = x\alpha$, if $x \in Y_2$, then $x(\gamma\beta) = (x\gamma)\beta = (x\delta_2)\beta = x(\delta_2\beta) = x\alpha$, and if $x \in X \setminus (Y_1 \cup Y_2)$, then $x(\gamma\beta) = (x\gamma)\beta = x'\beta = x\alpha$. So $\alpha = \gamma\beta$ as required.

Example 2. Let $X = \{1, 2, 3, 4, 5, 6\}, Y_1 = \{1, 2, 3\}$ and $Y_2 = \{4, 5\}$. Define

$$\alpha = \begin{pmatrix} \{1,2\} & 3 & 4 & 5 & 6 \\ 2 & 1 & 4 & 5 & 6 \end{pmatrix}, \ \beta = \begin{pmatrix} 1 & \{2,3\} & 4 & 5 & 6 \\ 1 & 2 & 5 & 4 & 6 \end{pmatrix}, \ \gamma = \begin{pmatrix} 1 & 2 & 3 & \{4,5\} & 6 \\ 2 & 3 & 1 & 4 & 6 \end{pmatrix}.$$

Then $\alpha, \beta, \gamma \in S(X, Y_1, Y_2)$ and $X\alpha = \{1, 2, 4, 5, 6\} = X\beta$, $Y_1\alpha = \{1, 2\} = Y_1\beta$, $Y_2\alpha = \{4, 5\} = Y_2\beta$. So $\alpha \mathcal{L}\beta$. Since $Y_2\alpha = \{4, 5\} \neq \{4\} = Y_2\gamma$, we have α and γ are not \mathcal{L} -related on $S(X, Y_1, Y_2)$.

We note that for any $\alpha \in S(X, Y_1, Y_2)$, the symbol π_{α} denotes the decomposition of X induced by the map α , namely

$$\pi_{\alpha} = \{ x \alpha^{-1} \mid x \in X \alpha \}.$$

For a nonempty subset Z of X, we denote $\pi_{\alpha}(Z)$ by

$$\pi_{\alpha}(Z) = \{ x\alpha^{-1} \mid x \in X\alpha \cap Z \}.$$

Thus $\pi_{\alpha}(Y_1) = \{x\alpha^{-1} \mid x \in X\alpha \cap Y_1\}$ and $\pi_{\alpha}(Y_2) = \{x\alpha^{-1} \mid x \in X\alpha \cap Y_2\}$. For $\alpha, \beta \in S(X, Y_1, Y_2), \ \mathcal{A} \subseteq \pi_{\alpha} \text{ and } \mathcal{B} \subseteq \pi_{\beta}, \text{ we say that } \mathcal{A} \text{ refines } \mathcal{B} \text{ if for each } A \in \mathcal{A} \text{ there exists } B \in \mathcal{B} \text{ such that } A \subseteq B.$

Theorem 3.2.2. Let α , $\beta \in S(X, Y_1, Y_2)$. Then $\alpha = \beta \gamma$ for some $\gamma \in S(X, Y_1, Y_2)$ if and only if π_{β} refines π_{α} , $\pi_{\beta}(Y_1)$ refines $\pi_{\alpha}(Y_1)$ and $\pi_{\beta}(Y_2)$ refines $\pi_{\alpha}(Y_2)$. Consequently, $\alpha \mathcal{R}\beta$ if and only if $\pi_{\alpha} = \pi_{\beta}$, $\pi_{\alpha}(Y_1) = \pi_{\beta}(Y_1)$ and $\pi_{\alpha}(Y_2) = \pi_{\beta}(Y_2)$.

Proof. Assume that $\alpha = \beta \gamma$ for some $\gamma \in S(X, Y_1, Y_2)$. Since $S(X, Y_1, Y_2) = S(X, Y_1) \cap S(X, Y_2)$, we obtain $\gamma \in S(X, Y_1)$ and $\gamma \in S(X, Y_2)$ such that $\alpha = \beta \gamma$. Then by Theorem 2.4.8, we have π_{β} refines π_{α} , $\pi_{\beta}(Y_1)$ refines $\pi_{\alpha}(Y_1)$ and $\pi_{\beta}(Y_2)$ refines $\pi_{\alpha}(Y_2)$.

Conversely, assume that the conditions hold. For each $x \in X\beta$, there exists $z \in X$ such that $x = z\beta$. Define $\gamma : X \to X$ by

$$x\gamma = \begin{cases} z\alpha, & \text{if } x \in X\beta, \\ x\beta, & \text{if } x \in X \setminus X\beta. \end{cases}$$

If $z_1\beta=x=z_2\beta$, then $z_1,z_2\in x\beta^{-1}$. Since π_β refines π_α , we have $x\beta^{-1}\subseteq x'\alpha^{-1}$ for some $x'\in X\alpha$. Thus $z_1,z_2\in x'\alpha^{-1}$ and hence $z_1\alpha=z_2\alpha=x\gamma$. So γ is well-defined. Now, we prove that $\gamma\in S(X,Y_1,Y_2)$. For each $y\in Y_i$ (i=1,2), we have $y\in X\setminus X\beta$ or $y\in X\beta\cap Y_i$. If $y\in X\setminus X\beta$, then $y\gamma=y\beta\in Y_i$ since $\beta\in S(X,Y_1,Y_2)$. If $y\in X\beta\cap Y_i$, then there exists $x\in X$ such that $y=x\beta$. Since $\pi_\beta(Y_i)$ refines $\pi_\alpha(Y_i)$, we have $x\in y\beta^{-1}\subseteq y'\alpha^{-1}$ for some $y'\in X\alpha\cap Y_i$. Thus $y\gamma=x\beta\gamma=x\alpha=y'\in Y_i$. So $Y_1\gamma\subseteq Y_1$ and $Y_2\gamma\subseteq Y_2$ and hence $\gamma\in S(X,Y_1,Y_2)$. Also, we have $x(\beta\gamma)=(x\beta)\gamma=x\alpha$ for all $x\in X$ by the definition of γ .

Example 3. Let $X = \{1, 2, 3, 4, 5, 6\}, Y_1 = \{1, 2, 3\}$ and $Y_2 = \{4, 5\}$. Define

$$\alpha = \begin{pmatrix} \{1,3\} & 2 & \{4,5\} & 6 \\ 1 & 2 & 5 & 6 \end{pmatrix}, \ \beta = \begin{pmatrix} \{1,3\} & 2 & \{4,5\} & 6 \\ 3 & 1 & 4 & 6 \end{pmatrix}, \ \gamma = \begin{pmatrix} \{1,3\} & 2 & 4 & 5 & 6 \\ 2 & 3 & 4 & 5 & 1 \end{pmatrix}.$$

Then $\alpha, \beta, \gamma \in S(X, Y_1, Y_2)$ and $\pi_{\alpha} = \{\{1, 3\}, \{2\}, \{4, 5\}, \{6\}\} = \pi_{\beta}, \pi_{\alpha}(Y_1) = \{\{1, 3\}, \{2\}\}\}$ = $\pi_{\beta}(Y_1)$, $\pi_{\alpha}(Y_2) = \{\{4, 5\}\} = \pi_{\beta}(Y_2)$. So $\alpha \mathcal{R}\beta$. Since $\pi_{\alpha}(Y_2) = \{\{4, 5\}\} \neq \{\{4\}, \{5\}\} = \pi_{\gamma}(Y_2)$, we have α and γ are not \mathcal{R} -related on $S(X, Y_1, Y_2)$.

Corollary 3.2.3. Let α , $\beta \in S(X, Y_1, Y_2)$. Then $\alpha \mathcal{H}\beta$ if and only if $X\alpha = X\beta$, $Y_1\alpha = Y_1\beta$, $Y_2\alpha = Y_2\beta$ and $\pi_\alpha = \pi_\beta$, $\pi_\alpha(Y_1) = \pi_\beta(Y_1)$, $\pi_\alpha(Y_2) = \pi_\beta(Y_2)$.

Example 4. Let $X = \{1, 2, 3, 4, 5, 6\}, Y_1 = \{1, 2, 3\}$ and $Y_2 = \{4, 5\}$. Define

$$\epsilon = \begin{pmatrix} \{1,2\} & 3 & \{4,5\} & 6 \\ 1 & 3 & 5 & 6 \end{pmatrix}.$$

Thus $H_{\epsilon} = \{ \alpha \in S(X, Y_1, Y_2) \mid X\alpha = X\epsilon, Y_1\alpha = Y_1\epsilon, Y_2\alpha = Y_2\epsilon \text{ and } \pi_{\alpha} = \pi_{\epsilon}, \pi_{\alpha}(Y_1) = \pi_{\epsilon}(Y_1), \pi_{\alpha}(Y_2) = \pi_{\epsilon}(Y_2) \}$ and then

$$H_{\epsilon} = \left\{ \begin{pmatrix} \{1,2\} & 3 & \{4,5\} & 6 \\ 1 & 3 & 5 & 6 \end{pmatrix}, \begin{pmatrix} \{1,2\} & 3 & \{4,5\} & 6 \\ 3 & 1 & 5 & 6 \end{pmatrix} \right\}.$$

To describe group \mathcal{H} -classes of $S(X, Y_1, Y_2)$, we let

$$G(A, B, C) = \{ \rho \in G(A) \mid \rho|_B \in G(B) \text{ and } \rho|_C \in G(C) \},$$

where $B, C \subseteq A$ for some $A \subseteq X$, $B \subseteq Y_1$ and $\overline{C} \subseteq Y_2$. Then G(A, B, C) is a subgroup of the permutation group G(A).

