CHAPTER 3

Main Results

In this chapter, we study transformation semigroups with two invariant subsets and
describe Green’s relations £ and R, and group H—classes of S(X,Y7,Y3). Moreover,
we characterize regular, left regular, right regular and completely regular elements on
S(X,Y1,Y2) and consider the relationships of these elements. Moreover, we count the

numbers of regular elements of S(X,Y7,Y5) when X is a finite set.

3.1 Transformation Semigroups with Two Invariant Subsets
For two nonempty subsets Y7, Y5 of X with Y1 NY; =0, let
S(X,Yl,}fg) = {Oé = T(X) | Yia CY,Yoa C YQ}

For o, € S(X,Y1,Y3), we have Yiaa C Y7, Yoa C Y5, V18 C Yy and Y28 C Y, So
Yiaf C Y15 CY) and Yoo C Y C Yo, hence aff € S(X,Y1,Y32). Then S(X,Y1,Ys) is a
semigroup of total transformations on X which leave subsets Y7, Y5 of X invariant. Note
that idx, the identity map on X, belong to S(X,Y7,Y2) and S(X,Y7,Y2) = S(X, Y1) N
S(X,Ys).

As in A. H. Clifford and G. B. Preston [2] vol. 2, p. 241, we shall use the notation

X

a;
to mean that o € T'(X) and take as understood that the subscript i belongs to some
(unmentioned) index set I, the abbreviation {a;} denotes {a; | i € I'}, and that Xa = {a;}
and a;a 1 = X, for all i € I.

With the above notation, for any a € S(X,Y7,Y3) we can write

A; B; C, D En
o = s
a; bj . di em
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where A; Y1 # 0 # BjNYy; Cy, Dy, By € X\ (Y1 UY2); {ai} € Y1,{bj} C Yz,
{er} SYi\{ai}, {di} C Yo\ {b;} and {e;,} € X\ (Y1 UY3). Here, I and J are nonempty
sets, but K, L or M can be empty.

Example 1. Let X ={1,2,3,4}, Y1 = {1,2}, Y5 ={3} and Y = {1, 2, 3}. Define
{1,2} {3,4} ({12} {3,4}
1 gl 3 |
Hence Yio = {1} C Y}, Yoa = {3} = Yy and Ya = {1,3} C Y, s0o a € S(X,¥},Y3) N
S(X,Y). Since Y8 = {1,3} C VY, V18 = {3} € V; and Y28 = {1} € Yz, we have
BeS(X,Y)\S(X,Y,,Ys). Thus S(X,Y,Ys) € S(X,Y).

Note that if Y = Y7 UY5, then S(X,Y7,Ys) is a proper subsemigroup of S(X,Y)
since S(X,Y1,Ys) C S(X,Y) and there exists

1T aws
o= € S(X,Y)\ S(X, 11, Y2),
a b

where a € Y5 and b € Y;.

Remark 3.1.1. We note that if | X| =2, then |Y1| =1 =1|Y3| and X \ (Y1 UYs) =0. In

this case

a b
S(X7Y17Y2): )

where Y1 = {a} and Yy = {b}.
Theorem 3.1.2. S(X,Y1,Y5) has the zero element if and only if | X| = 2.

Proof. Assume that |X| = 2. Then |S(X, Y1, Y2)| = 1 which implies that S(X,Y7,Y2) has
the zero element.

Conversely, assume that S(X,Y7,Ys) has the zero element, say «. Suppose that
|X|>2 LetaeY,beYsand c € X \ {a,b}. We consider in three cases:
Case 1: c€ X\ (Y1 UY3). Define

Y1 X\Yl X\Y2 Y2
B = ;Y=
a b a b

Then 5,7 € S(X,Y1,Y3) and 8 # +. Since « is the zero element, we have fa = a = yau.

But
Yl X\Yl X\YQ YQ
Yoo =

ao ba ao bay
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Since aa € Y1,ba € Y3 and Yy NYs = (0, we have aa # ba and hence Sa # ya which is a
contradiction.

Case 2: c € V7. Define

i X\ i X\Y
[)): y V=
a b c b

Then 3,7 € S(X,Y1,Y2) and B # 7. Since « is the zero element, we have aff = a = .
But Viaf = (Y1a)p8 = {a} and Yiay = (Yia)y = {c}. So Yia = Yiaf = {a} # {c} =
Yiay = Yi« which is a contradiction.

Case 3: c € Y5, Define

X\Y; Y, X\Y2 Yo
B= e

a b a c

Then 3,7 € S(X,Y1,Y3) and 8 # «. Since « is the zero element, we have aff = a = a.
But Yaa5 = (Yaa)B = {b} and Yooy = (Yaa)y = {c}. So Yaa = Yoaf = {b} # {c} =
Yooy = Yoo which is a contradiction.

Therefore, | X| = 2. O

3.2 Green’s Relations on S(X,Y},Y3)

In this section, we describe Green’s relations £ and R for S(X,Y;,Y3) and apply
these results to obtain its group H—classes. Since the identity map idx € S(X, Y1, Ys), it
follows that S(X,Y1,Y2)! = S(X, Y1, Ys).

Note that for each o, § € S(X,Y1,Ys), if aLB on S(X,Y1,Ys), then a = v and
B = o« for some v,0 € S(X,Y1,Y2) = S(X, Y1) N S(X,Ys2) and so aLB on S(X,Y7) and
alB on S(X,Y3). Also, if aRfS on S(X,Y1,Ys), then aRS on S(X,Y;) and aRS on
S(X,Y3).

