

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

APPENDIX A

Nucleic acid codes, amino acid codes,

and genetic codes

Table 6.1 Nucleic acid codes

Code	Description
A	Adenine
G	Guanine
// C	Cytosine
// ¹ T/ L	Thymine
JOS U	Uracil
R	Purine (A or G)
Y	Pyrimidine (C or T)
N	Any nucleotide
W	Weak (A or T)
S	Strong (G or C)
M	Amino (A or C)
K	Keto (G or T)
ลิสสิท ^เ ริ่มเห	Not A (G or C or T)
COCHIDBII	Not G (A or C or T)
Copyright b	Not C (A or G or T)
All vrig	Not T (A or G or C)

Table 6.2 Amino acid codes

1-letter code	3-letter code	Description
A	Ala	Alanine
R	Arg	Arginine
N	Asn	Asparagine
D	Asp	Aspartic acid
C	Cys	Cysteine
Q	Gln %	Glutamine
E	Glu	Glutamic acid
G	Gly	Glycine
H	His	Histidine
//I ^(Q) / A	Ile	Isoleucine
Los	Leu	Leucine
K	Lys	Lysine
M	Met	Methionine
F	Phe	Phenylalanine
P	Pro	Proline
S	Ser	Serine
T	AI Thry	Threonine
\mathbf{W}	Trp	Tryptophan
ลิขสิทธิ์ม	Tyr Val	Tyrosine Valine
Cop _B right [©]	by (Asx ang	Asn or Asp
Alz ri	Glx	CGln or Glu
J	Xle	Leu or Ile
\mathbf{U}	Sec	Selenocysteine (UGA)
O	Pyl	Pyrrolysine (UAG)
X	Unk	Unknown
Y	Tyr	Tyrosine

Figure 6.1 Standard genetic codes

Second letter

		U	С	А	G		
	U	UUU Phe UCU UCC Ser UUA Leu UCG		UAU Tyr UAC Stop UAG Stop	UGU Cys UGA Stop UGG Trp	U C A G	
First letter	С	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU His CAC GIn CAG	CGU CGC CGA CGG	U C A G	Thiro
Firs	Α	AUU ACU ACC ACA AUA Met ACG		AAU AAC AAA AAG Lys	AGU Ser AGA AGA AGG	U C A G	Third letter
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU Asp GAC Asp GAA Glu	GGU GGC GGA GGG	U C A G	

(Source: http://i1.wp.com/www.jargonwall.com/wp-content/uploads/2014/12/genetic-code.jpg)

Copyright[©] by Chiang Mai University All rights reserved

APPENDIX B

SUMMARY OF HIV-1 DRUG RESISTANCE MUTATIONS

(2015, Stanford HIV drug resistance database, USA)

Major HIV-1 Drug Resistance Mutations

Updated March 9, 2015

Updated summary from the HIV Drug Resistance Database. This document can be downloaded from the http://hivdb.stanford.edu home page. Detailed and referenced versions of each drug class summary can be found at http://hivdb.stanford.edu/pages/drugSummaries.html

		Major	Nucle	oside	RT Inhi	ibitor (N	RTI)-R	esista	ance M	utatio	ns		
				TAMs					М	DR			
	184	65	70	74	115	41	67	70	210	215	219	69	151
Cons	M	K	K	L	Υ	M	D	K	L	Т	K	Т	Q
3TC	<u>VI</u>	R	Е									Ins	М
FTC	<u>VI</u>	R	Ε									Ins	M
ABC	VI	<u>R</u>	Е	<u>VI</u>	<u>E</u>	L			W	YF		<u>Ins</u>	<u>M</u>
TDF	***	<u>R</u>	Е		F	L			W	YF		<u>Ins</u>	M
ZDV	***	***	*	*		L	N	R	W	<u>YF</u>	QE	<u>Ins</u>	M

Bold/underline: High-level reduced susceptibility or virological response. Bold: reduced suceptibility or virological response. Plain text: reduced susceptibility in combination with other NRTI-resistance mutations. Asterisk: increased susceptibility. **Additional NRTIs:** Stavudine (d4T) and didanosine (ddI) are no longer recommended. **TAMs:** Thymidine analog mutations. Selected by AZT and d4T and facilitate primer unblocking. Non-TAMs prevent NRTI incorporation. **MDR:** Multidrug resistance mutations. T69 insertions occur with TAMs. Q151M occurs with non-TAMs and accessory mutations A62V, V75I, F77L, and F116Y. **M184VI:** Although they cause high-level *in vitro* resistance to 3TC/FTC, they are not contraindications to 3TC/FTC because they increase TDF and AZT susceptibility and decrease viral replication fitness. **Additional mutations:** K65N is similar but weaker than K65R. K70GQ is similar to K70E. T69D and V75MT reduce susceptibility to d4T and ddI. T215SCDEIV (T215 revertants) evolve from T215YF in the absence of NRTIs. E40F, E44DA, D67GE, V118I, and K219NR are accessory TAMs. T69 deletions occur in combination with K65R and/or Q151M. With K65R (but not Q151M) they increase AZT susceptibility. **References:** http://hivdb.stanford.edu/DR/NRTIResiNote.html.

	Major Non-Nucleoside RT Inhibitor (NNRTI)-Resistance Mutations										
	100	101	103	106	138	179	181	188	190	227	230
Cons	L	K	K	V	E	٧	Υ	Υ	G	F	M
NVP	Ī	<u>P</u> EH	<u>NS</u>	<u> AM</u>		DEF	CIV	<u>LCH</u>	<u>ASEQ</u>	LC	L
EFV	1	<u>P</u> EH	<u>NS</u>	Α <u>Μ</u>		DEF	С	<u>LC</u> H	A <u>SEQ</u>	LC	L
ETR	1	<u>P</u> EH					C <u>IV</u>		EQ	С	L
RPV	1	<u>P</u> EH			K AGQ	DEF	C <u>IV</u>	L	<u>EQ</u>	<u>C</u>	<u>L</u>

Bold/underline: High-level reduced susceptibility or virological response. Bold: reduced suceptibility or virological response. Plain text: reduced susceptibility in combination with other NNRTI-resistance mutations. Asterisk: increased susceptibility. Abbreviations: nevirapine (NVP), efavirenz (EFV), etravirine (ETR), rilpivirine (RPV). Synergistic combinations: V179D+K103R reduce NVP and EFV susceptibility >10-fold. Y181C+V179F cause high-level ETR and RPV resistance. ETR genotypic susceptibility score (GSS): Y181IV (3.0); L100I, K101P, Y181C, M230L (2.5); V90I, E138A, V179F, G190S (1.5); A98G, K101EH, V106I, V179DT, G190A (1.0); <2.5 susceptible; 2.5 to 3.0 intermediate; >3.0 high-level. V90I, A98G, V106I, E138A, V179DT, G190A/S have little effect on ETR susceptibility unless they occur with a bolded mutations. Additional accessory mutations: V90I (ETR), A98G (NVP, EFV, ETR, RPV), V108I, V179T (ETR), V179L (RPV), P225H (EFV), K238T (NVP, EFV), L318F (NVP). References: http://hivdb.stanford.edu/DR/NNRTIResiNote.html.