Theorem 3.2.4. Let ϵ be an idempotent in $S(X, Y_1, Y_2)$. Then the group \mathcal{H} -class H_{ϵ} is isomorphic to G(A, B, C) for some $A \subseteq X, B \subseteq Y_1 \cap A, C \subseteq Y_2 \cap A$. In this case, A is a cross-section of π_{ϵ} .

Proof. Since ϵ is an idempotent, we can write

$$\epsilon = \begin{pmatrix} A_i & B_j & C_k \\ a_i & b_j & c_k \end{pmatrix},$$

where $a_i \in A_i \cap Y_1$, $b_j \in B_j \cap Y_2$ and $c_k \in C_k \subseteq X \setminus (Y_1 \cup Y_2)$ for all $i \in I$, $j \in J$, $k \in K$. Let $B = \{a_i\} \subseteq Y_1$, $C = \{b_j\} \subseteq Y_2$ and $A = \{a_i\} \cup \{b_j\} \cup \{c_k\} = X\epsilon \subseteq X$. Since $H_{\epsilon} = L_{\epsilon} \cap R_{\epsilon}$, we have by Corollary 3.2.3 that

$$H_{\epsilon} = \left\{ \begin{pmatrix} A_i & B_j & C_k \\ a_i \sigma & b_j \gamma & c_k \delta \end{pmatrix} \mid \sigma \in G(B), \ \gamma \in G(C), \ \delta \in G(A \setminus (B \cup C)) \right\}.$$

Let $\rho = \sigma \cup \gamma \cup \delta$. Then $\rho \in G(A, B, C)$ and

$$H_{\epsilon} = \left\{ \begin{pmatrix} A_i & B_j & C_k \\ a_i \rho & b_j \rho & c_k \rho \end{pmatrix} \mid \rho \in G(A, B, C) \right\}.$$

$$\Rightarrow G(A, B, C) \text{ by}$$

Define $\psi: H_{\epsilon} \to G(A, B, C)$ by

$$\begin{pmatrix} A_i & B_j & C_k \\ a_i \rho & b_j \rho & c_k \rho \end{pmatrix} \mapsto \rho.$$

It is clear that ψ is bijective. Let $\rho, \delta \in G(A, B, C)$ and

$$\begin{pmatrix} A_i & B_j & C_k \\ a_i \rho & b_j \rho & c_k \rho \end{pmatrix}, \begin{pmatrix} A_i & B_j & C_k \\ a_i \delta & b_j \delta & c_k \delta \end{pmatrix} \in H_{\epsilon}.$$

Then

$$\begin{pmatrix} A_i & B_j & C_k \\ a_i \rho & b_j \rho & c_k \rho \end{pmatrix} \begin{pmatrix} A_i & B_j & C_k \\ a_i \delta & b_j \delta & c_k \delta \end{pmatrix} = \begin{pmatrix} A_i & B_j & C_k \\ a_i (\rho \delta) & b_j (\rho \delta) & c_k (\rho \delta) \end{pmatrix}$$

and

$$\begin{pmatrix} A_i & B_j & C_k \\ a_i(\rho\delta) & b_j(\rho\delta) & c_k(\rho\delta) \end{pmatrix} \psi = \rho\delta = \begin{pmatrix} A_i & B_j & C_k \\ a_i\rho & b_j\rho & c_k\rho \end{pmatrix} \psi \begin{pmatrix} A_i & B_j & C_k \\ a_i\delta & b_j\delta & c_k\delta \end{pmatrix} \psi.$$

Thus H_{ϵ} is isomorphic to G(A, B, C). Since $A \cap A_i = \{a_i\}, A \cap B_j = \{b_j\}$ and $A \cap C_k = \{c_k\}$ for all $i \in I, j \in J, k \in K$, we have A is a cross-section of π_{ϵ} .

Remark 3.2.5. We note that when

$$\epsilon = id_X = \begin{pmatrix} a_i & b_j & c_k \\ a_i & b_j & c_k \end{pmatrix},$$

where $Y_1 = \{a_i\}$, $Y_2 = \{b_j\}$ and $X \setminus (Y_1 \cup Y_2) = \{c_k\}$, then the group \mathcal{H} -class H_{ϵ} is the group of units of $S(X, Y_1, Y_2)$ by Lemma 2.3.3. In this case

$$H_{\epsilon} = \left\{ \begin{pmatrix} a_i & b_j & c_k \\ a_i \sigma & b_j \sigma & c_k \sigma \end{pmatrix} \mid \sigma \in G(X, Y_1, Y_2) \right\}$$

is isomorphic to $G(X, Y_1, Y_2)$.

3.3 Regularity of $S(X, Y_1, Y_2)$

In this section, we give necessary and sufficient conditions for elements in $S(X, Y_1, Y_2)$ to be regular, left regular, right regular and completely regular.

Theorem 3.3.1. Let $\alpha \in S(X, Y_1, Y_2)$. Then α is a regular element if and only if $X\alpha \cap (Y_1 \cup Y_2) = (Y_1 \cup Y_2)\alpha$.

Proof. Assume that α is regular. Since $S(X, Y_1, Y_2) = S(X, Y_1) \cap S(X, Y_2)$, we have $\alpha \in S(X, Y_1)$ and $\alpha \in S(X, Y_2)$. By Theorem 2.4.3 (1), we have $X\alpha \cap Y_1 = Y_1\alpha$ and $X\alpha \cap Y_2 = Y_2\alpha$. Thus $X\alpha \cap (Y_1 \cup Y_2) = (X\alpha \cap Y_1) \cup (X\alpha \cap Y_2) = Y_1\alpha \cup Y_2\alpha = (Y_1 \cup Y_2)\alpha$.

Conversely, assume that $X\alpha \cap (Y_1 \cup Y_2) = (Y_1 \cup Y_2)\alpha$. Then we can write

$$\alpha = \begin{pmatrix} A_i & B_j & C_k \\ a_i & b_j & c_k \end{pmatrix},$$

where $A_i \cap Y_1 \neq \emptyset \neq B_j \cap Y_2$, $C_k \subseteq X \setminus (Y_1 \cup Y_2)$, $\{a_i\} \subseteq Y_1$, $\{b_j\} \subseteq Y_2$ and $\{c_k\} \subseteq X \setminus (Y_1 \cup Y_2)$. Choose $i_0 \in I$ and $j_0 \in J$ and let $I' = I \setminus \{i_0\}$ and $J' = J \setminus \{j_0\}$. Define

$$\beta = \begin{pmatrix} a_{i'} & b_{j'} & c_k & Y_1 \setminus \{a_{i'}\} & X \setminus (Y_1 \cup \{b_{j'}\} \cup \{c_k\}) \\ x_{i'} & y_{j'} & z_k & x_{i_0} & y_{j_0} \end{pmatrix},$$

where $x_i \in A_i \cap Y_1$, $y_j \in B_j \cap Y_2$ and $z_k \in C_k$ for all $i \in I$, $j \in J$, $k \in K$. Then $\beta \in S(X, Y_1, Y_2)$ and $\alpha = \alpha \beta \alpha$. Therefore, α is regular.

Example 5. Let $X = \{1, 2, 3, 4\}$, $Y_1 = \{1, 2\}$ and $Y_2 = \{3\}$. Define $\alpha, \beta \in S(X, Y_1, Y_2)$ by

$$\alpha = \begin{pmatrix} 1 & 2 & \{3,4\} \\ 1 & 2 & 3 \end{pmatrix}, \ \beta = \begin{pmatrix} \{1,2\} & 3 & 4 \\ 1 & 3 & 2 \end{pmatrix}.$$

Then $X\alpha \cap (Y_1 \cup Y_2) = \{1, 2, 3\} = (Y_1 \cup Y_2)\alpha$. So α is a regular element. Since

$$X\beta \cap (Y_1 \cup Y_2) = \{1, 2, 3\} \neq \{1, 3\} = (Y_1 \cup Y_2)\beta,$$

we have β is not a regular element.

Theorem 3.3.2. $S(X, Y_1, Y_2)$ is a regular semigroup if and only if $X = Y_1 \cup Y_2$ or $|Y_1| = 1 = |Y_2|$.

Proof. Suppose that $(X \neq Y_1 \cup Y_2)$ and $(|Y_1| > 1 \text{ or } |Y_2| > 1)$. If $|Y_1| > 1$, then there are $a, b \in Y_1$ such that $a \neq b$. Let $c \in Y_2$. Then we define

$$\alpha = \begin{pmatrix} Y_1 & Y_2 & X \setminus (Y_1 \cup Y_2) \\ a & c & b \end{pmatrix}.$$

Hence $\alpha \in S(X, Y_1, Y_2)$. Since $X\alpha \cap (Y_1 \cup Y_2) = \{a, b, c\} \neq \{a, c\} = (Y_1 \cup Y_2)\alpha$, we have by Theorem 3.3.1 that α is not a regular element. If $|Y_2| > 1$, then there are $d, e \in Y_2$ such that $d \neq e$. Let $f \in Y_1$. Define

$$\beta = \begin{pmatrix} Y_1 & Y_2 & X \setminus (Y_1 \cup Y_2) \\ f & d & e \end{pmatrix}.$$

Then $\beta \in S(X, Y_1, Y_2)$. Since $X\beta \cap (Y_1 \cup Y_2) = \{d, e, f\} \neq \{d, f\} = (Y_1 \cup Y_2)\beta$, we have β is not a regular element. Therefore, $S(X, Y_1, Y_2)$ is not a regular semigroup.