Theorem 3.2.1. Let o, f € S(X,Y1,Y2). Then o = ~f for some v € S(X,Y1,Ys) if
and only if Xa C XB, Yia C Y108 and Yoa C Y38. Consequently, oLB if and only if
Xa=Xp, Yia=Y158 and Yoa = Yo /3.

Proof. Assume that o = v for some v € S(X,Y1,Y2). Since S(X,Y7,Y2) = S(X, Y1) N
S(X,Y3), we have v € S(X,Y1) and v € S(X,Y2) such that a« = y3. By Theorem 2.4.7,
we have Xa C X3, Yia C Y18 and Yoo C Y50.

Conversely, suppose that Xa C X3, Yia C Y18 and Yoa C Y25, So
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Yialy, C Yif8ly; and Yaaly, C Yaf|y, where aly,, Bly, € T(Y1) and aly,, Bly, € T(Y2).
Then there exist 41 € T'(Y1) and 92 € T(Y2) such that aly, = 01(8|y,) and a|y, = 62(8lv),
that is, y1a = (y101)8 for each y; € Y7 and yoax = (y202)5 for each y, € Yo. Now, for
each z ¢ Y] UY5, there exists 2/ € X such that za = 2/ since Xa C X 3. Then for each
z € X\ (Y1UY3), choose such an z’ and extend 01 € T'(Y1) and d2 € T(Y2) to v € T(X) by

xdy, ifx ey,
TY = 9§ xdy, ifx€Ys,
gy ifreX) (YhUuYs):
For each 41 € Y7, we have y1v = y101 € Y7, that means Y1y C Y;. For each 2 € Y5,
we get Yoy = Y202 € Yo and hence Yoy C Y. Thus v € S(X,Y7,Y3). For each z € X, if
x € Yy, then 2(v3) = (zv)8 = (61)8 = x(0108) = xa, if @ € Y3, then x(yf5) = (xv)8 =
(x02) = x(028) = zav, and if © € X \ (Y7 UY2), then z(78) = (zv)5 = '8 = za. So
a = [ as required. O

Example 2. Let X = {1,2,3,4,5,6}, Y1 = {1,2,3} and Y2 = {4,5}. Define

’ )

2 1 45 6 1M A2 /5 476 2801 fF4 6

{1,2}34566 1 {23} 4 5 6 (1 2 3 {45} 6

Then o, 8,7 € S(X,Y1,Ys) and Xa = {1,2,4,5,6} = XB, Yia = {1,2} = Y18, Yo =
{4,5} = Y28. So aLpB. Since Yoa = {4,5} # {4} = Y57, we have o and 7 are not
L—related on S(X,Y7,Y3).

We note that for any a € S(X,Y7,Y>), the symbol 7, denotes the decomposition of
X induced by the map «, namely

To = {za™ |z € Xa}.
For a nonempty subset Z of X, we denote 7, (Z) by
10(Z) = {za™t |2 € Xan Z}.

Thus 74(Y1) = {za™! | # € Xan Y1} and 74(Y2) = {za™! | 2 € XanYsy}. For
a,B€S5(X,1,Ys), AC 1, and B C 7g, we say that A refines B if for each A € A there
exists B € B such that A C B.
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Theorem 3.2.2. Let o, § € S(X,Y1,Ys). Then a = v for some v € S(X,Y1,Ys) if
and only if mg refines mq, m3(Y1) refines mo (Y1) and wz(Ya) refines mo(Y2). Consequently,
aRpB if and only if 7o = 7, Ta(Y1) = 75(Y1) and 14 (Y2) = 15(Y2).

Proof. Assume that a = v for some v € S(X,Y1,Y2). Since S(X,Y1,Ys) = S(X, Y1) N
S(X,Y2), we obtain v € S(X, Y1) and v € S(X,Y2) such that &« = . Then by Theorem
2.4.8, we have 7g refines 7, m3(Y1) refines 7, (Y1) and 75(Y2) refines 7, (Y2).

Conversely, assume that the conditions hold. For each z € X, there exists z € X
such that = = z8. Define v: X — X by

za, ifze Xg,
xy =
zf, ifxe X\ Xg.

If 218 = & = 223, then 21, 20 € B~ '. Since mg refines 7., we have zB~1 C 2’a~! for some
2’ € Xa. Thus 21,29 € 2’a”! and hence zja = 200 = 2. So v is well-defined. Now, we
prove that v € S(X,Y1,Ys). Foreachy € Y; (i = 1,2), we havey € X\ Xf ory € X3NY;.
If y € X\ XB, then yy = yB € Y; since § € S(X,Y1,Ys). If y € X5NY;, then there exists
z € X such that y = 3. Since m5(Y;) refines o (Y;), we have z € y8~! C y'a ! for some
y € XanY;. Thus yy = 28y = za =9 € Y;. So Y17 C Y; and Yoy C Y5 and hence
v € S(X,Y1,Y2). Also, we have z(f7v) = (zf)y = za for all x € X by the definition of
- O

Example 3. Let X ={1,2,3,4,5,6}, Y1 ={1,2,3} and Y5 = {4,5}. Define

‘) )

1 2 5 6 e i} 2 34 51

(1,3} 2 {4,5} 6 o (1,3} 2 {4,5} 6 ({13 2 45 6

Then aaﬁafy = S(X, Yia YQ) and Ta = {{17 3}7 {2}7 {47 5}7 {6}} = 7B, ﬂa(yl) 3 {{17 3}7 {2}}
= m3(Y1), ma(Y2) = {{4.5}} = m3(Y2). So aRp. Since mo(Y2) = {{4,5}} # {{4},{5}} =
7,(Y2), we have o and v are not R—related on S(X,Y],Ys).