	Major Protease Inhibitor (PI) Resistance Mutations											
	24	32	46	47	48	50	54	76	82	84	88	90
Cons	L	V	M	- 1	G	- 1	- 1	L	V	- 1	N	L
ATV/r		I	IL	V	VM	L	VTAM		ATSF	V	<u>s</u>	M
DRV/r		I		VA		V	LM	٧	F	V		
LPV/r	- 1	- 1	IL	V <u>A</u>	VM	٧	VTALM	٧	ATSF	V		M

Bold/underline: High-level reduced susceptibility or virological response. Bold: reduced suceptibility or virological response. Plain text: reduced susceptibility in combination with other PI-resistance mutations. Abbreviations: atazanavir (ATV), darunavir (DRV), lopinavir (LPV). Administered with ritonavir for pharmacokinetic boosting (/r). Additional PIs: Fosamprenavir (FPV), indinavir (IDV), saquinavir (SQV), and tipranavir (TPV) are rarely used. Nelfinavir (NFV) is no longer recommended. FPV/r and IDV/r are never more active than DRV/r and rarely if ever more active than LPV/r vs resistant viruses. TPV/r is occasionally useful for salvage therapy as it can be active vs LPV/r and DRV/r-resistant viruses with mutations that increase TPV susceptibility. Expert consultation +/- phenotypic testing should be obtained prior to using FPV, FPV/r, IDV/r, SQV/r, and TPV/r. Additional mutations: D30N and N88D are major NFV-resistance mutations. L10F, V11I, K20TV, L23I, K43T, F53L, Q58E, A71IL, G73STCA, T74P, N83D, and L89V are common nonpolymorphic accessory mutations. L10RY, V11L, L24F, M46V, G48ASTLQ, F53Y, I54S, V82CM, I84AC, N88TG are rare nonpolymorphic variants. Hypersusceptibility: I50L (each PI except ATV); L10F, L24I, I50V, I54L (TPV); L76V (ATV, SQV, TPV); I47A (SQV); N88S (FPV). References: http://hivdb.stanford.edu/DR/PIResiNote.html.

	Major Integrase Inhibitor (INI)-Resistance Mutations									
	66	92	138	140	143	147	148	155		
Cons	Т	E	E	G	Υ	S	Q	N		
RAL	Α	Q	KA	SAC	<u>CRH</u>		<u>HRK</u>	<u>H</u>		
EVG	<u>IAK</u>	Q	KA	SAC		<u>G</u>	<u>HRK</u>	<u>H</u>		
DTG		Q	KA	SAC			HRK			

Bold/underline: High-level reduced susceptibility or virological response. Bold: reduced suceptibility or virological response. Plain text: reduced susceptibility in combination with other INI-resistance mutations. Asterisk: increased susceptibility. **Abbreviations**: raltegravir (RAL), elvitegravir (EVG), dolutegravir (DTG). **Additional mutations**: H51Y, L74M, T97A, S153YF, G163RK, S230R, and R263K are relatively nonpolymorphic INI-selected accessory resistance mutations. E92GV, E138T, Y143KSGA, Q148N, and N155ST are unusual variants at the positions listed above. P145S and Q146P are rare EVG-resistance mutations. G118R and F121Y are rare nonpolymorphic INI-resistance mutations. **References:** http://hivdb.stanford.edu/DR/INIResiNote.html.

	Н	IV-1 R	T and Protease	Mutatio	ns for Dru	g-Res	istance Sur	veilland	e*
		NRTI	S	NI	NRTIs			Pls	
M41	L	Q151	M	L100	Ι	L23	I	G73	S,T,C,A
K65	R	M184	V,I	K101	E,P	L24	1	L76	V
D67	N,G,E	L210	W	K103	N,S	D30	N	V82	A,T,S,F,L,C,M
T69	D,Ins	T215	Y,F,S,C,D,E,I,V	V106	A,M	V32	1	N83	D
K70	R,E	K219	Q,E,N,R	V179	F	M46	I,L	184	V,A,C
L74	V,I			Y181	C,I,V	147	V,A	185	V
V75	M,T,A,S			Y188	L,C,H	G48	V,M	N88	D,S
F77	L			G190	A,S,E	150	V,L	L90	M
Y115	F			P225	Н	F53	F,Y		
F116	Υ			M230	L	154	V,L,M,T,A,S		

*Bennett DE, Camacho RJ, Otelea D,et al. Drug Resistance Mutations for Surveillance of Transmitted HIV-1 Drug-Resistance: 2009 Update, PLoS One 2009;4:e4724.Criteria for mutations on this list: (i) Cause/contribute to resistance. (ii) Nonpolymorphic (≤ 0.5% in ARV-naive persons) in 8 most common group M subtypes. http://hivdb.stanford.edu/cgi-bin/MutPrevBySubtypeRx.cgi.

STANFORD HIV DRUG RESISTANCE DATABASE

http://hivdb.stanford.edu

 Table 6.3 Resistance mutation comments (Stanford HIVDR database).

