CONTENTS

	Page
Acknowledgements	c
Abstract in Thai	d
Abstract in English	f
List of tables	k
List of figures	1
List of abbreviations	o
Statement of originality in Thai	r
Statement of originality in English	S
Chapter 1 Introduction	1
1.1 Rationale of the study	1
1.2 Purposes of the study	4
1.3 Scope of the study	5
1.4 Hypothesis of the study	5
1.5 Anticipated outcomes	6
Chapter 2 Literature review	7
2.1 Cigarette smoke	7
2.2 Smoke, nicotine and catecholamine neurotransmitters	7
2.2.1 Smoke and nicotine	7
2.2.2 Catecholamine neurotransmitter	8
2.2.2.1 Dopamine	8
2.2.2.2 Adrenaline	8
2.2.2.3 Noradrenaline	8
2.3 Pathway of catecholamine synthesis	8

2.4 Dopamine pathway	11
2.5 Free radicals induced by smoking	11
2.5.1 Reactive oxygen species (ROS)	12
2.5.2 Reactive nitrogen species (RNS)	12
2.6 Smoking cessation	12
2.7 Pharmacotherapy with nicotine replacement therapy (NRT)	13
2.7.1 Varenicline tartarate	13
2.7.2 Bupropion HCl	13
2.7.3 Nortriptyline	13
2.7.4 Clonidine	13
2.8 Herb or natural plants	14
2.8.1 Peep (Millingtonia hortensis Linn.)	14
2.8.2 Shallot (Allium ascalonicim Linn.)	14
2.8.3 Snow lotus (Saussurea laniceps.)	14
2.8.4 Vernonia cinerea Less. (VC)	14
Chapter 3 Research methodology	17
3.1 Chemicals and equipment	17
3.2 Vernonia cinerea Less. preparation	19
3.3 Antioxidant activities and active compound in vitro assays	19
3.3.1 Antioxidant activities in vitro	19
3.3.1.1 Total antioxidant capacity (TAC)	19
3.3.1.2 Nitric oxide scavenging assay	20
3.3.1.3 Superoxide radical scavenging assay	20
3.3.1.4 Hydroxyl radical scavenging assay	20
3.3.2 Active compounds	21
3.3.2.1 Total phenolic	21
3.3.2.2 Total tannin	21
3.3.2.3 Catechins	21
3.3.2.4 Isoflavone	22
3.3.2.5 Flavonoid	22
3 3 2 6 Nitrita and Nitrata	22

3.3.2.7 Nicotine	23
3.3.2.8 Caffeine	23
3.4 Catecholamine and Oxidative stress assays	23
3.4.1 Animal preparation	23
3.4.2 Catecholamine assay	25
3.4.3 Malondialdehyde (MDA) by TBARs	26
3.4.4 Total antioxidant capacity (TAC)	26
3.5 Chromosome aberration assay	26
3.5.1 Animal preparation	26
3.5.2 Mammalian bone marrow chromosome aberration test	27
3.6 Statistical data analysis	28
3.7 Data collection location	28
Chapter 4 Results	29
4.1 Antioxidant activities and active compound in vitro	29
4.1.1 Antioxidant activities	29
4.1.2 Active compounds	30
4.2 Activities on catecholamine, oxidative stress and toxicity in	35
chromosome	
4.2.1 Activities on catecholamine in rats	35
4.2.2 Oxidative stress in rats	39
4.2.3 Toxicity on chromosome in rats	43
Chapter 5 Discussion and Conclusion	47
References	55
List of publications	66
Appendix	67
Curriculum Vitae	92