Corollary 3.2.3. Let o, 5 € S(X,Y1,Y3). Then aHp if and only if Xa = X, Yia =
Yl,B, YQO& = }/26 and Ta = T3, ﬂa(Yl) = WB(YI); Wa(}/g) = Wﬁ(YQ).

Example 4. Let X ={1,2,3,4,5,6}, Y1 ={1,2,3} and Y5 = {4,5}. Define

(1,2} 3 {4,5} 6
1 3 5 6

€ =
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Thus H. = {a € S(X,Y1,Y3) | Xa = Xe, Yia = Yie, Yoa = Yae and 7y = 7, mo(Y7) =
(Y1), ma(Ya) = 7 (Y2)} and then

g ) (2 3 {451 6 (1,2} 3 {45} 6
E 1 3 5 6/ \3 1 5 6|

To describe group H—classes of S(X,Y1,Ys), we let
G(A,B,C) ={p e G(A) | plp € G(B) and p|c € G(C)},

where B,C' C A for some A C X, BCY; and C CY;. Then G(A, B, C) is a subgroup of

the permutation group G(A).

Theorem 3.2.4. Let € be an idempotent in S(X,Y1,Y2). Then the group H—-class H is
isomorphic to G(A, B,C) for some A C X,BC Y NAC CYonA. In this case, A is a

cross—section of me.

Proof. Since € is an idempotent, we can write

Az’ Bj Ck
€ = )
a; bj Cl

where a; € A; N Y7, bj ijmYQ and c¢g ECng\(YlLJYQ) for aliel,jeJ, ke K.
Let B = {a;} €Y, C = {bj} €Yy and A = {a;} U{bj} U{cr} = Xe C X. Since
H.= L.N R, we have by Corollary 3.2.3 that

) }
H. = |0 € G(B), 7€ G(C), § € GA\(BUC)) b

a;o by o

Let p=0U~UJ. Then p € G(A, B,C) and

AZ' Bj Ck
iy = |pe G(A,B,C) ;.
aip bip cpp

Define ¢ : H. — G(A, B, C) by
A, B;j Cyg
— p.
aip bip cpp

It is clear that v is bijective. Let p,d € G(A, B,C) and

A B, C A, B; C
R 7 em.
aip bjp cgp a;0 bjo cpo
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Then

aip bjp cxgp) \aid bj6 o a;i(pd) bi(pd) cx(pd)
and
A; B; c A; B C Ai Bj C
Lo Je=pi= C o
a;(pd) bj(pd) cr(pd) aip bjp ckp a0 bjd o

Thus H, is isomorphic to G(A, B, C). Since ANA; = {a;}, ANB; = {b;} and ANC}, = {c}

foralliel, je J, ke K, we have A is a cross—section of . O

Remark 3.2.5. We note that when
€ =idxy = ,

where Y1 = {a;}, Yo = {bj} and X \ (Y1 UY32) = {c}, then the group H—class H. is the
group of units of S(X,Y1,Y2) by Lemma 2.3.3. In this case

a; Abgat Ly
H, = |o e G(X,Y1,Y2)
aijoc bjo cpo

is isomorphic to G(X,Y1,Y3).

3.3 Regularity of S(X,Y;,Y3)

In this section, we give necessary and sufficient conditions for elements in S(X, Y7, Y3)

to be regular, left regular, right regular and completely regular.

Theorem 3.3.1. Let o € S(X,Y1,Ys). Then « is a reqular element if and only if
Xan (Yl U YQ) & (Y1 U }/2)()[

Proof. Assume that « is regular. Since S(X,Y7,Y3) = S(X,Y7) N S(X,Ys), we have
a € S(X,Y1) and o € S(X,Ys2). By Theorem 2.4.3 (1), we have XaaNY; = Yia and
XanYs =Ysa. Thus Xan(Y1UYs) = (XanY)U(XanYs) =YiaUYsa = (Y1 UY2)a.
Conversely, assume that Xa N (Y7 UY2) = (Y1 UY2)a. Then we can write
AZ' Bj Ck

o = s
a; bj Cl
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where Az N Yi 7é (Z) 7'é Bj N YQ, Ck Q X\(Yl UYQ), {al} Q Yi, {b]} g Y2 and {Ck} g
X\ (Y1UY3). Choose ig € I and jo € J and let I’ =1\ {ip} and J' = J\ {jo}. Define

B . (071 bj/ Cl Yl \ {ai/} X \ (Yi U {bj/} U {Ck})
Tir Y5 2k Lig Yjo
where z; € A;NY1, y; € BjNYs and 2z, € Cp forall i € I, j € J, k € K. Then

p e S(X,Y1,Y2) and o = afa. Therefore, « is regular. O

Example 5. Let X = {1, 2, 3, 4}, Y1 = {1, 2} and Y> = {3}. Define o, 8 € S(X,Y1,Y3)
by
1 2 {34} X {1,2} 3 4

1 2 3 1 3 2
Then Xa N (Y1 UY2) = {1, 2, 3} = (Y1 UYs)a. So « is a regular element. Since

XBN(Y1UYs) ={1,2,3} # {1,3} = (V1 UY2)B,
we have f3 is not a regular element.

Theorem 3.3.2. S(X,Y1,Ys) is a regular semigroup if and only if X = Y1 UYs or
Y| =1=[Y3].