			NIDEL44
			NRTI mutations
Position	Cons	AA	Comment
40	Е	F	E40F is a nonpolymorphic mutation selected by AZT and
			d4T. It usually occurs in combination with M41L, L210W
			and T215Y. In this context it is associated with reduced
			susceptibility to each of the NRTIs.
41	M	I	M41I is usually an artifact resulting from APOBEC3G-
			mediated hypermutation.
41	M	L	M41L is a TAM that usually occurs with T215Y. Together,
			M41L and T215Y confer high-level resistance to AZT and
		6	d4T and intermediate-level resistance to ddI, ABC and TDF.
		-	However, viruses with M41L + T215Y + M184V will
	1		exhibit intermediate-level resistance to AZT and d4T and
	- 11.	ST.	low-level resistance to TDF.
44	Е	AD	E44A/D are minimally polymorphic accessory NRTI-
		E	resistance mutations that usually occur with multiple TAMs.
62	A	V	A62V is an accessory mutation that often occurs in
			combination with the multinucleoside resistance mutations
			K65R or Q151M Alone it does not reduce NRTI
			susceptibility. A62V is widespread in subtype A viruses in
	តិបត់	ins	former Soviet Union countries but is otherwise
	Conv	righ	nonpolymorphic.
65	K	Е	K65R causes intermediate/high-level resistance to TDF, ddI,
	^ !		ABC and d4T (2 to 3-fold reduced susceptibility) and low to
			intermediate-level resistance to 3TC and FTC (5 to 7-fold
			reduced susceptibility). K65R increases susceptibility to
			AZT. K65E is an extremely rare NRTI-selected mutation
			with markedly reduced replication fitness.
65	K	N	K65R causes intermediate/high-level resistance to TDF, ddI,
			ABC and d4T (2 to 3-fold reduced susceptibility) and low to

Table 6.3 (Continued)

			NRTI mutations
Position	Cons	AA	Comment
			intermediate-level resistance to 3TC and FTC (5 to 7-fold
			reduced susceptibility). K65R increases susceptibility to
			AZT. K65N is a rare mutation with effects on NRTI
			susceptibility that are similar but weaker to those of K65R.
65	K	R	K65R causes intermediate/high-level resistance to TDF, ddI,
			ABC and d4T (2 to 3-fold reduced susceptibility) and low to
			intermediate-level resistance to 3TC and FTC (5 to 7-fold
		18	reduced susceptibility). K65R increases susceptibility to
		9:	AZT.
67	D	EGS	D67N is a nonpolymorphic TAM associated with low-level
		TQH	resistance to AZT and d4T. When present with other TAMs,
		\$50 N	it reduces susceptibility to ABC, TDF and ddI.
	- \\	01	D67G/E/S/T/H are nonpolymorphic NRTI-selected
	1	田	mutations that also generally occur in viruses with multiple
	1	12	TAMs.
67	D	N	D67N is a nonpolymorphic TAM associated with low-level
			resistance to AZT and d4T. When present with other TAMs,
			it reduces susceptibility to ABC, TDF and ddI.
67	D	delet	Amino acid deletions (d) between codons 66 to 71 are rare
	6106	e	and usually occur in combination with multiple TAMs, the
	Copy	righ	Q151M mutation complex, or K65R. Deletions at position
	AII	l'	67 are more often associated with multiple TAMs. Deletions
			at position 69 are more often associated with either the
			Q151M complex or K65R.
69	T	D	T69D is a nonpolymorphic mutation that reduces
			susceptibility to ddI and possibly d4T.
69	T	G	T69G is a rare polymorphic mutation that usually occurs in
			viruses with a deletion at codon 67 and multiple NRTI-
			resistance mutations. It is associated with reduced

Table 6.3 (Continued)

			NRTI mutations
Position	Cons	AA	Comment
			susceptibility to ddI, d4T, ABC and possibly TDF.
69	Т	N	T69N is a relatively non-polymorphic mutation weakly
			selected in patients receiving NRTIs. Their effects on NRTI
			susceptibility have not been well studied.
69	Т	SAI	T69S/A/I/E are relatively non-polymorphic mutations
		Е	weakly selected in patients receiving NRTIs. Their effects
		//	on NRTI susceptibility have not been well studied.
69	T	delet	Amino acid deletions (d) between codons 66 to 71 are rare
		e	and usually occur in combination with multiple TAMs, the
		(0)	Q151M mutation complex, or K65R. Deletions at position
	ي. اا	26	67 are more often associated with multiple TAMs. Deletions
			at position 69 are more often associated with either the
	- 1/	01	Q151M complex or K65R.
69	T	inser	Double amino acid insertions between codons 66 to 71 most
		\t\	often align to codon 69 and occur in less than 1% of heavily
			treated persons. Together with TAMs, they confer high-
			level resistance to AZT, d4T, ddI, ABC and TDF and
			intermediate/high-level resistance to 3TC and FTC.
70	K	EG	K70E/G cause low/intermediate-level resistance (2 to 3-fold
,	Con	mi-L	reduced susceptibility) to TDF, ABC, DDI and possibly
	Copy	rign	3TC and FTC. K70E increases susceptibility to AZT.
70	K	QNS	K70R causes intermediate-level resistance to AZT and
		T	possibly low-level resistance to d4T and TDF. K70E/G
			cause low/intermediate-level resistance (2 to 3-fold reduced
			susceptibility) to TDF, ABC, DDI and possibly 3TC and
			FTC. K70E increases susceptibility to AZT. K70Q/N/S/T
			are rare nonpolymorphic NRTI-selected mutations that
			appear to have resistance profiles similar to K70E/G.
70	K	R	K70R causes intermediate-level resistance to AZT and

Table 6.3 (Continued)

			NRTI mutations
Position	Cons	AA	Comment
			possibly low-level resistance to d4T and TDF.
74	L	IV	L74V/I cause high-level resistance to ddI and intermediate-
			level resistance to ABC. L74V increases susceptibility to
			AZT and TDF, but this increase is of uncertain clinical
			significance.
75	V	I	V75I is a relatively nonpolymorphic accessory mutation that
			usually occurs in combination with the multi-nucleoside
		16	resistance mutations F77L, F116Y and Q151M. V75I
		9	occasionally occurs alone and in this context its clinical
		(0)	significance is unknown.
75	V	M	V75M appears to cause intermediate-level d4T resistance
		OP	and low-level ddI resistance.
75	V	SAL	V75S/A/L are nonpolymorphic mutations that appear to
	1	田	reduce susceptibility to d4T and ddI.
75	V	T	V75T causes high-level d4T resistance and intermediate-
			level ddI resistance.
77	F	L	F77L usually occurs in combination with the
			multinucleoside resistance mutations F116Y and Q151M.
115	Y	F	Y115F causes intermediate-level resistance to ABC and
	Con	wick	low-level resistance to TDF.
116	F	Y	F116Y usually occurs in combination with the
	AII	ľ	multinucleoside resistance mutations F77L and Q151M.
118	V	I	V118I is a polymorphic accessory NRTI-resistance mutation
			that occurs in combination with multiple TAMs.
151	Q	L	Q151M causes intermediate/high-level resistance to AZT,
			ddI, d4T and ABC and low-level resistance to TDF, 3TC
			and FTC. In combination with mutations at the associated
			positions 75, 77, and 116, Q151M confers high-level
			resistance to AZT, ddI, d4T and ABC and intermediate-level