Conversely, assume that $X = Y_1 \cup Y_2$ or $|Y_1| = 1 = |Y_2|$. Let $\alpha \in S(X, Y_1, Y_2)$. If $X = Y_1 \cup Y_2$, then $X\alpha \cap (Y_1 \cup Y_2) = X\alpha \cap X = X\alpha = (Y_1 \cup Y_2)\alpha$. If $|Y_1| = 1 = |Y_2|$, say $Y_1 = \{a\}$ and $Y_2 = \{b\}$, then $X\alpha \cap (Y_1 \cup Y_2) = X\alpha \cap \{a,b\} = \{a,b\} = (Y_1 \cup Y_2)\alpha$. Thus by Theorem 3.3.1, we have α is a regular element and hence $S(X, Y_1, Y_2)$ is a regular semigroup.

Let

Reg
$$S(X, Y_1, Y_2) = \{ \alpha \in S(X, Y_1, Y_2) \mid X\alpha \cap (Y_1 \cup Y_2) = (Y_1 \cup Y_2)\alpha \}.$$

Then Reg $S(X, Y_1, Y_2)$ is the set of all regular elements of $S(X, Y_1, Y_2)$.

Example 6. (a) Let $X = \{1, 2, 3, 4\}, Y_1 = \{1, 2\} \text{ and } Y_2 = \{3\}.$ Define

$$\alpha = \begin{pmatrix} \{1,2\} & 3 & 4 \\ 1 & 3 & 4 \end{pmatrix}, \ \beta = \begin{pmatrix} 1 & \{2,4\} & 3 \\ 2 & 1 & 3 \end{pmatrix}.$$

Then we have $\alpha, \beta \in \text{Reg } S(X, Y_1, Y_2)$, but

$$\alpha\beta = \begin{pmatrix} \{1,2\} & 3 & 4 \\ 2 & 3 & 1 \end{pmatrix} \notin \operatorname{Reg} S(X, Y_1, Y_2).$$

(b) Let $X=\mathbb{N}$ denote the set of positive integers, $Y_1=\{1,2\}$ and $Y_2=\{3,4\}.$ Define

$$\alpha = \begin{pmatrix} \{1,2\} & \{3,4\} & X \setminus \{1,2,3,4\} \\ 1 & 4 & 5 \end{pmatrix}, \ \beta = \begin{pmatrix} 1 & \{3,4\} & X \setminus \{1,3,4\} \\ 2 & 3 & 1 \end{pmatrix}.$$

Thus $\alpha, \beta \in \text{Reg } S(X, Y_1, Y_2)$, but

$$\alpha\beta = \begin{pmatrix} \{1,2\} & \{3,4\} & X \setminus \{1,2,3,4\} \\ 2 & 3 & 1 \end{pmatrix} \notin \text{Reg } S(X,Y_1,Y_2).$$

Therefore, Reg $S(X, Y_1, Y_2)$ in (a) and (b) are not subsemigroups of $S(X, Y_1, Y_2)$.

We give a necessary and sufficient condition for Reg $S(X, Y_1, Y_2)$ to be a regular subsemigroup as follows.

Theorem 3.3.3. The following statements are equivalent;

- (1) Reg $S(X, Y_1, Y_2)$ is a regular subsemigroup of $S(X, Y_1, Y_2)$
- (2) $S(X, Y_1, Y_2)$ is a regular semigroup.
- (3) $X = Y_1 \cup Y_2 \text{ or } |Y_1| = 1 = |Y_2|.$

Proof. (2) \Leftrightarrow (3) By Theorem 3.3.2, we have $S(X, Y_1, Y_2)$ is a regular semigroup if and only if $X = Y_1 \cup Y_2$ or $|Y_1| = 1 = |Y_2|$.

(1)
$$\Rightarrow$$
 (3) Assume that $(Y_1 \cup Y_2 \subsetneq X)$ and $(|Y_1| > 1 \text{ or } |Y_2| > 1)$. If $|Y_1| > 1$,

then there exist $a, b \in Y_1$ such that $a \neq b$. Let $c \in Y_2$ and $e \in X \setminus (Y_1 \cup Y_2)$. Define $\alpha, \beta \in \text{Reg } S(X, Y_1, Y_2) \text{ by}$

$$\alpha = \begin{pmatrix} Y_1 & Y_2 & X \setminus (Y_1 \cup Y_2) \\ a & c & e \end{pmatrix}, \ \beta = \begin{pmatrix} a & Y_2 & X \setminus (\{a\} \cup Y_2) \\ a & c & b \end{pmatrix}.$$

Then

$$\alpha \beta = \begin{pmatrix} Y_1 & Y_2 & X \setminus (Y_1 \cup Y_2) \\ a & c & b \end{pmatrix}.$$

So $X\alpha\beta\cap (Y_1\cup Y_2)=\{a,b,c\}\neq \{a,c\}=(Y_1\cup Y_2)\alpha\beta$ and hence $\alpha\beta\notin \operatorname{Reg} S(X,Y_1,Y_2)$. If $|Y_2| > 1$, then there exist $c, d \in Y_2$ such that $c \neq d$. Let $a \in Y_1$ and $e \in X \setminus (Y_1 \cup Y_2)$. Define $\alpha, \beta \in \text{Reg } S(X, Y_1, Y_2)$ by

$$\alpha = \begin{pmatrix} Y_1 & Y_2 & X \setminus (Y_1 \cup Y_2) \\ a & c & e \end{pmatrix}, \ \beta = \begin{pmatrix} Y_1 & c & X \setminus (Y_1 \cup \{c\}) \\ a & c & d \end{pmatrix}.$$
$$\alpha \beta = \begin{pmatrix} Y_1 & Y_2 & X \setminus (Y_1 \cup Y_2) \\ a & c & d \end{pmatrix} \notin \operatorname{Reg} S(X, Y_1, Y_2).$$

Thus

$$\alpha\beta = \begin{pmatrix} Y_1 & Y_2 & X \setminus (Y_1 \cup Y_2) \\ a & c & d \end{pmatrix} \notin \operatorname{Reg} S(X, Y_1, Y_2).$$

Therefore, Reg $S(X, Y_1, Y_2)$ is not a regular semigroup.

(3) \Rightarrow (1) Assume $X = Y_1 \cup Y_2$ or $|Y_1| = 1 = |Y_2|$. By Theorem 3.3.2, we have Reg $S(X, Y_1, Y_2) = S(X, Y_1, Y_2)$ and thus Reg $S(X, Y_1, Y_2)$ is a regular subsemigroup. \square

Remark 3.3.4. Let |X| = n, $|Y_1| = m_1$ and $|Y_2| = m_2$. Then

$$|S(X, Y_1, Y_2)| = m_1^{m_1} m_2^{m_2} n^{n-m_1-m_2}.$$

Theorem 3.3.5. Let |X| = n, $|Y_1| = m_1$ and $|Y_2| = m_2$. Then the number of regular elements in $S(X, Y_1, Y_2)$ is

$$\sum_{r_1=1}^{m_1} \sum_{r_2=1}^{m_2} {m_1 \choose r_1} {m_2 \choose r_2} r_1! S(m_1, r_1) r_2! S(m_2, r_2) (n - m_1 - m_2 + r_1 + r_2)^{n - m_1 - m_2}.$$

Proof. Assume that $|X|=n, |Y_1|=m_1$ and $|Y_2|=m_2$. Let $Y_1^{'}\subseteq Y_1, Y_2^{'}\subseteq Y_2$ be such that $|Y_1'| = r_1$, $|Y_2'| = r_2$. Then the number of maps from Y_1 onto Y_1' is $r_1!S(m_1, r_1)$ and the number of maps from Y_2 onto Y_2' is $r_2!S(m_2,r_2)$. Then the number of maps from $\alpha: Y_1 \cup Y_2 \to Y_1 \cup Y_2$ such that $Y_1 \alpha = Y_1'$ and $Y_2 \alpha = Y_2'$ is $r_1! S(m_1, r_1) r_2! S(m_2, r_2)$. We see that

$$|(X \setminus (Y_1 \cup Y_2)) \cup (Y_1' \cup Y_2')| = |X \setminus (Y_1 \cup Y_2)| + |Y_1'| + |Y_2'| = n - m_1 - m_2 + r_1 + r_2.$$