Proof. Suppose that (X # Y, UYs) and (|Y1| > 1 or |Ya] > 1). If |Y7]| > 1, then there are
a, b € Y7 such that a # b. Let ¢ € Y5. Then we define

1 Yo X\ (1UuYs)

Q
I

a c b
Hence a € S(X, Y1, Ya). Since Xa N (Y1 UY32) = {a,b,c} # {a,c} = (Y1 UY2)a, we have
by Theorem 3.3.1 that « is not a regular element. If |Y3| > 1, then there are d, e € Y3
such that d # e. Let f € Yi. Define

i 2 X\(iuYs)

f~gd e

b=

Then 8 € S(X,Y1,Y2). Since XN (Y1 UY2) ={d,e, f} # {d, f} = (Y1 UY32)B, we have
f is not a regular element. Therefore, S(X, Y1, Y3) is not a regular semigroup.
Conversely, assume that X =Y, UYs or |Y1| = 1 = |Ya|. Let @ € S(X,Y1,Ys). If
X =Y1UYs, then Xan (Y1UY2) = Xan X = Xa=Y1UYy)a. If V1| =1 = |Ya|,
say Y1 = {a} and Y5 = {b}, then Xan (Y1 UY2) = Xan {a,b} = {a,b} = (Y1 UY2)ao.
Thus by Theorem 3.3.1, we have « is a regular element and hence S(X, Y7,Y3) is a regular

semigroup. O
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Let
Reg S(X, Yl,YQ) = {()z € S(X Yl,}/é) ’ Xan (Yl UYé) = (Yi U YQ)()/,}.

Then Reg S(X,Y1,Y3) is the set of all regular elements of S(X, Y7, Ys).
Example 6. (a) Let X = {1, 2, 3, 4}, Y7 = {1, 2} and Y2 = {3}. Define

{1,2} 3 4 ; 1 {2.4} 3

1 34/  \2 1 3

Then we have «, f € Reg S(X, Y1, Y2), but

(1,2} 3 4
af = ¢ Reg S(X, 11, Y3).
2 1

(b) Let X = N denote the set of positive integers, Y1 = {1,2} and Y5 = {3,4}.
Define

{1,2} {3,4} X\ {1,2,3,4} 1 {3,4} X\ ({1,3,4}
1 4 ) 2 3 1

Thus «, 8 € Reg S(X, Y7,Y3), but

1,2} {3,4) X\{1,2,3,4

Therefore, Reg S(X,Y1,Y2) in (a) and (b) are not subsemigroups of S(X, Y1, Ys).

We give a necessary and sufficient condition for Reg S(X,Y7,Y2) to be a regular

subsemigroup as follows.

Theorem 3.3.3. The following statements are equivalent;
(1) Reg S(X,Y1,Y2) is a regular subsemigroup of S(X,Y1,Y3).
(2) S(X,Y1,Y3) is a regular semigroup.
3) X =Y1UY; or|Y1]| =1=1Ya|.

Proof. (2) < (3) By Theorem 3.3.2, we have S(X,Y7,Y2) is a regular semigroup if and
only if X =Y UYs or |V1]| =1 = |Y3].
(1) = (3) Assume that (Y7 UYs € X) and (|Y1| > 1 or |Yo| > 1). If |V7] > 1,
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then there exist a,b € Y] such that a # b. Let ¢ € Y5 and e € X \ (Y1 UY3). Define
O‘vﬂ € Reg S(X7 Y17Y2) by

o Y1 Y, X\(Y1UY2) 5= a Yo X\({Q}UYQ)
a c e a c b

Then

i Y2 X\(huYy)

a c b
So Xap N (Y1 UYs) ={a,b,c} # {a,c} = (Y1 UY2)al and hence aff ¢ Reg S(X, Y1, Ya).
If |Ya| > 1, then there exist ¢,d € Y3 such that ¢ #d. Let a € Y} and e € X \ (Y7 U Y2).
Define «, 8 € Reg S(X,Y1,Y3) by

non XAMUR)) (e X\iUfe
a c e a c d

Thus
ap= |12 XN e 52,11, 1)
a c d
Therefore, Reg S(X,Y1,Y>) is not a regular semigroup.
(3) = (1) Assume X = Y, UY; or |Vi] = 1 = |Ya|. By Theorem 3.3.2, we have

Reg S(X,Y1,Ys) = S(X, Y1, Ys) and thus Reg S(X, Y7, Y2) is a regular subsemigroup. [
Remark 3.3.4. Let |X| =n, [Yi| = m1 and |Ya| = my. Then
ST, Yo | e vie P ™ ™2

Theorem 3.3.5. Let |X| = n, |Yi| = m1 and |Yo| = ma. Then the number of reqular
elements in S(X,Y1,Ys) is

mi1  mo
Z Z (m1> (m2>r1!S(m1, r1)r2)S(ma, ro)(n — my — mg 4+ ry + 1) T2,
(] ro

ri=1rs=1
Proof. Assume that |X| = n, |Y1| = my and |Ya| = ma. Let Y; C Y}, Y, C Y5 be such
that |Y{| = r1, |[Yy| = r2. Then the number of maps from Y; onto Y] is 71!S(my, 1) and
the number of maps from Y3 onto Y, is r9!S(msg, ). Then the number of maps from
a:YiUYs — Y] UY5 such that Yia = Yll and Yoo = YQ’ is r11S(my, r1)r2!lS(me, ra). We
see that