LIST OF TABLES

		Page
Table 3.1	Grouping and the number of Wistar rats in the experiment	24
Table 3.2	Grouping and the number of Wistar rats in the experiment	27
Table 4.1	Antioxidant activities of stem, flower and leaf extracts	30
Table 4.2	All active compounds of stem, flower and leaf extracts	34
Table 4.3	Catecholamine parameters (dopamine, noradrenaline and adrenaline)	36
	in non nicotine- or nicotine-treated rats with each extracts	
Table 4.4	Oxidative stress parameters; total antioxidant capacity (TAC)	40
	and malondialdehyde (MDA) in all groups	
Table 4.5	Mitotic index (MI); types of chromosomal aberration and damage	44
	in various extract-treated rats	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่
Copyright© by Chiang Mai University
All rights reserved

LIST OF FIGURES

		Page
Figure 2.1	Pathway of catecholamine synthesis	10
Figure 2.2	Dopamine pathway	11
Figure 2.3	Free radical propagation system from the fenton reaction	12
Figure 2.4	Characteristic of Vernonia cinerea Less.	15
Figure 4.1	Chromatography peaks between pure standard five catechins	31
	(ECG, EC, EGCG, C and EGC) (A) and mixed standard catechins	
	and VC leaf extract (B)	
Figure 4.2	Chromatography peaks between pure standard myricetin, quercetin	32
	and kaempferol and VC leaf extract at 1.25 mg/mL	
Figure 4.3	Chromatography peaks between pure standard nicotine (A) and	33
	mixed standard nicotine and VC leaf extract (B)	
Figure 4.4	Catecholamine levels; dopamine (A), noradrenaline (B)	37
	and adrenaline (C) in plasma after treatment with VC extracts	
	(flower, stem and leaf), control with normal saline solution and	
	bupropion in nicotine-treated rats (n = 10)	
Figure 4.5	Total antioxidant capacity (TAC) levels in plasma after treatment	41
8	with VC extracts (stem, flower and leaf), control with normal saline	
ÇI	solution and bupropion in nicotine-treated rats ($n = 6$; 3 males and 3	
C	females)	
Figure 4.6	Malondialdehyde (MDA) levels in plasma after treatment with	42
	VC extracts (stem, flower and leaf), control with normal saline	
	solution and bupropion in nicotine-treated rats ($n = 6$; 3 males and 3	
	females)	

LIST OF FIGURES

		Page
Figure 4.7	Characteristics of chromosomal aberrations from the bone marrow	45
	of male and female wistar rats after treatment with distilled water	
	and VC extracts from the stem, leaf and flower compared to	
	cyclophosphamide (Giemsa stain, 1000x)	
Figure 4.8	Standard curve of trolox in ABTs decolorization assay	68
Figure 4.9	Standard curve of gallic acid in total phenolic assay	69
Figure 5.0	Standard curve of total tannin	70
Figure 5.1	The HPLC-chromatogram of standard catechins	71
	(EGC, C, EGCG, EC and ECG)	
Figure 5.2	Standard curve of epicatechin (EC)	72
Figure 5.3	Standard curve of epigallocatechin (ECG)	73
Figure 5.4	Standard curve of epigallocatechin gallate (EGCG)	74
Figure 5.5	Standard curve of epigallocatechin (EGC)	75
Figure 5.6	Standard curve of catechin (C)	76
Figure 5.7	The HPLC-chromatogram of standard isoflavone	77
	(daidzin and genistin)	
Figure 5.8	Standard curve of daidzin	78
Figure 5.9	Standard curve of genistin	79
Figure 6.0	The HPLC-chromatogram of standard flavonoid	80
Α	(myricetin, quercetin and kaempferol)	
Figure 6.1	Standard curve of quercetin	81
Figure 6.2	Standard curve of kaempferol	82
Figure 6.3	Standard curve of myricetin	83
Figure 6.4	The HPLC-chromatogram of standard nitrite and nitrate	84
Figure 6.5	Standard curve of nitrite	85
Figure 6.6	Standard curve of nitrate	86