So it follows that the number of maps $\alpha: X \to X$ such that $Y_1\alpha = Y_1', Y_2\alpha = Y_2'$ and $X\alpha \cap (Y_1 \cup Y_2) = (Y_1 \cup Y_2)\alpha$ is

$$r_1!S(m_1,r_1)r_2!S(m_2,r_2)(n-m_1-m_2+r_1+r_2)^{n-m_1-m_2}$$

Thus the number of maps $\alpha \in \text{Reg } S(X,Y_1,Y_2)$ such that $X\alpha \cap (Y_1 \cup Y_2) = Y_1' \cup Y_2'$ is

$$r_1!S(m_1,r_1)r_2!S(m_2,r_2)(n-m_1-m_2+r_1+r_2)^{n-m_1-m_2}$$

Consequently, for $1 \le r_1 \le m_1$ and $1 \le r_2 \le m_2$, the number of maps $\alpha \in \text{Reg } S(X, Y_1, Y_2)$ such that $|X\alpha \cap (Y_1 \cup Y_2)| = r_1 + r_2$ is

$$\binom{m_1}{r_1} \binom{m_2}{r_2} r_1! S(m_1, r_1) r_2! S(m_2, r_2) (n - m_1 - m_2 + r_1 + r_2)^{n - m_1 - m_2}.$$

Therefore, the number of regular elements in $S(X, Y_1, Y_2)$ is

$$\sum_{r_1=1}^{m_1} \sum_{r_2=1}^{m_2} {m_1 \choose r_1} {m_2 \choose r_2} r_1! S(m_1, r_1) r_2! S(m_2, r_2) (n - m_1 - m_2 + r_1 + r_2)^{n - m_1 - m_2}.$$

Example 7. Let $X = \{1, 2, 3, 4\}, Y_1 = \{1, 2\} \text{ and } Y_2 = \{3\}.$ Then $|X| = 4, |Y_1| = 2$ and $|Y_2| = 1$. So

$$|S(X, Y_1, Y_2)| = 2^2 \cdot 1^1 \cdot 4^{4-2-1} = 4(4) = 16$$

and

and
$$|\operatorname{Reg} S(X, Y_1, Y_2)| = \sum_{r_1=1}^{2} \sum_{r_2=1}^{1} {2 \choose r_1} {1 \choose r_2} r_1! S(2, r_1) r_2! S(1, r_2) (4 - 2 - 1 + r_1 + r_2)^{4-2-1}$$

$$= \sum_{r_1=1}^{2} {2 \choose r_1} {1 \choose 1} r_1! S(2, r_1) 1! S(1, 1) (1 + r_1 + 1)$$

$$= {2 \choose 1} {1 \choose 1} 1! S(2, 1) 1! S(1, 1) (1 + 1 + 1)$$

$$+ {2 \choose 2} {1 \choose 1} 2! S(2, 2) 1! S(1, 1) (1 + 2 + 1)$$

$$= 6 + 8$$

Then we have

$$\operatorname{Reg} S(X, Y_1, Y_2) = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{pmatrix}, \begin{pmatrix} \{1, 2\} & 3 & 4 \\ 1 & 3 & 4 \end{pmatrix}, \begin{pmatrix} \{1, 2\} & 3 & 4 \\ 2 & 3 & 4 \end{pmatrix}, \begin{pmatrix} \{1, 2\} & 3 & 4 \\ 1 & 3 & 4 \end{pmatrix}, \begin{pmatrix} \{1, 2\} & 3 & 4 \\ 2 & 3 & 4 \end{pmatrix}, \begin{pmatrix} \{1, 2\} & \{3, 4\} \\ 1 & 3 \end{pmatrix}, \begin{pmatrix} \{1, 2, 4\} & 3 \\ 2 & 3 \end{pmatrix}, \begin{pmatrix} \{1, 2,$$

$$\begin{pmatrix} 1 & 2 & \{3,4\} \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & \{3,4\} \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} \{1,4\} & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} \{1,4\} & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & \{2,4\} & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & \{2,4\} & 3 \\ 2 & 1 & 3 \end{pmatrix} \right\}.$$

Theorem 3.3.6. Let $\alpha \in S(X, Y_1, Y_2)$. Then the following statements are equivalent:

- (1) α is left regular;
- (2) $X\alpha = X\alpha^2$, $Y_1\alpha = Y_1\alpha^2$ and $Y_2\alpha = Y_2\alpha^2$;
- (3) $\alpha^2 \in L_{\alpha}$.

Proof. (1) \Rightarrow (2) Assume that α is left regular. Since $\alpha \in S(X, Y_1)$ and $\alpha \in S(X, Y_2)$, we have $X\alpha = X\alpha^2$, $Y_1\alpha = Y_1\alpha^2$ and $Y_2\alpha = Y_2\alpha^2$ by Theorem 2.4.12.

- $(2) \Rightarrow (3)$ Assume that $X\alpha = X\alpha^2$, $Y_1\alpha = Y_1\alpha^2$ and $Y_2\alpha = Y_2\alpha^2$. Then by Theorem 3.2.1, we obtain that $\alpha \mathcal{L}\alpha^2$, that is $\alpha^2 \in L_\alpha$.
- (3) \Rightarrow (1) Assume that $\alpha^2 \in L_{\alpha}$. Then $\alpha = \beta \alpha^2$ for some $\beta \in S(X, Y_1, Y_2)^1 =$ $S(X, Y_1, Y_2)$ since $S(X, Y_1, Y_2)$ contains an identity. So α is left regular.

Theorem 3.3.7. Let $\alpha \in S(X, Y_1, Y_2)$. Then the following statements are equivalent:

- (1) α is right regular;
- (2) $\pi_{\alpha} = \pi_{\alpha^2}$, $\pi_{\alpha}(Y_1) = \pi_{\alpha^2}(Y_1)$ and $\pi_{\alpha}(Y_2) = \pi_{\alpha^2}(Y_2)$;
- (3) $\alpha^2 \in R_{\alpha}$.

Proof. (1) \Rightarrow (2) Assume that α is right regular. Since $\alpha \in S(X, Y_1)$ and $\alpha \in S(X, Y_2)$, we have $\pi_{\alpha} = \pi_{\alpha^2}$, $\pi_{\alpha}(Y_1) = \pi_{\alpha^2}(Y_1)$ and $\pi_{\alpha}(Y_2) = \pi_{\alpha^2}(Y_2)$ by Theorem 2.4.13.

- (2) \Rightarrow (3) Assume that $\pi_{\alpha} = \pi_{\alpha^2}$, $\pi_{\alpha}(Y_1) = \pi_{\alpha^2}(Y_1)$ and $\pi_{\alpha}(Y_2) = \pi_{\alpha^2}(Y_2)$. Then by Theorem 3.2.2, we obtain that $\alpha \mathcal{R} \alpha^2$, that is $\alpha^2 \in R_{\alpha}$.
- (3) \Rightarrow (1) Assume that $\alpha^2 \in R_\alpha$. Then $\alpha = \alpha^2 \beta$ for some $\beta \in S(X, Y_1, Y_2)^1 =$ $S(X, Y_1, Y_2)$. Thus α is right regular.

Example 8. (a) Let $X = \{1, 2, 3, 4, 5\}, Y_1 = \{1, 2\} \text{ and } Y_2 = \{3\}.$ Define $\alpha \in S(X, Y_1, Y_2)$ by

$$\alpha = \begin{pmatrix} 1 & \{2,5\} & \{3,4\} \\ 2 & 1 & 3 \end{pmatrix}.$$

Then

$$\alpha^2 = \begin{pmatrix} 1 & \{2,5\} & \{3,4\} \\ 1 & 2 & 3 \end{pmatrix}.$$

Thus $X\alpha = \{1,2,3\} = X\alpha^2$, $Y_1\alpha = \{1,2\} = Y_1\alpha^2$ and $Y_2\alpha = \{3\} = Y_2\alpha^2$ and $\pi_\alpha = \{1,2,3\} = \{1,2,3\}$ $\{\{1\},\{2,5\},\{3,4\}\} \,=\, \pi_{\alpha^2}, \ \pi_{\alpha}(Y_1) \,=\, \{\{1\},\{2,5\}\} \,=\, \pi_{\alpha^2}(Y_1) \ \ \text{and} \ \ \pi_{\alpha}(Y_2) \,=\, \{\{3,4\}\} \,=\, \pi_{\alpha^2}(Y_1) = \{\{1\},\{2,5\}\} = \pi_{\alpha^2}(Y_1) = \pi_{\alpha$ $\pi_{\alpha^2}(Y_2)$. So α is left regular and right regular.