(X\(VTUY2)U (Y UYy) = X\ (Y1 UYa)[ + Y]]+ [Ya| = n—my —ma + 71 + 1o
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So it follows that the number of maps o : X — X such that Yia = Y], Yaa = Y; and
Xan(Y1UuYs) = (Y1UYs)a is

rilS(my.r1)ra!lS(ma, ra)(n — my —my +ry 4 12)" T2,

Thus the number of maps a € Reg S(X, Y7, Y3) such that Xan (Y1 UYs) = Yll U Y2’ is

r1!S(my, r1)ra!S(ma, r2)(n — my —ma + 1y 4 7o) T2,

Consequently, for 1 <r; < mj and 1 < 79 < mg, the number of maps o € Reg S(X, Y1, Y2)
such that [ XanN (Y1 UYs)| =mr1 4 ro is

<T1> (?;'"12)7“1!5(7”17 r1)12! S (ma, o) (0 — my — mg + 1y Hrg)" T2,
1 2

Therefore, the number of regular elements in S(X,Y7,Y3) is

mi1 mo
m m

Z Z <r 1) <r2>r1!5(m1, r1)r2lS(ma, r2)(n — my — ma 4+ rp + 1) T2,
1 2

ri=1re=1

O

Example 7. Let X = {1, 2, 3, 4}, Y1 = {1, 2} and Y» = {3}. Then |X| =4, |V}| =2
and |Y2| = 1. So
1IS(X,Y1,Ys)| =22 11 447271 = 4(4) = 16

T;jg S(X. Y. Ys)| = 22: 21: (2> <7'12)7“1!S(2,7‘1)7“2!8(1,7‘2)(4 B
_ 2:1 <2) G)rl!S(z,rl)l!S(L (1471 + 1)
2) <1> 115(2, )1IS(1,1)(1 + 1+ 1)]

|
’, [ 2) (1) 215(2,2)115(1,1)(1 + 2 + 1)]
6+8

Then we have

12 3 4\ (1 2 3 4\ ({12} 3 4\ ({12} 3 4
Reg S(X7 Yl’YZ) = ) ) ; ;
1 2 3 4 21 3 4 1 3 4 2 3 4
m2r 3y (L2 Gy (L2 3\ ({124 3
1 3 )\ 2 s )V 1 3\ 2 3)
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12 (3,4} (1 2 {341\ ({14 2 3\ ({14} 2 3
12 3 21 3 1 23\ 2 13

9

1 {2,4} 3 1{2,4}3}
1 2 3/ \2e 1 3/)

Theorem 3.3.6. Let o € S(X,Y1,Ys). Then the following statements are equivalent:
(1) « is left regqular;
(2) Xa = Xa?, Yia = Yia? and Ysa = Ysa?;
(3) a? € L.

Proof. (1) = (2) Assume that « is left regular. Since o € S(X,Y]) and a € S(X,Y3), we
have Xa = Xo?, Yia = Yia? and Ysa = Yoa? by Theorem 2.4.12.

(2) = (3) Assume that Xa = Xa?, Yia = Y102 and Yoo = Y302, Then by Theorem
3.2.1, we obtain that aLa?, that is & € L.

(3) = (1) Assume that a® € L,. Then a = fa? for some 8 € S(X,Y;,Ys)! =
S(X,Y1,Ys) since S(X,Y1,Ys) contains an identity. So « is left regular. O

Theorem 3.3.7. Let o € S(X,Y1,Ys). Then the following statements are equivalent:
(1) « is right regular;
(2) ma =72, Ta(Y1) = 72 (Y1) and 7o (Y2) = 742(Y2);
(3) a® € R,.

Proof. (1) = (2) Assume that « is right regular. Since a € S(X,Y7) and a € S(X,Y3),
we have o = 7,2, 7o (Y1) = m2(Y1) and 74 (Y2) = 7,2(Y2) by Theorem 2.4.13.

(2) = (3) Assume that 74 = 72, To(Y1) = mo2(Y7) and 7, (Y2) = 742(Y2). Then
by Theorem 3.2.2, we obtain that a’Ra?, that is o € R,.

(3) = (1) Assume that a®> € R,. Then a = a?3 for some € S(X,Y1,Ys)! =
S(X,Y1,Ys). Thus « is right regular. O

Example 8. (a) Let X = {1, 2, 3,4, 5}, Y1 = {1, 2} and Y> = {3}. Define a € S(X,Y1,Y2)
by

1 {2,5} {3,4}

2 1 3
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Then
o 1 {2,5} {3,4}
1 2 3
Thus Xa = {1,2,3} = Xa?, Yia = {1,2} = Yia? and Ysa = {3} = Yaa? and 7, =
{13:{2,5) {3,4}} = ma2, ma(V1) = {{1},{2,5}} = 7a2(V1) and 7a(Y2) = {{3,4}} =

72 (Y2). So « is left regular and right regular.