Table 6.3 (Continued)

NRTI mutations				
Position	Cons	AA	Comment	
			resistance to TDF, 3TC and FTC. Q151L is an extremely	
			rare transitional mutation that may precede the emergence of	
			the Q151M.	
151	Q	M	Q151M causes intermediate/high-level resistance to AZT,	
			ddI, d4T and ABC and low-level resistance to TDF, 3TC	
			and FTC. In combination with mutations at the associated	
			positions 62, 75, 77, and 116, Q151M confers high-level	
		16	resistance to AZT, ddI, d4T and ABC and intermediate-level	
		9:	resistance to TDF, 3TC and FTC.	
184	M	VI	M184V/I cause high-level resistance to 3TC and FTC and	
		26	low-level resistance to ddI and ABC. However, M184V/I	
	1	\$P	are not contraindications to continued treatment with 3TC or	
	- \\	01	FTC because they increase susceptibility to AZT, TDF and	
	1	田	d4T and are associated with clinically significant reductions	
	1	12	in HIV-1 replication. In combination with K101E or E138K,	
			M184I synergistically reduces RPV susceptibility.	
210	L	FS	L210F/S are rare mutations not associated with NRTI-	
			resistance.	
210	8 J 8	W	L210W usually occurs in combination with M41L and	
	cioc	1110	T215Y. The combination of M41, L210W and T215Y	
	Copy	righ	causes high-level resistance to AZT and d4T and	
	$A \parallel \parallel$	ľ	intermediate to high-level resistance to ddI, ABC and TDF.	
215	T	F	T215F is a TAM that causes intermediate/high-level	
			resistance to AZT and d4T and low-level resistance to ABC,	
			ddI and TDF. Compared with T215Y, T215F occurs more	
			commonly with the Type II TAMs (D67N, K70R, and/or	
			K219E) and in this context, it affects susceptibility to TDF,	
			ABC, and ddI less markedly than T215Y.	
215	T	SCD	T215Y/F cause intermediate/high-level resistance to AZT	

Table 6.3 (Continued)

NRTI mutations			
Cons	AA	Comment	
	EIV	and d4T and low-level resistance to ABC, ddI and TDF.	
	ALN	T215S/C/D/E/I/V/N/A/L do not reduce NRTI susceptibility	
		but arise from viruses that once contained T215Y/F. The	
		presence of one of these revertant mutations suggests the	
		possibility that the patient may have once harbored a	
		majority virus population with T215Y/F.	
T	Y	T215Y is a TAM which causes intermediate/high-level	
	16	resistance to AZT and d4T and low-level resistance to ABC,	
	9:	ddI, and TDF.	
K	NR	K219N/R are accessory TAMS that usually occur in	
J.	26	combination with multiple other TAMs.	
K	QE	K219Q/E are accessory TAMS associated with reduced	
	91	susceptibility to AZT and possibly d4T.	
K	W	K219W is an uncommon NRTI-selected mutation	
N	I	N348I is a nonpolymorphic accessory mutation selected by	
		the NRTIs AZT and d4T and by NVP and EFV. Alone it	
		reduces AZT and NVP susceptibility by about 3-fold and	
		EFV susceptibility by 2-fold.	
		NNRTIs mutations	
CVpy	righ	V90I is a polymorphic accessory mutation that is weakly	
ΑÌΊ	ľ	selected in patients by each of the NNRTIs. It has a weight	
		of 1.0 in the Tibotec ETR genotypic susceptibility score but	
		is associated with minimal, if any, detectable reduction in	
		NNRTI susceptibility.	
A	G	A98G is a nonpolymorphic accessory mutation that reduces	
		NVP susceptibility by ~5-fold and EFV susceptibility by	
		about 3-fold. It has a weight of 1.0 in the Tibotec ETR	
		genotypic susceptibility score.	
	T K K N	T Y K NR K QE K W N I	

Table 6.3 (Continued)

	NNRTI mutations				
Position	Cons	AA	Position		
100	L	I	L100I is a nonpolymorphic mutation that usually occurs in		
			combination with K103N. In this setting it causes high-level		
			resistance to NVP and EFV (>50-fold reduced		
			susceptibility), high-level resistance to RPV (>10-fold		
			reduced susceptibility) and intermediate-level resistance to		
			ETR (~5-fold reduced susceptibility). It has a weight of 2.5		
			in the Tibotec ETR genotypic susceptibility score.		
100	L	/V	L100V is an extremely rare nonpolymorphic mutation		
		9.	associated with 5 to 10-fold reduced susceptibility to NVP		
		(0)	and EFV. It may also reduce susceptibility to ETR and RPV.		
101	K	E	K101E is a nonpolymorphic mutation that causes		
		OP	intermediate resistance to NVP (~5-fold reduced		
	- \\	0	susceptibility) and low-level resistance (~2-fold reduced		
	1	田	susceptibility) to EFV, ETR and RPV. It has a weight of 1.0		
	1	1/2	in the Tibotec ETR genotypic susceptibility score. In		
			combination with M184I it reduces RPV susceptibility by		
			about 5-fold.		
101	K	Н	K101H is a nonpolymorphic accessory NNRTI-resistance		
0	316	ma	mutation selected by NVP, EFV and ETR. When present		
	giuc	HIC	with other NNRTI-resistance mutations, K101H further		
	Copy	righ	reduces susceptibility to these NNRTIs. It has a weight of		
	$A \parallel$	l'	1.0 in the Tibotec ETR genotypic susceptibility score.		
101	K	N	K101N/A/T are uncommon nonpolymorphic NNRTI-		
			selected mutation of uncertain phenotypic and clinical		
			significance.		
101	K	P	K101P is a nonpolymorphic mutation that causes high-level		
			resistance (>50-fold reduced susceptibility) to NVP, EFV		
			and RPV and intermediate resistance (~5-fold reduced		
			susceptibility) to ETR. It has a weight of 2.5 in the Tibotec		
<u> </u>					

Table 6.3 (Continued)