(b) Let $X = \mathbb{N}$, $Y_1 = \{1, 2, 3, 4\}$, $Y_2 = \{5, 6\}$. Define $\alpha \in S(X, Y_1, Y_2)$ by

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & \{4,7\} & \{5,6\} & n \\ 1 & 2 & 4 & 3 & 5 & n-1 \end{pmatrix}_{n \in \mathbb{N} \backslash \{1,\ 2,\ \dots,\ 7\}}.$$

Then

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & \{4,7\} & \{5,6\} & n \\ 1 & 2 & 4 & 3 & 5 & n-1 \end{pmatrix}_{n \in \mathbb{N} \setminus \{1,\ 2,\ \dots,\ 7\}}.$$

$$\alpha^2 = \begin{pmatrix} 1 & 2 & \{3,8\} & \{4,7\} & \{5,6\} & n \\ 1 & 2 & 3 & 4 & 5 & n-2 \end{pmatrix}_{n \in \mathbb{N} \setminus \{1,\ 2,\ \dots,\ 8\}}.$$

Thus $X\alpha = \mathbb{N} \setminus \{6\} = X\alpha^2$, $Y_1\alpha = \{1, 2, 3, 4\} = Y_1\alpha^2$ and $Y_2\alpha = \{5\} = Y_2\alpha^2$. So α is left regular. But α is not right regular since

$$\pi_{\alpha}(Y_1) = \{\{1\}, \{2\}, \{3\}, \{4,7\}\} \neq \{\{1\}, \{2\}, \{3,8\}, \{4,7\}\} = \pi_{\alpha^2}(Y_1).$$

(c) Let $X = \mathbb{N}$, Y_1 the set of all positive even integers, and Y_2 the set of all positive odd integers. Define $\alpha \in S(X, Y_1, Y_2)$ by

$$\alpha = \binom{n}{n+2}_{n \in \mathbb{N}}$$

Then

$$\alpha^2 = \binom{n}{n+4}_{n \in \mathbb{N}}.$$

Thus $\pi_{\alpha} = \{\{n\} \mid n \in \mathbb{N}\} = \pi_{\alpha^2}, \ \pi_{\alpha}(Y_1) = \{\{2n\} \mid n \in \mathbb{N}\} = \pi_{\alpha^2}(Y_1) \text{ and } \pi_{\alpha}(Y_2) = \{\{n\} \mid n \in \mathbb{N}\} = \pi_{\alpha^2}(Y_1) \text{ and } \pi_{\alpha}(Y_2) = \{\{n\} \mid n \in \mathbb{N}\} = \pi_{\alpha^2}(Y_1) \text{ and } \pi_{\alpha}(Y_2) = \{\{n\} \mid n \in \mathbb{N}\} = \pi_{\alpha^2}(Y_1) \text{ and } \pi_{\alpha}(Y_2) = \{\{n\} \mid n \in \mathbb{N}\} = \pi_{\alpha^2}(Y_1) \text{ and } \pi_{\alpha}(Y_2) = \{\{n\} \mid n \in \mathbb{N}\} = \pi_{\alpha^2}(Y_1) \text{ and } \pi_{\alpha}(Y_2) = \{\{n\} \mid n \in \mathbb{N}\} = \pi_{\alpha^2}(Y_1) \text{ and } \pi_{\alpha}(Y_2) = \{\{n\} \mid n \in \mathbb{N}\} = \pi_{\alpha^2}(Y_1) \text{ and } \pi_{\alpha}(Y_2) = \{\{n\} \mid n \in \mathbb{N}\} = \pi_{\alpha^2}(Y_1) \text{ and } \pi_{\alpha}(Y_2) = \{\{n\} \mid n \in \mathbb{N}\} = \pi_{\alpha^2}(Y_1) \text{ and } \pi_{\alpha}(Y_2) = \{\{n\} \mid n \in \mathbb{N}\} = \pi_{\alpha^2}(Y_1) \text{ and } \pi_{\alpha}(Y_2) = \{\{n\} \mid n \in \mathbb{N}\} = \pi_{\alpha^2}(Y_1) \text{ and } \pi_{\alpha}(Y_2) = \{\{n\} \mid n \in \mathbb{N}\} = \pi_{\alpha^2}(Y_1) \text{ and } \pi_{\alpha}(Y_2) = \{\{n\} \mid n \in \mathbb{N}\} = \pi_{\alpha^2}(Y_1) \text{ and } \pi_{\alpha}(Y_2) = \{\{n\} \mid n \in \mathbb{N}\} = \pi_{\alpha^2}(Y_1) \text{ and } \pi_{\alpha}(Y_2) = \{\{n\} \mid n \in \mathbb{N}\} = \pi_{\alpha^2}(Y_1) \text{ and } \pi_{\alpha}(Y_2) = \{\{n\} \mid n \in \mathbb{N}\} = \pi_{\alpha^2}(Y_1) \text{ and } \pi_{\alpha}(Y_2) = \{\{n\} \mid n \in \mathbb{N}\} = \pi_{\alpha^2}(Y_1) \text{ and } \pi_{\alpha}(Y_2) = \{\{n\} \mid n \in \mathbb{N}\} = \pi_{\alpha^2}(Y_1) \text{ and } \pi_{\alpha}(Y_2) = \{\{n\} \mid n \in \mathbb{N}\} = \pi_{\alpha^2}(Y_1) \text{ and } \pi_{\alpha}(Y_2) = \{\{n\} \mid n \in \mathbb{N}\} = \pi_{\alpha^2}(Y_1) \text{ and } \pi_{\alpha}(Y_2) = \{\{n\} \mid n \in \mathbb{N}\} = \pi_{\alpha^2}(Y_1) \text{ and } \pi_{\alpha}(Y_2) = \{\{n\} \mid n \in \mathbb{N}\} = \pi_{\alpha^2}(Y_1) \text{ and } \pi_{\alpha}(Y_2) = \{\{n\} \mid n \in \mathbb{N}\} = \pi_{\alpha^2}(Y_1) \text{ and } \pi_{\alpha}(Y_2) = \{\{n\} \mid n \in \mathbb{N}\} = \pi_{\alpha^2}(Y_1) \text{ and } \pi_{\alpha}(Y_2) = \{\{n\} \mid n \in \mathbb{N}\} = \pi_{\alpha^2}(Y_1) \text{ and } \pi_{\alpha}(Y_2) = \{\{n\} \mid n \in \mathbb{N}\} = \pi_{\alpha^2}(Y_1) \text{ and } \pi_{\alpha}(Y_2) = \{\{n\} \mid n \in \mathbb{N}\} = \pi_{\alpha^2}(Y_1) \text{ and } \pi_{\alpha}(Y_2) = \{\{n\} \mid n \in \mathbb{N}\} = \pi_{\alpha^2}(Y_1) \text{ and } \pi_{\alpha}(Y_2) = \{\{n\} \mid n \in \mathbb{N}\} = \pi_{\alpha^2}(Y_1) \text{ and } \pi_{\alpha}(Y_2) = \{\{n\} \mid n \in \mathbb{N}\} = \pi_{\alpha^2}(Y_1) \text{ and } \pi_{\alpha}(Y_2) = \{\{n\} \mid n \in \mathbb{N}\} = \pi_{\alpha^2}(Y_1) \text{ and } \pi_{\alpha}(Y_2) = \{\{n\} \mid n \in \mathbb{N}\} = \pi_{\alpha^2}(Y_1) \text{ and } \pi_{\alpha}(Y_2) = \{\{n\} \mid n \in \mathbb{N}\} = \pi_{\alpha^2}(Y_1) \text{ and } \pi_{\alpha}(Y_2) = \{\{n\} \mid n \in \mathbb{N}\} = \pi_{\alpha}(Y_1) \text{ and } \pi_{\alpha}(Y_2) = \{\{n\} \mid n \in \mathbb{N}\} = \pi_{\alpha}(Y_1) \text{ and } \pi_{\alpha}(Y_2) = \{\{n\} \mid n \in \mathbb{N}\} = \pi_{\alpha}(Y_1) \text{ and } \pi_{\alpha}(Y_$ $\{\{2n-1\}\mid n\in\mathbb{N}\}=\pi_{\alpha^2}(Y_2)$. So α is right regular. But α is not left regular since $Y_1 \alpha = \{2n + 2 \mid n \in \mathbb{N}\} \neq \{2n + 4 \mid n \in \mathbb{N}\} = Y_1 \alpha^2.$

Corollary 3.3.8. Let $\alpha \in S(X, Y_1, Y_2)$. Then the following statements are equivalent:

- (1) α is completely regular;
- (2) α is left regular and right regular;
- (3) $X\alpha = X\alpha^2$, $Y_1\alpha = Y_1\alpha^2$, $Y_2\alpha = Y_2\alpha^2$ and $\pi_\alpha = \pi_{\alpha^2}$, $\pi_\alpha(Y_1) = \pi_{\alpha^2}(Y_1)$, $\pi_\alpha(Y_2) = \pi_{\alpha^2}(Y_1)$ $\pi_{\alpha^2}(Y_2)$;

- (4) $\alpha^2 \in H_{\alpha}$.
- *Proof.* (1) \Rightarrow (2) Assume that α is completely regular. By Theorem 2.2.1, we obtain that α is left regular and right regular.
- (2) \Rightarrow (3) Assume that α is left regular and right regular. Then by Theorem 3.3.7 and 3.3.8, we have that $X\alpha = X\alpha^2$, $Y_1\alpha = Y_1\alpha^2$, $Y_2\alpha = Y_2\alpha^2$ and $\pi_\alpha = \pi_{\alpha^2}$, $\pi_\alpha(Y_1) = \pi_{\alpha^2}(Y_1)$, $\pi_\alpha(Y_2) = \pi_{\alpha^2}(Y_2)$.
- (3) \Rightarrow (4) Assume that $X\alpha = X\alpha^2$, $Y_1\alpha = Y_1\alpha^2$, $Y_2\alpha = Y_2\alpha^2$ and $\pi_\alpha = \pi_{\alpha^2}$, $\pi_\alpha(Y_1) = \pi_{\alpha^2}(Y_1)$, $\pi_\alpha(Y_2) = \pi_{\alpha^2}(Y_2)$. Then by Theorem 3.2.1 and 3.2.2, we obtain $\alpha \mathcal{L}\alpha^2$ and $\alpha \mathcal{R}\alpha^2$, this is, $\alpha \mathcal{H}\alpha^2$. Hence $\alpha^2 \in H_\alpha$.
- (4) \Rightarrow (1) Assume that $\alpha^2 \in H_{\alpha}$. Then $\alpha \mathcal{H} \alpha^2$, this is, $\alpha \mathcal{L} \alpha^2$ and $\alpha \mathcal{R} \alpha^2$ and hence $\alpha = \beta \alpha^2$ and $\alpha = \alpha^2 \gamma$ for some $\beta, \gamma \in S(X, Y_1, Y_2)^1 = S(X, Y_1, Y_2)$. Thus α is left regular and right regular. Hence by Theorem 2.2.1, we obtain α is completely regular.