LIST OF FIGURES

		Page
Figure 6.7 Th	ne HPLC-chromatogram of standard nicotine	87
Figure 6.8 Sta	andard curve of nicotine	88
Figure 6.9 Th	ne HPLC-chromatogram of standard caffeine	89
Figure 7.0 Sta	andard curve of caffeine	90
Figure 7.1 Sta	andard curve of malondialdehyde (MDA)	91

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF ABBREVIATIONS

°C Degree celsius

μg/mL Microgram per milliliter

 μM Micromolar μL Micro liter

ABTs 2, 2-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)

BP Blood pressure

CAR Continuous abstinence rate

CO Cardiac output

COPD Chronic obstructive pulmonary disease

C Catechin

DNA Deoxyribonucleic acid

DPPH 2, 2-Diphenyl-1-picrylhydrazyl

EC Epicatechin

EGCG Epigallocatechin gallate

ECG Epicatechin gallate

EGC Epigallocatechin

FDA Food and drug administration

g Gram

GABA Gamma-aminobutyric acid

GSH Glutathione

HBSS Hanks' balanced salt solution

HR Heart rate

H₂O Water

 H_2O_2 Hydrogen peroxide HO_2^{\bullet} Perhydroxyl radical

HPLC High-performance liquid chromatography

IC50 Half-maximal inhibitory concentration

kg Kilogram

LIST OF ABBREVIATIONS

LOD Limit of detection

LD50 Median lethal dose

mg Milligram

mmol/L Millimole per liter

min Minute

MAOs Mitochondrial monoamine oxidases

MDA Malondialdehyde

MHT Medicinal herbal tea

nAChRs Neuronal acetylcholine nicotinic receptors

NaCl Sodium chloride

NDA Nicotine degradation activity

NED N-1-napthylethylenediamine dihydrochloride

NF-κB Nuclear factor kappa-light-chain-enhancer of activated

B cells

nm Nanometer

nmol/L Nanomole per liter

NO Nitric oxide

NOS Nitric oxide synthase

NRT Nicotine replacement therapy

O₂•- Superoxide radical

OECD Organization for economic cooperation and development

OH• Hydroxyl radical

RNS Reactive nitrogen species

ROS Reactive oxygen species

rpm Revolutions per minute

RT Retention time

sc Subcutaneous

SNP Sodium nitroprusside

Sulfa Sulfanilamide

LIST OF ABBREVIATIONS

SV Stroke volume

TAC Total antioxidant capacity

TBA Thiobarbituric acid

TISTR Thailand Institute of Scientific and Technological

Research

U/mL Units per milliliter

VA Ventral tegmental area

VC Vernonia cinerea Less.

ลิ**ปสิทธิ์มหาวิทยาลัยเชียงใหม**่ Copyright[©] by Chiang Mai University All rights reserved

ข้อความแห่งการริเริ่ม

- 1) วิทยานิพนธ์นี้ได้นำเสนอการศึกษาสารออกฤทธิ์ของสารสกัดหญ้าคอกขาว และฤทธิ์ เกี่ยวกับสารสื่อประสาทที่เกี่ยวข้องกับการติดนิโคติน อนุมูลอิสระและผลกระทบต่อ โครโมโซมในสัตว์ทคลอง
- 2) เพื่อช่วยในการหยุดบุหรึ่งองผู้ที่สูบบุหรึ่โดยใช้ผลิตภัณฑ์ธรรมชาติตัวใหม่ เพื่อพัฒนา งานวิจัยเป็นการแพทย์ทางเลือกในการเลิกบุหรื่ใหม่ๆ ที่มีประสิทธิภาพ และมี ผลข้างเกียงน้อยต่อไป

STATEMENT OF ORIGINALITY

- 1) The first time of the study of active compounds in *Veronia cinerea* L. extracts and activity on neurotransmitters relating to nicotine addiction, free radicals and the mutagenicity effect on chromosome in animal model.
- 2) In order to this discover on active compounds relating to anti-nicotine effects from the natural product may be challenged for developing to smoking cessation aid with more clinical efficacy and less adverse effects in the future.