(b) Let X =N, Y7 ={1,2,3,4}, Y5 = {5,6}. Define o € S(X,Y1,Y2) by

1 2.3 {47 {56} n
124 3 5 n—1

a —
neN\{1, 2, ..., 7}

Then
: 1 2 {3,8 {4,7} {5,6} =n

IO a—
1 2 3 4 5) n—2
neN\{1, 2, ..., 8}

Thus Xa =N\ {6} = Xa?, Yia = {1,2,3,4} = Y1a? and Ysa = {5} = Yaa?. So «a is left

regular. But « is not right regular since

77(1(}/1) i {{1}? {2}7 {3}7 {47 7}} # {{1}7 {2}7 {37 8}? {47 7}} = a2 (Yl)

(c) Let X =N, Y7 the set of all positive even integers, and Y5 the set of all positive
odd integers. Define a € S(X,Y7,Y3) by

n
o =
n+ 2
neN
Then
n
a? =
n+4
neN

Thus 7o = {{n} | n € N} = mp2, 7o(Y1) = {{2n} | n € N} = 7m,2(Y1) and 7w, (Y2) =
{{2n — 1} | n € N} = m,2(Y2). So «a is right regular. But « is not left regular since
Yia={2n+2|neN} # {2n+4|n € N} = Y12,

Corollary 3.3.8. Let a € S(X,Y1,Y2). Then the following statements are equivalent:
(1) « is completely regular;
(2) « is left reqular and right regular;

(3) Xa = Xa?, Yia = Y102, Yoa = Ysa? and 71y = 72, Ta(Y1) = 72 (Y1), 7a(Ya) =
Waz(Yé),'
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(4) o* € H,.

Proof. (1) = (2) Assume that « is completely regular. By Theorem 2.2.1, we obtain that
« is left regular and right regular.

(2) = (3) Assume that « is left regular and right regular. Then by Theorem
3.3.7 and 3.3.8, we have that Xa = Xa?, Yia = Yia?, Yoa = Y02 and 7, = 7,2,
Ta(Y1) = ma2 (Y1), ma(Y2) = ma2(¥2).

(3) = (4) Assume that Xa = Xa?, Yia = Yia?, Yaa = Yaa? and 7, = 7,2,
7o (Y1) = 7a2(Y1), 7o (Ya) = 7ma2(Y2). Then by Theorem 3.2.1 and 3.2.2, we obtain aLa?
and aRa?, this is, aHa?. Hence o? € H,.

(4) = (1) Assume that o € H,. Then aHa?, this is, aLa? and aRa? and hence
a = Ba? and a = a?y for some 3,7 € S(X, Yy, Yz)! = S(X,Y1,Ys). Thus a is left regular

and right regular. Hence by Theorem 2.2.1, we obtain « is completely regular. O

To prove that « € S(X,Y1,Ys) is left regular if and only if « is right regular when

X« is finite, we begin with the following two lemmas.

Lemma 3.3.9. Leta € S(X,Y1,Y2). If Xa = Xa? is finite, Yoo = Y102 and Yoo = Yo02,
then

(1) (X\(MuYz))eC [X\ (1UY)]U (Y1 UYp)e;

(2) Xa\(V1UY2)a C X\ (Y1 UYs)a)a™L;

(3) lya™tN (Y1 UYs)a|l =1 for ally € (Y1 UY2)a;

4) |za~' N (Xa\ (Y1 UYa)a)| =1 for all z € Xa'\ (Yi U Ys)a.

Proof. Assume that Xa = Xao? is finite, Yia = Y102 and Yoa = Ysa?.

(1) Since a € S(X,Y7) and a € S(X,Y3), we have (X \ Y1)a C (X \ 1) U Y1
and (X \ Y2)a C (X \ Y2) U Yoa by Lemma 2.4.14 (1). To prove that (X \ (Y3 UY2))a C
X\ (V1UY2)|U(Y1UY2)a, let z € (X\ (Y1UY32))o. Then z = za for some z € X\ (Y1UY3).
Sox € (X\Y;)N(X\Y>), that means x € X \Y; and = € X \ Y5 such that z = z«. Thus
z€ (X\Y)aand z € (X \ Yz)a. Since (X \Yi)a C (X \ Y1) UYia and (X \ Ya)a C
(X \Y2) UYaer, we have z € (X \ Y1) UYia and z € (X \ Y2) U Yaer and hence

z € [(X\ Y1) UYia] N[(X \ Y2) U Yaq]

= [(X\ Y1) UYia) N (X \ Y2)] U [((X \ Y1) UYia) N Yaa
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= [(X\Y)N(X\Y2)]U[Y1an (X \Y2)]U[(X \Y1)N(Yae)]U[Y1aNYaa]
= X\(WNMUuY)]UYiaU Y
=X\ (1 UY2)]U (Y1 UYa)en

So (X'\ (Y1UY3))a C[X\ (Y1UY2)]U (Y1 UYz)e
(2) Since @ € S(X,Y7) and a € S(X,Y3), we have Xa \ Yia C X \ (Yia)a ! and
Xa\ Ysa C X\ (Yaa)a™! by Lemma 2.4.14 (2). Now we show that Xa \ (Y; UYs)a C
X\ (V1UYs)a)at as follows:
Xa\(1UYo)a = Xa\ (YiaU Yaea)

= (Xa\Yia) N (Xa\ Y20)
CX\(Ma)'nX\ (Yaa)a™t
= X\ (Via)a ' U (Yaa)a™)
=X\ (Via U Ysa))a™t

= X\ (N UYa)a)a .

Hence Xa\ (Y1UY2)a C X\ ((Y1UY3)a)a™t.
(3) Since a € S(X,Y1) and o € S(X,Ys), by Lemma 2.4.14 (3) we have
lyia™t NYial =1 for all y; € Yia and |y2a=t N Yaa| = 1 for all y» € Yoa. For each
y € (Y1 UY3)a, we have y € Yia U Ysa. If y € Yia, then
lya~l N (Y1UY2)a| = lya™ N (Yia U Yaa)|

=|(ya"t NYia)U (ya=! N Ys0)|
= lya~ N Yia|
=1

and if y € Yaa, then |ya='N(Y1UY2)a| = [ya= ' NYsa| = 1. Thus [ya ' N(1UY2)a| =1
for all y € (Y1 UY2)a.
(4) Since o € S(X,Y;) and o € S(X,Y2), we have [z~ N (Xa\ Yia)| = 1 for all
71 € Xa\ Yia and |r3a™ !N (Xa\ Yaa)| = 1 for all 23 € Xa'\ Yaa by Lemma 2.4.14 (4).
Let z € Xa\ (Y1UY2)a. Then z € Xa\ (YiaUYsa) = [(Xa\ Yia) N (Xa )\ Yaa)] and
hence z € X\ Vi and € X\ Yaa. Thus
lra™t N (Xa\ (Y1UYs)a)| = [za ™t N (Xa\ Yian Xa\ Yaa)|

<l|ra"lNXa\ Y
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=1.