To prove that $\alpha \in S(X, Y_1, Y_2)$ is left regular if and only if α is right regular when $X\alpha$ is finite, we begin with the following two lemmas.

Lemma 3.3.9. Let $\alpha \in S(X, Y_1, Y_2)$. If $X\alpha = X\alpha^2$ is finite, $Y_1\alpha = Y_1\alpha^2$ and $Y_2\alpha = Y_2\alpha^2$, then

- $(1) (X \setminus (Y_1 \cup Y_2))\alpha \subseteq [X \setminus (Y_1 \cup Y_2)] \cup (Y_1 \cup Y_2)\alpha;$
- (2) $X\alpha \setminus (Y_1 \cup Y_2)\alpha \subseteq X \setminus ((Y_1 \cup Y_2)\alpha)\alpha^{-1}$;
- (3) $|y\alpha^{-1} \cap (Y_1 \cup Y_2)\alpha| = 1 \text{ for all } y \in (Y_1 \cup Y_2)\alpha;$
- $(4) |x\alpha^{-1} \cap (X\alpha \setminus (Y_1 \cup Y_2)\alpha)| = 1 \text{ for all } x \in X\alpha \setminus (Y_1 \cup Y_2)\alpha.$

Proof. Assume that $X\alpha = X\alpha^2$ is finite, $Y_1\alpha = Y_1\alpha^2$ and $Y_2\alpha = Y_2\alpha^2$.

(1) Since $\alpha \in S(X, Y_1)$ and $\alpha \in S(X, Y_2)$, we have $(X \setminus Y_1)\alpha \subseteq (X \setminus Y_1) \cup Y_1\alpha$ and $(X \setminus Y_2)\alpha \subseteq (X \setminus Y_2) \cup Y_2\alpha$ by Lemma 2.4.14 (1). To prove that $(X \setminus (Y_1 \cup Y_2))\alpha \subseteq [X \setminus (Y_1 \cup Y_2)] \cup (Y_1 \cup Y_2)\alpha$, let $z \in (X \setminus (Y_1 \cup Y_2))\alpha$. Then $z = x\alpha$ for some $x \in X \setminus (Y_1 \cup Y_2)$. So $x \in (X \setminus Y_1) \cap (X \setminus Y_2)$, that means $x \in X \setminus Y_1$ and $x \in X \setminus Y_2$ such that $z = x\alpha$. Thus $z \in (X \setminus Y_1)\alpha$ and $z \in (X \setminus Y_2)\alpha$. Since $(X \setminus Y_1)\alpha \subseteq (X \setminus Y_1) \cup Y_1\alpha$ and $(X \setminus Y_2)\alpha \subseteq (X \setminus Y_2) \cup Y_2\alpha$, we have $z \in (X \setminus Y_1) \cup Y_1\alpha$ and $z \in (X \setminus Y_2) \cup Y_2\alpha$ and hence

$$z \in [(X \setminus Y_1) \cup Y_1 \alpha] \cap [(X \setminus Y_2) \cup Y_2 \alpha]$$

$$= [((X \setminus Y_1) \cup Y_1\alpha) \cap (X \setminus Y_2)] \cup [((X \setminus Y_1) \cup Y_1\alpha) \cap Y_2\alpha]$$

$$= [(X \setminus Y_1) \cap (X \setminus Y_2)] \cup [Y_1 \alpha \cap (X \setminus Y_2)] \cup [(X \setminus Y_1) \cap (Y_2 \alpha)] \cup [Y_1 \alpha \cap Y_2 \alpha]$$

$$= [X \setminus (Y_1 \cup Y_2)] \cup Y_1 \alpha \cup Y_2 \alpha$$

$$= [X \setminus (Y_1 \cup Y_2)] \cup (Y_1 \cup Y_2) \alpha.$$

So $(X \setminus (Y_1 \cup Y_2))\alpha \subseteq [X \setminus (Y_1 \cup Y_2)] \cup (Y_1 \cup Y_2)\alpha$.

(2) Since $\alpha \in S(X, Y_1)$ and $\alpha \in S(X, Y_2)$, we have $X\alpha \setminus Y_1\alpha \subseteq X \setminus (Y_1\alpha)\alpha^{-1}$ and $X\alpha \setminus Y_2\alpha \subseteq X \setminus (Y_2\alpha)\alpha^{-1}$ by Lemma 2.4.14 (2). Now we show that $X\alpha \setminus (Y_1 \cup Y_2)\alpha \subseteq X \setminus ((Y_1 \cup Y_2)\alpha)\alpha^{-1}$ as follows:

$$X\alpha \setminus (Y_1 \cup Y_2)\alpha = X\alpha \setminus (Y_1\alpha \cup Y_2\alpha)$$

$$= (X\alpha \setminus Y_1\alpha) \cap (X\alpha \setminus Y_2\alpha)$$

$$\subseteq X \setminus (Y_1\alpha)\alpha^{-1} \cap X \setminus (Y_2\alpha)\alpha^{-1}$$

$$= X \setminus ((Y_1\alpha)\alpha^{-1} \cup (Y_2\alpha)\alpha^{-1})$$

$$= X \setminus ((Y_1\alpha \cup Y_2\alpha))\alpha^{-1}$$

$$= X \setminus ((Y_1\cup Y_2)\alpha)\alpha^{-1}.$$

Hence $X\alpha \setminus (Y_1 \cup Y_2)\alpha \subseteq X \setminus ((Y_1 \cup Y_2)\alpha)\alpha^{-1}$.

(3) Since $\alpha \in S(X, Y_1)$ and $\alpha \in S(X, Y_2)$, by Lemma 2.4.14 (3) we have $|y_1\alpha^{-1} \cap Y_1\alpha| = 1$ for all $y_1 \in Y_1\alpha$ and $|y_2\alpha^{-1} \cap Y_2\alpha| = 1$ for all $y_2 \in Y_2\alpha$. For each $y \in (Y_1 \cup Y_2)\alpha$, we have $y \in Y_1\alpha \cup Y_2\alpha$. If $y \in Y_1\alpha$, then

$$|y\alpha^{-1} \cap (Y_1 \cup Y_2)\alpha| = |y\alpha^{-1} \cap (Y_1\alpha \cup Y_2\alpha)|$$
$$= |(y\alpha^{-1} \cap Y_1\alpha) \cup (y\alpha^{-1} \cap Y_2\alpha)|$$
$$= |y\alpha^{-1} \cap Y_1\alpha|$$

and if $y \in Y_2\alpha$, then $|y\alpha^{-1} \cap (Y_1 \cup Y_2)\alpha| = |y\alpha^{-1} \cap Y_2\alpha| = 1$. Thus $|y\alpha^{-1} \cap (Y_1 \cup Y_2)\alpha| = 1$ for all $y \in (Y_1 \cup Y_2)\alpha$.

for all $y \in (Y_1 \cup Y_2)\alpha$. (4) Since $\alpha \in S(X, Y_1)$ and $\alpha \in S(X, Y_2)$, we have $|x_1\alpha^{-1} \cap (X\alpha \setminus Y_1\alpha)| = 1$ for all $x_1 \in X\alpha \setminus Y_1\alpha$ and $|x_2\alpha^{-1} \cap (X\alpha \setminus Y_2\alpha)| = 1$ for all $x_2 \in X\alpha \setminus Y_2\alpha$ by Lemma 2.4.14 (4). Let $x \in X\alpha \setminus (Y_1 \cup Y_2)\alpha$. Then $x \in X\alpha \setminus (Y_1\alpha \cup Y_2\alpha) = [(X\alpha \setminus Y_1\alpha) \cap (X\alpha \setminus Y_2\alpha)]$ and hence $x \in X\alpha \setminus Y_1\alpha$ and $x \in X\alpha \setminus Y_2\alpha$. Thus

$$|x\alpha^{-1} \cap (X\alpha \setminus (Y_1 \cup Y_2)\alpha)| = |x\alpha^{-1} \cap (X\alpha \setminus Y_1\alpha \cap X\alpha \setminus Y_2\alpha)|$$

$$\leq |x\alpha^{-1} \cap X\alpha \setminus Y_1|$$

To show that $|x\alpha^{-1} \cap (X\alpha \setminus (Y_1 \cup Y_2)\alpha)| \neq \emptyset$ for all $x \in X\alpha \setminus (Y_1 \cup Y_2)\alpha$. Let

$$\{x\alpha^{-1} \mid x \in X\alpha \setminus (Y_1 \cup Y_2)\alpha\} = \{E_1, E_2, ..., E_m\}$$

and $E_i\alpha = e_i$ for all i = 1, 2, ..., m. If there exists E_k such that $[X\alpha \setminus (Y_1 \cup Y_2)\alpha] \cap E_k = \emptyset$, then there are $e_u, e_v \in X\alpha \setminus (Y_1 \cup Y_2)\alpha$ such that $e_u \neq e_v$ and $e_u, e_v \in E_l$ for some $l \in \{1, 2, ..., m\}$. Then $E_u\alpha^2 = (E_u\alpha)\alpha = \{e_u\}\alpha = \{e_l\}$ and $E_v\alpha^2 = (E_v\alpha)\alpha = \{e_v\}\alpha = \{e_l\}$ and thus $E_u\alpha^2 = E_v\alpha^2$ which is a contradiction since $X\alpha^2 = X\alpha$ is finite. So $|x\alpha^{-1} \cap (X\alpha \setminus (Y_1 \cup Y_2)\alpha)| \neq \emptyset$ for all $x \in X\alpha \setminus (Y_1 \cup Y_2)\alpha$. Therefore, $|x\alpha^{-1} \cap (X\alpha \setminus (Y_1 \cup Y_2)\alpha)| = 1$.