NNRTI mutations					
Position	Cons	AA	Position		
			ETR genotypic susceptibility score.		
101	K	Q	K101Q is a relatively nonpolymorphic mutation that is		
			weakly selected in patients receiving NVP and EFV. It is of		
			uncertain phenotypic and clinical significance.		
101	K	R	K101R is an uncommon polymorphism that is not		
			associated with reduced NNRTI susceptibility.		
103	K	EQ	K103E/Q are rare mutations that have not been associated		
		18	with reduced susceptibility to the current NNRTIs.		
103	K	H	K103H is a rare nonpolymorphic mutation that causes high-		
		(0)	level resistance (~20-fold reduction in susceptibility) to		
	ي ا	2	NVP and EFV.		
103	K	N	K103N is a nonpolymorphic mutation that causes high-level		
	- \\	31	resistance to NVP (~50-fold reduced susceptibility) and		
	1	H	EFV (~20-fold reduced susceptibility).		
103	K	R	K103R is a polymorphic mutation that by alone has no		
			effect on NNRTI susceptibility. However, in combination		
			with V179D (and possibly V179E), it reduces NVP and		
			EFV susceptibility about 15-fold.		
103	K	S	K103S is a nonpolymorphic mutation that causes		
	Com	wick	intermediate/high-level resistance to NVP and		
	Copy	rign	low/intermediate-level resistance to EFV. Because K103S is		
	AII	ľ	a 2-bp change from the wildtype K, patients with K103S		
			may be more likely to harbor K103N (which is just a 1-bp		
			change from wildtype).		
103	K	Т	K103T is an extremely rare nonpolymorphic mutation that		
			appears to cause intermediate/high-level resistance to NVP		
			(~10-fold reduction in susceptibility), but it has little if any		
			effect on EFV susceptibility.		
106	V	A	V106A is a nonpolymorphic mutation that causes high-level		

Table 6.3 (Continued)

NNRTI mutations					
Position	Cons	AA	Position		
			resistance to NVP (~50-fold reduced susceptibility) and intermediate-level resistance to EFV (~5-fold reduction in susceptibility). Together, V106A and F227L cause high-level resistance to both NVP and EFV.		
106	V	I	V106I is a polymorphic NNRTI-selected accessory mutation. It has a weight of 1.5 in the Tibotec ETR genotypic susceptibility score. It has minimal, if any, effect on NNRTI susceptibility.		
106	V	M	V106M is a nonpolymorphic mutation that causes high-level resistance (>30-fold reduced susceptibility) to NVP and EFV.		
108	V	CHILD	V108I is a relatively nonpolymorphic accessory mutation selected in patients receiving NVP, EFV and ETR. It causes low-level resistance (~2-fold reduction in susceptibility) to NVP and EFV. It does not appear to reduce susceptibility to ETR or RPV.		
138	e តិបត់	A	E138A is a common polymorphic accessory mutation weakly selected in patients receiving ETR and RPV. It reduces ETR and RPV susceptibility ~2-fold. It has a weight of 1.5 in the Tibotec ETR genotypic susceptibility score.		
138	A I I	GQ	E138Q/G are nonpolymorphic accessory mutations frequently selected in patients receiving ETR and RPV and occasionally in patients receiving NVP and EFV. E138Q/G are associated with 2 to 3-fold reduced susceptibility to ETR and RPV.		
138	Е	K	E138K is a nonpolymorphic mutation selected in a high proportion of patients receiving RPV. Alone it causes low-level RPV resistance (2 to 3-fold reduced susceptibility). However, in combination with the NRTI-resistance		

Table 6.3 (Continued)

NNRTI mutations				
Position	Cons	AA	Position	
			mutation M184I it appears sufficient to cause virological	
			failure on an RPV-containing regimen. E138K causes low-	
			level cross-resistance to ETR but minimal, if any, cross-	
			resistance to NVP and EFV.	
138	Е	R	E138R is a rare nonpolymorphic accessory mutation	
		,	selected in vitro by RPV. It is associated with 2 to 3-fold	
			reduced susceptibility to ETR and RPV.	
179	V	DE	V179D is a polymorphic accessory mutation selected in	
		9:	patients receiving EFV. It reduces NVP and EFV	
		(0)	susceptibility by 2 to 5-fold and ETR and RPV	
		125	susceptibility ~2-fold. The combination of V179D and	
	1	総万	K103R act synergistically to reduce NVP and EFV	
	1	0	susceptibility >10-fold. V179D has a weight of 1.0 in the	
		当	Tibotec ETR GSS. V179E is a nonpolymorphic mutation	
	1	12	infrequently selected by NVP and EFV. V179E appears to	
			be similar to V179D in its effects on NNRTIs.	
179	V	F	V179F is a nonpolymorphic mutation frequently selected in	
			patients receiving ETR. It nearly always occurs in	
4	និសនិ	ใกล็	combination with Y181C. Alone V179F has little effect on	
	CIOC	1110	NNRTI susceptibility. In combination with Y181C,	
	Copy	righ	however, it is associated with high-level ETR and RPV	
	$A \sqcup I$	11	resistance (>10-fold reduced susceptibility). It has a weight	
			of 1.5 in the Tibotec ETR GSS.	
179	V	I	V179I is a polymorphic mutation that is frequently selected	
			in patients receiving ETR and RPV. It has little, if any,	
			effect on NNRTI susceptibility.	
179	V	L	V179L is a rare nonpolymorphic mutation infrequently	
			selected in patients receiving NVP, EFV and RPV. Its	
			effects on NNRTI susceptibility have not been well studied.	

Table 6.3 (Continued)

	NNRTI mutations				
Position	Cons	AA	Position		
			It is listed as an RPV-associated drug-resistance mutation in the RPV package insert.		
179	V	T	V179T is a rare nonpolymorphic mutation infrequently selected in patients receiving NNRTIs. It is associated with minimal reductions in ETR and RPV susceptibility. It has a weight of 1.0 in the Tibotec ETR GSS.		
181	Y	C GIGIO SES CHILD	Y181C is a nonpolymorphic mutation selected in patients receiving NVP, ETR and RPV. It reduces susceptibility to NVP, ETR, RPV, and EFV by >50-fold, 5-fold, 3-fold, and 2-fold, respectively. Although Y181C itself reduces EFV susceptibility by only 2-fold, it is associated with a reduced response to an EFV-containing regimen because viruses with this mutation often harbor additional minority variant NNRTI-resistance mutations. Y181C has a weight of 2.5 in the Tibotec ETR GSS.		
181	Y Sala	FSG	Y181F/S/G are rare nonpolymorphic NNRTI-associated mutations that are usually present as part of an electrophoretic mixture. They are likely to represent transitional mutations between Y and I or V.		
181	Copy A I I	righ	Y181I/V are 2-base pair nonpolymorphic mutations selected by NVP and ETR. Y181I/V cause high-level resistance to NVP (>50-fold reduced susceptibility) and to ETR and RVP (10 to 15-fold reduced susceptibility). Y181I/V each have a weight of 3.0 in the Tibotec ETR genotypic susceptibility score.		
188	Y	С	Y188C is a nonpolymorphic mutation selected in patients receiving NVP and EFV. It confers high-level resistance to NVP (>50-fold reduced susceptibility) and EFV (~20-fold reduced susceptibility).		