To show that [za™1 N (Xa\ (Y1 UY2)a)| # 0 for all z € Xa '\ (Y1 UY2)a. Let
{za™ |2 € Xa\ (Y1 UYa)a} = {E1, By, ..., En}

and F;a = ¢; for all i = 1,2, ..., m. If there exists Fj, such that [Xa\ (Y1UY3)a]NE, =0,
then there are e,, e, € Xa '\ (Y1 UY2)a such that e, # e, and e,, e, € E; for some

1 €{1,2,..,m}. Then E,a? = (E,a)a = {e,}oa = {¢} and E,a? = (E,0)a = {e,}a =
{e;} and thus E,a? = E,a? which is a contradiction since Xa? = Xa is finite. So
lza™t N (Xa\ (Y1 UYa)a)| # 0 for all z € Xa'\ (Y1 U Yz)a. Therefore,
lra™t N (Xa\ (Y1 UY2)a)| = 1. O

Lemma 3.3.10. Let a € S(X,Y1,Y2). If mo = w2 is finite, mo(Y1) = 7,2(Y1) and
7704(1/2) i 7Ta2(1/2); then

(1) X\(MNUY))aC[X\(M1UY)]U(Y1UY2)a;

(2) Xa\ (YiUYa)a € X\ ((Y1UYa)a)a™;

(3) lya~' N (Y1 UYa)a| =1 for all y € (Y1 U Ya)a;

(4) lra~' N (Xa\ (Y1 UY2)a)| =1 for all z € Xa'\ (Y1 UYa)a.

Proof. Assume that m, = 7,2 is finite, mo (Y1) = 7,2(Y1) and 7, (Y2) = m,2(Y2). By
using the same proof as given for Lemma 3.3.9 and Lemma 2.4.15, we obtain (1)—(3) as
required.

(4) Since o € S(X,Y7) and a € S(X,Y3), we have [z~ N (Xa \ Yia)| = 1 for all
71 € Xa\ Yia and |z2at N (Xa\ Yaa)| =1 for all 73 € Xa\ Yaa by Lemma 2.4.15 (4).
Let v € Xa\ (YiUYs2)a. Then z € Xa \ (YiaUYsa) = [(Xa '\ Yia) N (Xa \ Yaa)] and
hence z € X\ Yia and z € Xa'\ Yaa. Thus

lza N (Xa\ (Y1UY2)a)| = lza™tn (Xa\Yian Xa\ Ya0)|

<l|lza'nXa\ Y|
= 1.

To show that [ra=t N (Xa\ (Y1 UY2)a)| # 0 for all ¥ € Xa '\ (Y1 U Y2)a. Let

{:ca_l |z € Xa\ (Y1 UYs)a} ={F, Es, ..., En}
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and F;a = ¢; for all i = 1,2, ..., m. If there exists Fj such that [Xa\ (Y1UY3)a]NE, =0,
then there are ey, e, € Xa '\ (Y1 UY2)a such that e, # e, and e,, e, € E; for some

1 €{1,2,...,m}. Then E,o? = (E,a)a = {e,}a = {¢} and E,0? = (Eya)a = {e,}a =
{e/}. So E, UE, C ¢;(a?)~1. This implies that |72| < |7,| which is a contradiction since
To = Ta2. S0 Jza ™t N (Xa\ (Y1 UY2)a)| # 0 for all x € Xa \ (Y1 U Y2)a. Therefore,
lra™t N (Xa\ (Y1 UY2)a)| = 1. O

Corollary 3.3.11. Let o € S(X,Y1,Y2) be such that X« is finite. If a is left reqular,

then « is regular.

Proof. Assume that o is left regular. Then Xa = Xa?, Yia = Yi0? and Yoa = Ya0? by
Theorem 3.3.6. Since (Y UY2)a =YiaUYoa C Y1 UY; and (V7 UYs)a C Xa, we have
(Y1UY2)ar € Xan(Y1UY32). To show that Xan(Y1UY2) C (Y1UY2)a, let y € Xan(Y1UYa?).
Ify ¢ (Y1UYs)a, then y € (X \ (Y3 UY3))a C [X\ (Y1UY3)]U (Y1 UYs)a by Lemma 3.3.9
(1). Thusy € X \ (Y1UY2) or y € (Y1 UYa)a. Since y € Y7 UYs, we get y € (Y1 UYs)w
which is a contradiction. So y € (Y7 UY2)a and that Xa N (Y7 UY2) C (Y1 UYs)a. Thus
Xan (Y1 UY;) = (Y7 UYs)a which implies that « is regular by Theorem 3.3.1. O

Corollary 3.3.12. Let o« € S(X,Y1,Y2) be such that ©, is finite. If « is right regular,

then « is reqular.