Lemma 3.3.10. Let $\alpha \in S(X, Y_1, Y_2)$. If $\pi_{\alpha} = \pi_{\alpha^2}$ is finite, $\pi_{\alpha}(Y_1) = \pi_{\alpha^2}(Y_1)$ and $\pi_{\alpha}(Y_2) = \pi_{\alpha^2}(Y_2)$, then

- $(1) (X \setminus (Y_1 \cup Y_2))\alpha \subseteq [X \setminus (Y_1 \cup Y_2)] \cup (Y_1 \cup Y_2)\alpha;$
- (2) $X\alpha \setminus (Y_1 \cup Y_2)\alpha \subseteq X \setminus ((Y_1 \cup Y_2)\alpha)\alpha^{-1}$;
- (3) $|y\alpha^{-1} \cap (Y_1 \cup Y_2)\alpha| = 1 \text{ for all } y \in (Y_1 \cup Y_2)\alpha;$
- (4) $|x\alpha^{-1} \cap (X\alpha \setminus (Y_1 \cup Y_2)\alpha)| = 1$ for all $x \in X\alpha \setminus (Y_1 \cup Y_2)\alpha$

Proof. Assume that $\pi_{\alpha} = \pi_{\alpha^2}$ is finite, $\pi_{\alpha}(Y_1) = \pi_{\alpha^2}(Y_1)$ and $\pi_{\alpha}(Y_2) = \pi_{\alpha^2}(Y_2)$. By using the same proof as given for Lemma 3.3.9 and Lemma 2.4.15, we obtain (1)–(3) as required.

(4) Since $\alpha \in S(X, Y_1)$ and $\alpha \in S(X, Y_2)$, we have $|x_1\alpha^{-1} \cap (X\alpha \setminus Y_1\alpha)| = 1$ for all $x_1 \in X\alpha \setminus Y_1\alpha$ and $|x_2\alpha^{-1} \cap (X\alpha \setminus Y_2\alpha)| = 1$ for all $x_2 \in X\alpha \setminus Y_2\alpha$ by Lemma 2.4.15 (4). Let $x \in X\alpha \setminus (Y_1 \cup Y_2)\alpha$. Then $x \in X\alpha \setminus (Y_1\alpha \cup Y_2\alpha) = [(X\alpha \setminus Y_1\alpha) \cap (X\alpha \setminus Y_2\alpha)]$ and hence $x \in X\alpha \setminus Y_1\alpha$ and $x \in X\alpha \setminus Y_2\alpha$. Thus

$$|x\alpha^{-1} \cap (X\alpha \setminus (Y_1 \cup Y_2)\alpha)| = |x\alpha^{-1} \cap (X\alpha \setminus Y_1\alpha \cap X\alpha \setminus Y_2\alpha)|$$

$$\leq |x\alpha^{-1} \cap X\alpha \setminus Y_1|$$

$$= 1.$$

To show that $|x\alpha^{-1} \cap (X\alpha \setminus (Y_1 \cup Y_2)\alpha)| \neq \emptyset$ for all $x \in X\alpha \setminus (Y_1 \cup Y_2)\alpha$. Let

$$\{x\alpha^{-1} \mid x \in X\alpha \setminus (Y_1 \cup Y_2)\alpha\} = \{E_1, E_2, ..., E_m\}$$

and $E_i \alpha = e_i$ for all i = 1, 2, ..., m. If there exists E_k such that $[X \alpha \setminus (Y_1 \cup Y_2)\alpha] \cap E_k = \emptyset$, then there are $e_u, e_v \in X\alpha \setminus (Y_1 \cup Y_2)\alpha$ such that $e_u \neq e_v$ and $e_u, e_v \in E_l$ for some $l \in \{1, 2, ..., m\}$. Then $E_u \alpha^2 = (E_u \alpha) \alpha = \{e_u\} \alpha = \{e_l\}$ and $E_v \alpha^2 = (E_v \alpha) \alpha = \{e_v\} \alpha = \{$ $\{e_l\}$. So $E_u \cup E_v \subseteq e_l(\alpha^2)^{-1}$. This implies that $|\pi_\alpha^2| < |\pi_\alpha|$ which is a contradiction since $\pi_{\alpha} = \pi_{\alpha^2}$. So $|x\alpha^{-1} \cap (X\alpha \setminus (Y_1 \cup Y_2)\alpha)| \neq \emptyset$ for all $x \in X\alpha \setminus (Y_1 \cup Y_2)\alpha$. Therefore, $|x\alpha^{-1}\cap (X\alpha\setminus (Y_1\cup Y_2)\alpha)|=1.$

Corollary 3.3.11. Let $\alpha \in S(X, Y_1, Y_2)$ be such that $X\alpha$ is finite. If α is left regular, then α is regular.

Proof. Assume that α is left regular. Then $X\alpha = X\alpha^2$, $Y_1\alpha = Y_1\alpha^2$ and $Y_2\alpha = Y_2\alpha^2$ by Theorem 3.3.6. Since $(Y_1 \cup Y_2)\alpha = Y_1\alpha \cup Y_2\alpha \subseteq Y_1 \cup Y_2$ and $(Y_1 \cup Y_2)\alpha \subseteq X\alpha$, we have $(Y_1 \cup Y_2)\alpha \subseteq X\alpha \cap (Y_1 \cup Y_2)$. To show that $X\alpha \cap (Y_1 \cup Y_2) \subseteq (Y_1 \cup Y_2)\alpha$, let $y \in X\alpha \cap (Y_1 \cup Y_2)$. If $y \notin (Y_1 \cup Y_2)\alpha$, then $y \in (X \setminus (Y_1 \cup Y_2))\alpha \subseteq [X \setminus (Y_1 \cup Y_2)] \cup (Y_1 \cup Y_2)\alpha$ by Lemma 3.3.9 (1). Thus $y \in X \setminus (Y_1 \cup Y_2)$ or $y \in (Y_1 \cup Y_2)\alpha$. Since $y \in Y_1 \cup Y_2$, we get $y \in (Y_1 \cup Y_2)\alpha$ which is a contradiction. So $y \in (Y_1 \cup Y_2)\alpha$ and that $X\alpha \cap (Y_1 \cup Y_2) \subseteq (Y_1 \cup Y_2)\alpha$. Thus $X\alpha \cap (Y_1 \cup Y_2) = (Y_1 \cup Y_2)\alpha$ which implies that α is regular by Theorem 3.3.1.

Corollary 3.3.12. Let $\alpha \in S(X, Y_1, Y_2)$ be such that π_{α} is finite. If α is right regular, then α is regular.

Proof. Assume that α is right regular. Then $\pi_{\alpha} = \pi_{\alpha^2}$, $\pi_{\alpha}(Y_1) = \pi_{\alpha^2}(Y_1)$ and $\pi_{\alpha}(Y_2) = \pi_{\alpha^2}(Y_1)$ $\pi_{\alpha^2}(Y_2)$. By using the same proof as given for Corollary 3.3.11 and Lemma 3.3.10 (1), we get $X\alpha \cap (Y_1 \cup Y_2) = (Y_1 \cup Y_2)\alpha$ and hence α is regular as required.

The converse of Corollary 3.3.11 and 3.3.12 does not hold as shown in the example below.

Example 9. Let $X = \{1, 2, 3, 4, 5, 6, 7\}, Y_1 = \{2, 4, 6\}$ and $Y_2 = \{1, 2, 3, 4, 5, 6, 7\}$ $\alpha \in S(X, Y_1, Y_2)$ by

$$\alpha = \begin{pmatrix} \{1,5\} & 2 & 3 & \{4,6\} & 7 \\ 1 & 4 & 5 & 6 & 7 \end{pmatrix}$$

$$\alpha = \begin{pmatrix} \{1,5\} & 2 & 3 & \{4,6\} & 7 \\ 1 & 4 & 5 & 6 & 7 \end{pmatrix}.$$

$$\alpha^2 = \begin{pmatrix} \{1,3,5\} & \{2,4,6\} & 7 \\ 1 & 6 & 7 \end{pmatrix}.$$

Thus $X\alpha \cap (Y_1 \cup Y_2) = \{1, 4, 5, 6\} = (Y_1 \cup Y_2)\alpha$. So α is regular. But α is not left regular and right regular, since $Y_1\alpha = \{4,6\} \neq \{6\} = Y_1\alpha^2$ and $\pi_{\alpha}(Y_1) = \{\{2\}, \{4,6\}\} \neq \{6\}$ $\{\{2,4,6\}\} = \pi_{\alpha^2}(Y_1).$

The following examples show that the finiteness of $X\alpha$ in Corollary 3.3.11 and 3.3.12 is necessary.