Table 6.3 (Continued)

NNRTI mutations					
Position	Cons	AA	Position		
188	Y	F	Y188F is a rare nonpolymorphic NNRTI-associated		
			mutations that is usually present as part of an electrophoretic		
			mixture. It appears to represent a transitional mutation		
			between Y and L.		
188	Y	Н	Y188H is a nonpolymorphic mutation selected in patients		
			receiving NVP and EFV. It causes about 5 to 10-fold		
			reduced susceptibility to NVP and EFV.		
188	Y	/L	Y188L is a nonpolymorphic mutation that causes high-level		
		9:	resistance (>50-fold reduced susceptibility) to NVP and		
		(0)	EFV and intermediate/high-level resistance (5-fold reduced		
		25	susceptibility) to RPV.		
190	G	Α	G190A is a nonpolymorphic mutation that causes high-level		
		01	resistance to NVP (>50-fold reduced susceptibility) and		
	1	田	intermediate resistance to EFV (5 to 10-fold reduced		
	1	1/3	susceptibility). It has a weight of 1.0 in the Tibotec ETR		
			GSS but does not appear to be selected by ETR or RPV or		
			to reduce their in vitro susceptibility.		
190	G	CTV	G190C/T/V are rare nonpolymorphic mutations that cause		
4	និសនិ	ms	high-level resistance to NVP and EFV (>50-fold reduced		
	CIOC	1110	susceptibility). Their effects on ETR and RPV susceptibility		
	Copy	righ	are not known.		
190	AG	EQ	G190E/Q are nonpolymorphic mutations that cause high-		
			level resistance to NVP and EFV (>50-fold reduced		
			susceptibility). Both mutations also appear to be associated		
			with high-level resistance (>10-fold reduced susceptibility)		
			to RPV and ETR.		
190	G	S	G190S is a nonpolymorphic mutation that causes high-level		
			resistance to NVP and EFV (>50-fold reduced		
			susceptibility). It has a weight of 1.5 in the Tibotec ETR		

Table 6.3 (Continued)

NNRTI mutations					
Position	Cons	AA	Position		
			genotypic susceptibility score but does not appear to be		
			selected by ETR or RPV.		
221	Н	Y	H221Y is a nonpolymorphic accessory NNRTI-selected		
			mutation that frequently occurs in combination with Y181C.		
			Alone it has minimal detectable effects on NNRTI		
			susceptibility. It is frequently selected in patients receiving		
		//	RPV (Rimsky 2012, Tibotec 2012).		
225	P	H	P225H is a nonpolymorphic EFV-selected mutation that		
		9.	usually occurs in combination with K103N. The		
		10/	combination of P225H and K103N causes a >50-fold		
	II.S	2	reduction in EFV susceptibility.		
227	F	С	F227C is an extremely rare nonpolymorphic mutation		
	1	91	selected in patients receiving RPV and in vitro by ETR and		
	1	田	RPV. It usually occurs in combination with other NNRTI-		
		1/3	resistance mutations and in this context it is associated with		
			high-level resistance to each of the NNRTIs.		
227	F	L	F227L is a nonpolymorphic mutation that usually occurs in		
			combination with V106A. In this setting it is associated with		
	និសនិ	กร์	high-level resistance to NVP and EFV.		
230	M	T	M230I is an extremely rare mutation selected in vitro by		
	Copy	righ	RPV. Its effects on NNRTI susceptibility have not been well		
	$A \sqcap$	1	studied.		
230	M	L	M230L is an uncommon nonpolymorphic mutation selected		
			in patients receiving EFV, NVP, and RPV. It causes		
			intermediate to high-level resistance to each of the NNRTIs.		
236	P	L	P236L is a nonpolymorphic mutation that causes high-level		
			DLV resistance but does not reduce susceptibility to any		
			other NNRTIs.		
238	K	R	K238R is a common polymorphism that does not reduce		

Table 6.3 (Continued)

	NNRTI mutations				
Position	Cons	AA	Position		
			NNRTI susceptibility.		
238	K	TN	K238T is a nonpolymorphic mutation selected in patients		
			receiving NVP and EFV. It usually occurs in combination		
			with K103N. It reduces susceptibility to NVP and EFV by		
			about 5-fold. It may also reduce susceptibility to ETR and		
			RPV. K238N is a nonpolymorphic accessory mutation that		
		//	is also selected by NVP and EFV. It appears to have		
		16	minimal, if any, effects on NNRTI susceptibility.		
318	Y	F	Y318F is an uncommon mutation that causes intermediate-		
		(0)	level NVP resistance and potentially low-level EFV		
	ي ا	26	resistance.		
348	N	VI	N348I is a nonpolymorphic accessory mutation selected by		
	- 1/	31	the NRTIs AZT and d4T and by NVP and EFV. Alone it		
	1	E	reduces AZT and NVP susceptibility by about 3-fold and		
		1/3	EFV susceptibility by 2-fold.		
			PI Mutations		
10	L	F	L10F is a common nonpolymorphic, PI-selected accessory		
	05	9	mutation associated with reduced susceptibility to each of		
(908	ms	the PIs except ATV, SQV, and TPV.		
10	Сфру	IV	L10I/V are polymorphic, PI-selected accessory mutations		
	ΑÌΊ	ľ	that reduce PI susceptibility or increase the replication of		
			viruses with other PI-resistance mutations.		
10	L	RY	L10R/Y are rare, nonpolymorphic PI-selected accessory		
			mutations. Their effects on PI susceptibility have not been		
			well studied.		
11	V	IL	V11I is a minimally polymorphic PI-resistance accessory		
			mutation that is often selected in patients receiving DRV. It		
			is associated with minimal reductions in DRV and FPV		

Table 6.3 (Continued)