Proof. Assume that « is right regular. Then 7, = 7,2, 70 (Y1) = m,2(Y1) and 7, (Y2) =
72 (Y2). By using the same proof as given for Corollary 3.3.11 and Lemma 3.3.10 (1), we
get XanN (Y1 UY2) = (Y1 UY2)a and hence « is regular as required. O

The converse of Corollary 3.3.11 and 3.3.12 does not hold as shown in the example

below.

Example 9. Let X = {1, 2, 3,4, 5,6, 7}, Y1 = {2, 4, 6} and Y = {1, 3, 5}. Define
a€ S(X,,Ys) by
(1,5} 2 3 {4,6} 7
1 4 5 6 7

Then
{1,3,5} {2,4,6} 7

1 6 7
Thus Xa N (Y1 UYs) = {1,4,5,6} = (Y1 UYs)a. So a is regular. But « is not left
regular and right regular, since Yia = {4,6} # {6} = Y12 and 7, (Y1) = {{2},{4,6}} #
(2,4,6}} = mn (V).

a?
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The following examples show that the finiteness of X« in Corollary 3.3.11 and 3.3.12

is necessary.
Example 10. (a) Let X =N, Y] = {1, 2} and Y2 = {3, 4}. Define a € S(X,Y1,Y2) by

{1,2} {3,4} n

2 3 n—4
neN\{1, 2, 3, 4}

Then
{1,2,5,6} {3,4,7,8} n

2 3 n—2_8
neN\{1, 2, ..., 8}

Thus Xa = N = Xa?, Yia = {2} = Y1a? and Yaa = {3} = Y202 So a is left regular.
But « is not regular since Xa N (Y1 UY3) ={1,2,3,4} # {2,3} = (Y1 U Y2)a.

2

(b) Let X = N, Y7 the set of all positive even integers, Yo = {1}. Define o €
S(X,Y1,Y2) by

1 n
o =
1
neN\{1}
Then
1 n
o’ =
1
neN\{1}

Thus 7o = {{n} | n € N} = 72, 7o (Y1) = {{n} | n € N\ {1}} = 7,2(Y1) and 7, (Y2)
{{1}} = m2(Y2). So a is right regular. But « is not regular since Xa N (Y7 UYs) =
{I}U{2n|neN\{1}} #{1}U{4n | n e N} = (Y1 UY3)a.

Theorem 3.3.13. Let a € S(X,Y1,Y3) be such that X« is finite. Then « is left reqular

if and only if a is right reqular.

Proof. Assume that « is left regular. Then Xa = Xao?, Yia = Yia? and Yoa = Yoo?
by Theorem 3.3.6. Since X« is finite, we may write Xa = {ay, ..., am, b1, ..., by, €1, ..., €t}

where Yia = {a1, ..., an } and Yoo = {b1, ..., b, }. By Lemma 3.3.9 (1), we can write

iy BB . pBnpbig. R

o =
ar ... aym b1 .. b, e1 .. e

where 4; NY; #@#BjﬂYQ, E; QX\(YlLJYQ), a; € Y1, bj €Ys, er GX\(YlLJYQ) for
alli=1,..,m,j=1,...,nand k = 1,...,t. Since |[ya~! NYia| = |[4; N {a1,....,an}| =1
where y € Yia for all i = 1, ..., m, there is a permutation § on the set {1, ..., m} such that

a; € A;s for all i. So we obtain A;a? = {a;s}. Since |[ya™' NYaa| = |Bj N {b1, ..., b} =1
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where y € Ysa for all j =1, ..., n, there is a permutation o on the set {1,...,n} such that
bj € Bj, for all j. So we obtain Bja? = {bj,}. Similarly, since [ra !N Xa\ (Y1UY2)a| =
|ExN{eq,...;et}] =1 where x € Xa\ (Y1 UY3)a for all k =1, ..., ¢, there is a permutation
7 on the set {1,...,¢} such that e € Ej, for all k. Thus Eza? = {ex,}. So

A .. Ay B ... B, Ei ... E;
15 o Qms big ... bug €1y ... ey
That is 7o (Y1) = {41,..., A} = 72 (Y1), 70 (Y2) = {B1,..., By} = m2(Y2) and 7y =
{A1,....,Ap, B1,...;Bn, Er, ..., B;} = m,2. Hence « is right regular.

Conversely, assume that « is right regular. Then 7, = w,2, 7o (Y1) = 742(Y1) and
7a(Y2) = a2 (Y2). Since X« is finite, we obtain m, = 7,2 is finite. Then by Lemma 3.3.10

(1), we can write

A Sl By ... B, By L}

a ... am by ... by e ... e

where A;NY; #0 # B;NYs, B, C X\ (Y1UY3); a; € Y1, bj € Ya, e, € X\ (Y1 UY?3) for all
i=1,..,m,j=1,..,nand k =1,...,t. Since |[ya"'NYia| = |A;N{ay,...,an}| = 1 for all
y € Yia, lya ' NYaal = |BjN{b1,....b,}| = 1 for all y € Yo and [za ' NXa(Y1UY2)a| =
|Ex N{e1,...,er | =1 for all x € Xa'\ (Y1 UY2)a. So by the same proof as given above

A, ... An B .. B, E .. E
(115 ... Opny==bpp==r=" b,, e N ey

where 0 is a permutation on the set {1,...,m}, o is a permutation on the set {1,...,n}
and « is a permutation on the set {1,...,¢}. Thus Yia = {a1,...,an} = Y102, Yoo =
{b1,....b,} = Yoa? and Xa = {ay,...,am, b1, ..., bp,e1,....,e;} = Xa?. Hence a is left

regular. O
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