Example 10. (a) Let $X = \mathbb{N}$, $Y_1 = \{1, 2\}$ and $Y_2 = \{3, 4\}$. Define $\alpha \in S(X, Y_1, Y_2)$ by

$$\alpha = \begin{pmatrix} \{1,2\} & \{3,4\} & n \\ 2 & 3 & n-4 \end{pmatrix}_{n \in \mathbb{N} \setminus \{1, 2, 3, 4\}}.$$

Then

$$\alpha^2 = \begin{pmatrix} \{1, 2, 5, 6\} & \{3, 4, 7, 8\} & n \\ 2 & 3 & n - 8 \end{pmatrix}_{n \in \mathbb{N} \setminus \{1, 2, \dots, 8\}}.$$

Thus $X\alpha = \mathbb{N} = X\alpha^2$, $Y_1\alpha = \{2\} = Y_1\alpha^2$ and $Y_2\alpha = \{3\} = Y_2\alpha^2$. So α is left regular. But α is not regular since $X\alpha \cap (Y_1 \cup Y_2) = \{1, 2, 3, 4\} \neq \{2, 3\} = (Y_1 \cup Y_2)\alpha$.

(b) Let $X=\mathbb{N},\ Y_1$ the set of all positive even integers, $Y_2=\{1\}.$ Define $\alpha\in S(X,Y_1,Y_2)$ by

$$\alpha = \begin{pmatrix} 1 & n \\ 1 & 2n \end{pmatrix}_{n \in \mathbb{N} \setminus \{1\}}$$

Then

$$\alpha^2 = \begin{pmatrix} 1 & n \\ 1 & 4n \end{pmatrix}_{n \in \mathbb{N} \setminus \{1\}}$$

Thus $\pi_{\alpha} = \{\{n\} \mid n \in \mathbb{N}\} = \pi_{\alpha^2}, \ \pi_{\alpha}(Y_1) = \{\{n\} \mid n \in \mathbb{N} \setminus \{1\}\} = \pi_{\alpha^2}(Y_1) \text{ and } \pi_{\alpha}(Y_2) = \{\{1\}\} = \pi_{\alpha^2}(Y_2).$ So α is right regular. But α is not regular since $X\alpha \cap (Y_1 \cup Y_2) = \{1\} \cup \{2n \mid n \in \mathbb{N} \setminus \{1\}\} \neq \{1\} \cup \{4n \mid n \in \mathbb{N}\} = (Y_1 \cup Y_2)\alpha.$

Theorem 3.3.13. Let $\alpha \in S(X, Y_1, Y_2)$ be such that $X\alpha$ is finite. Then α is left regular if and only if α is right regular.

Proof. Assume that α is left regular. Then $X\alpha = X\alpha^2$, $Y_1\alpha = Y_1\alpha^2$ and $Y_2\alpha = Y_2\alpha^2$ by Theorem 3.3.6. Since $X\alpha$ is finite, we may write $X\alpha = \{a_1, ..., a_m, b_1, ..., b_n, e_1, ..., e_t\}$ where $Y_1\alpha = \{a_1, ..., a_m\}$ and $Y_2\alpha = \{b_1, ..., b_n\}$. By Lemma 3.3.9 (1), we can write

$$\alpha = \begin{pmatrix} A_1 & \dots & A_m & B_1 & \dots & B_n & E_1 & \dots & E_t \\ a_1 & \dots & a_m & b_1 & \dots & b_n & e_1 & \dots & e_t \end{pmatrix}$$

where $A_i \cap Y_1 \neq \emptyset \neq B_j \cap Y_2$, $E_k \subseteq X \setminus (Y_1 \cup Y_2)$; $a_i \in Y_1$, $b_j \in Y_2$, $e_k \in X \setminus (Y_1 \cup Y_2)$ for all i = 1, ..., m, j = 1, ..., n and k = 1, ..., t. Since $|y\alpha^{-1} \cap Y_1\alpha| = |A_i \cap \{a_1, ..., a_m\}| = 1$ where $y \in Y_1\alpha$ for all i = 1, ..., m, there is a permutation δ on the set $\{1, ..., m\}$ such that $a_i \in A_{i\delta}$ for all i. So we obtain $A_i\alpha^2 = \{a_{i\delta}\}$. Since $|y\alpha^{-1} \cap Y_2\alpha| = |B_j \cap \{b_1, ..., b_n\}| = 1$

where $y \in Y_2\alpha$ for all j = 1, ..., n, there is a permutation σ on the set $\{1, ..., n\}$ such that $b_j \in B_{j\sigma}$ for all j. So we obtain $B_j\alpha^2 = \{b_{j\sigma}\}$. Similarly, since $|x\alpha^{-1} \cap X\alpha \setminus (Y_1 \cup Y_2)\alpha| = |E_k \cap \{e_1, ..., e_t\}| = 1$ where $x \in X\alpha \setminus (Y_1 \cup Y_2)\alpha$ for all k = 1, ..., t, there is a permutation γ on the set $\{1, ..., t\}$ such that $e_k \in E_{k\gamma}$ for all k. Thus $E_k\alpha^2 = \{e_{k\gamma}\}$. So

$$\alpha^2 = \begin{pmatrix} A_1 & \dots & A_m & B_1 & \dots & B_n & E_1 & \dots & E_t \\ a_{1\delta} & \dots & a_{m\delta} & b_{1\sigma} & \dots & b_{n\sigma} & e_{1\gamma} & \dots & e_{t\gamma} \end{pmatrix}.$$

That is $\pi_{\alpha}(Y_1) = \{A_1, ..., A_m\} = \pi_{\alpha^2}(Y_1), \ \pi_{\alpha}(Y_2) = \{B_1, ..., B_n\} = \pi_{\alpha^2}(Y_2) \text{ and } \pi_{\alpha} = \{A_1, ..., A_m, B_1, ..., B_n, E_1, ..., E_t\} = \pi_{\alpha^2}.$ Hence α is right regular.

Conversely, assume that α is right regular. Then $\pi_{\alpha} = \pi_{\alpha^2}$, $\pi_{\alpha}(Y_1) = \pi_{\alpha^2}(Y_1)$ and $\pi_{\alpha}(Y_2) = \pi_{\alpha^2}(Y_2)$. Since $X\alpha$ is finite, we obtain $\pi_{\alpha} = \pi_{\alpha^2}$ is finite. Then by Lemma 3.3.10 (1), we can write

$$\alpha = \begin{pmatrix} A_1 & \dots & A_m & B_1 & \dots & B_n & E_1 & \dots & E_t \\ a_1 & \dots & a_m & b_1 & \dots & b_n & e_1 & \dots & e_t \end{pmatrix}$$

where $A_i \cap Y_1 \neq \emptyset \neq B_j \cap Y_2$, $E_k \subseteq X \setminus (Y_1 \cup Y_2)$; $a_i \in Y_1$, $b_j \in Y_2$, $e_k \in X \setminus (Y_1 \cup Y_2)$ for all i = 1, ..., m, j = 1, ..., n and k = 1, ..., t. Since $|y\alpha^{-1} \cap Y_1\alpha| = |A_i \cap \{a_1, ..., a_m\}| = 1$ for all $y \in Y_1\alpha$, $|y\alpha^{-1} \cap Y_2\alpha| = |B_j \cap \{b_1, ..., b_n\}| = 1$ for all $y \in Y_2\alpha$ and $|x\alpha^{-1} \cap X\alpha(Y_1 \cup Y_2)\alpha| = |E_k \cap \{e_1, ..., e_t\}| = 1$ for all $x \in X\alpha \setminus (Y_1 \cup Y_2)\alpha$. So by the same proof as given above

$$\alpha^2 = \begin{pmatrix} A_1 & \dots & A_m & B_1 & \dots & B_n & E_1 & \dots & E_t \\ a_{1\delta} & \dots & a_{m\delta} & b_{1\sigma} & \dots & b_{n\sigma} & e_{1\gamma} & \dots & e_{t\gamma} \end{pmatrix}$$

where δ is a permutation on the set $\{1,...,m\}$, σ is a permutation on the set $\{1,...,n\}$ and γ is a permutation on the set $\{1,...,t\}$. Thus $Y_1\alpha=\{a_1,...,a_m\}=Y_1\alpha^2, Y_2\alpha=\{b_1,...,b_n\}=Y_2\alpha^2$ and $X\alpha=\{a_1,...,a_m,b_1,...,b_n,e_1,...,e_t\}=X\alpha^2$. Hence α is left regular.

Copyright[©] by Chiang Mai University All rights reserved