PI mutations				
Position	Cons	AA	Position	
			susceptibility. It is included in the Tibotec GSS for DRV.	
			V11L is a nonpolymorphic accessory PI-resistance mutation	
			that is also associated with minimal reductions in DRV and	
			FPV susceptibility.	
20	K	I	K20I is the consensus amino acid in subtype G and	
			CRF02_AG. In subtypes B and C, K20I is a PI-selected	
		//	mutation that appears to reduce NFV susceptibility.	
20	K	MV	K20M/V are rare, relatively nonpolymorphic PI-selected	
		9:	mutations that have not been well studied.	
20	K	R	K20R is a highly polymorphic, PI-selected accessory	
		26	mutation that improves HIV-1 replication fitness in viruses	
	1	\$50 \	with other PI-resistance mutations.	
20	K	T	K20T is a nonpolymorphic accessory PI-selected mutation	
	//	田	that is associated with reduced susceptibility to each of the	
	1	1/2	PIs except SQV and TPV.	
23	L	I	L23I is an uncommon nonpolymorphic mutation selected	
			primarily by NFV. It causes low/intermediate-level	
			resistance to NFV.	
24	គ្នាក់ន	FM	L24F is an uncommon nonpolymorphic PI-selected	
	6106		mutation that appears to have a susceptibility profile similar	
	Copy	righ	to L24I. L24M is a rare nonpolymorphic PI-selected	
	AII	ľ	mutation that has not been well studied.	
24	L	I	L24I is a nonpolymorphic mutation selected by IDV and,	
			less often, LPV. It reduces susceptibility to FPV, IDV, LPV,	
			SQV, ATV and NFV. It increases susceptibility to TPV.	
30	D	N	D30N is a nonpolymorphic substrate-cleft mutation that	
			causes high-level resistance to NFV.	
32	V	I	V32I is a nonpolymorphic substrate-cleft mutation	
			associated with reduced susceptibility to each PI except	

Table 6.3 (Continued)

PI mutations				
Position	Cons	AA	Position	
			SQV. It is included in the Tibotec DRV GSS.	
33	L	F	L33F is a relatively nonpolymorphic accessory mutation	
			selected by DRV, FPV, LPV, NFV and TPV. In	
			combination with other PI-resistance mutations, L33F is	
			associated with reduced susceptibility to these PIs. It is	
			included in the Tibotec DRV GSS.	
33	L	N	L33I is a relatively nonpolymorphic PI-selected mutation	
		16	that appears to have minimal, if any, effects on PI	
		9:	susceptibility.	
33	L	V	L33V is a polymorphism that does not appear to be selected	
	J.	26	by PIs or to be associated with reduced PI susceptibility.	
35	Е	G	E35G is a relatively nonpolymorphic PI-selected mutation	
	- \\	0	that is weakly associated with reduced NFV and TPV	
	1	E	susceptibility.	
43	K	T	K43T is a nonpolymorphic PI-selected accessory mutation	
			that, in combination with other PI-resistance mutations, is	
			associated with reduced susceptibility to most PIs. It is also	
			part of the GSS for TPV.	
46	M	IL 6	M46I/L are nonpolymorphic PI-selected mutations that	
	Com	wiel	reduce susceptibility to IDV, NFV, FPV, LPV and ATV	
	Copy	rign	when present with other mutations. M46L also reduces	
	AII	ľ	susceptibility to TPV.	
46	M	V	M46I/L are nonpolymorphic PI-selected mutations that	
			reduce susceptibility to IDV, NFV, FPV, LPV and ATV	
			when present with other mutations. M46L also reduces	
			susceptibility to TPV. M46V is a rare nonpolymorphic PI-	
			selected mutation that has not been well studied.	
47	I	A	I47A is a nonpolymorphic mutation selected by LPV. It	
			usually occurs in combination with V32I and it confers	

Table 6.3 (Continued)

			PI mutations
Position	Cons	AA	Position
			high-level resistance to LPV and FPV and low/intermediate-
			resistance to the remaining PIs except ATV and SQV. It
			increases susceptibility to SQV.
47	I	V	I47V is a nonpolymorphic mutation selected by IDV, FPV,
			LPV and DRV. It is associated with reduced susceptibility
			to each of the PIs except SQV and ATV. I47V is included in
		//	the Tibotec DRV GSS.
48	G	AST	G48V causes high-level resistance to SQV, intermediate-
		QL	level resistance to ATV and NFV, and low-level resistance
		(0)	to IDV and LPV. G48M is a less common mutation that
		26	appears to have similar effects on PI susceptibility.
	1	\$50 N	G48A/S/T/Q are rare nonpolymorphic PI-selected mutations
	- \\	01	that occur in patients who have received multiple PIs.
48	G	M	G48V is a nonpolymorphic substrate-cleft mutation selected
	1	12	by SQV and, less often, by IDV and LPV. It confers high-
			level resistance to SQV, intermediate-level resistance to
			ATV, and low-level resistance to NFV, IDV and LPV.
			G48M is a 2-base pair nonpolymorphic mutation selected in
	និសនិ	ใกร์	patients who have received multiple PIs. It causes high-level
	CIOC	1110	resistance to SQV, intermediate-level resistance to ATV and
	Copy	righ	NFV and low-level resistance to IDV and LPV.
48	A G	V	G48V is a nonpolymorphic substrate-cleft mutation selected
			by SQV and, less often, by IDV and LPV. It confers high-
			level resistance to SQV, intermediate-level resistance to
			ATV, and low-level resistance to NFV, IDV and LPV.
50	I	L	I50L is a nonpolymorphic substrate-cleft mutation selected
			by ATV. It causes intermediate/high-level resistance to
			ATV and increases susceptibility to the remaining PIs.
50	I	V	I50V is a nonpolymorphic substrate-cleft mutation selected

Table 6.3 (Continued)

			PI mutations
Position	Cons	AA	Position
			by FPV, LPV and DRV. It reduces susceptibility to these
			PIs and increases susceptibility to TPVI50V is included in
			the Tibotec DRV GSS.
53	F	LY	F53L is a nonpolymorphic mutation selected primarily by
			SQV, IDV, ATV, and LPV. It reduces susceptibility
			primarily to ATV, SQV, and NFV. F53Y is a rare
			nonpolymorphic PI-selected mutation that has not been well studied.
54	I	L	I54L is a nonpolymorphic mutation selected by FPV, LPV
		0	and DRV. It reduces susceptibility to these PIs and possibly
		104	to ATV, IDV, NFV and SQV. It increases susceptibility to
		85	TPV. It is in the Tibotec DRV GSS.
54	I	M	I54M is a nonpolymorphic mutation selected by FPV, LPV
	1	田	and DRV. It reduces susceptibility to each of the PIs. It is in
	1	12	the Tibotec DRV GSS.
54	I	TAS	I54A/T/S are nonpolymorphic PI-selected mutations that
			occur almost exclusively in patients who have received
			multiple PIs. I54A/T/S are associated with reduced
	និសនិ	ma	susceptibility to each of the PIs except DRV.
54	Y	V	I54V is a nonpolymorphic mutation selected primarily by
	Copy	righ	IDV and LPV. It reduces susceptibility to each of the PIs
	$A \sqcup$	11	except DRV. It synergistically reduces PI susceptibility
			when present in combination with V82 mutations.
58	Q	Е	Q58E is a nonpolymorphic accessory PI-selected mutation
			associated with reduced susceptibility to TPV and possibly
			other PIs.
71	A	TVI	A71T/V are polymorphisms that occur in 2-3% of untreated
		L	persons. They increase in prevalence in persons receiving
			PIs. A71I/L are nonpolymorphic mutations that occur in

Table 6.3 (Continued)

			PI mutations
Position	Cons	AA	Position
			viruses with multiple PI-resistance mutations.
73	G	STC	G73S/T/C/A are nonpolymorphic mutations that are selected
		A	primarily by ATV, IDV, NFV and SQV. They are
			associated with reduced susceptibility to these PIs and
			possibly to DRV, FPV and LPV.
73	G	V	G73V is a nonpolymorphic PI-selected mutation that has not
		//	been well studied.
74	T	P	T74P is a nonpolymorphic PI-selected accessory mutation
	_//	9:	that occurs primarily in viruses from patients who have
		(0)	received multiple PIs. It is associated with reduced
		26	susceptibility to each of the PIs. It is included in the
		(P)	Boehringer-Ingelheim TPV and Tibotec DRV GSS.
74	T	S	T74S is a polymorphic mutation weakly selected by most
		田	PIs and associated with low-level resistance to NFV.
76	L	V	L76V is a nonpolymorphic mutation selected by IDV, LPV
			and DRV. It reduces susceptibility to these PIs and to FPV.
			It increases susceptibility to ATV, SQV and TPV. L76V is
			included in the Tibotec DRV GSS.
82	V	A	V82A is a nonpolymorphic substrate-cleft mutation selected
	(100	1110	primarily by IDV and LPV. It reduces susceptibility to these
	Copy	righ	PIs and causes cross-resistance to ATV and NFV. When it
	AH	ľ	occurs in combination with additional PI-resistance
			mutations it is also associated with reduced susceptibility to
			SQV and FPV.
82	V	С	V82C is an uncommon nonpolymorphic 2-base-pair
			substrate-cleft mutation that develops in viruses with
			multiple PI-resistance mutations from patients who received
			multiple PIs. Its effects on PI susceptibility have not been
			well studied.

Table 6.3 (Continued)

			PI mutations
Position	Cons	AA	Position
82	V	F	V82F is a nonpolymorphic substrate-cleft mutation selected primarily in patients who have received multiple PIs. It causes reduced susceptibility to DRV, FPV, IDV, LPV and NFV.
82	V	I	V82I is a highly polymorphic substrate-cleft mutation that is not selected by PIs. It is the consensus amino acid in subtype G viruses.
82	V	Laling	V82L is an uncommon nonpolymorphic substrate-cleft mutation selected by TPV. It reduces TPV susceptibility but its effects on other PIs have not been well studied.
82	V	M	In most subtypes, V82M is a 2-base-pair substrate-cleft mutation that develops in viruses with multiple PI-resistance mutations from patients who received multiple PIs. In subtype G, V82M is a 1-base-pair mutation. V82M reduces susceptibility to IDV, LPV and possibly other PIs.
82	v බ්ථිව් Copy	TS	V82T is a nonpolymorphic substrate-cleft mutation selected in patients who received IDV, TPV, or multiple PIs. It reduces susceptibility to these PIs and to ATV, LPV, and NFV. V82T is included in the Boehringer-Ingelheim TPV GSS. V82S is a nonpolymorphic mutation that appears to have a resistance profile similar to V82T.
83	N	D	N83D is a nonpolymorphic mutation selected primarily in patients who have received multiple PIs. It is associated with reduced susceptibility to ATV, IDV, NFV, SQV and TPV. It is included in the Boehringer-Ingelheim GSS for TPV.
84	I	AC	I84A is a rare nonpolymorphic PI-selected substrate-cleft mutation associated with high-level resistance to each of the PIs. I84C is a rare nonpolymorphic PI-selected mutation

Table 6.3 (Continued)

			PI mutations
Position	Cons	AA	Position
			associated with varying degrees of reduced susceptibility to each of the PIs.
84	I	V	I84V is a nonpolymorphic substrate-cleft mutation selected by each of the PIs. It causes high-level resistance to ATV, FPV, IDV, NFV and SQV, intermediate-level resistance to LPV and TPV, and low-level resistance to DRV.
85	I	V	I85V is a nonpolymorphic PI-selected mutation. It has minimal, if any, effects on PI susceptibility.
88	N	90	N88D is selected by NFV. In combination with D30N, it synergistically reduces susceptibility to NFV. It may also be associated with reduced susceptibility to ATV and SQV.
88	N	S	N88S is a nonpolymorphic mutation selected by NFV and ATV. It causes high-level resistance to NFV and ATV and low-level resistance to IDV and SQV. It increases susceptibility to FPV.
88	N	TG	N88G/T are extremely rare nonpolymorphic PI-selected mutations that reduce susceptibility to NFV and ATV.
89	L គិសន៍	IT In §	L89T/I are nonpolymorphic PI-selected mutation of uncertain phenotypic and clinical significance.
89	Copy A I I	M righ	L89M is a common polymorphism that is not associated with reduced PI susceptibility. It is the consensus amino acid in most non-B subtypes.
89	L	V	L89V is a nonpolymorphic accessory mutation selected by IDV, NFV, FPV, LPV and DRV. It reduces susceptibility to these PIs. L89V is included in the Tibotec DRV GSS (de Meyer 2008).
90	L	M	L90M is a nonpolymorphic mutation selected primarily by SQV, NFV, IDV and LPV. It reduces susceptibility to each of the PIs except TPV and DRV.

APPENDIX C

LIST OF THE CHEMICALS AND REAGENTS

Chemical and Reagents	Source
100 bp DNA ladder	Thermo Scientific, USA
6X gel loading ladder	Thermo Scientific, USA
Absolute ethyl alcohol	Merck, Germany
Agarose	Seakem, BMA, ME, USA
BigDye®Terminator V3.1	Applied Biosystems, USA
Cycle Sequencing Kit	77 70%
Ethidium bromide	Promega, USA
Isopropanol	Merck, Germany
Nucleospin®Tissue Kit	Macherey-Nagel, Germany
Nucleospin®Gel and PCR Clean-up Kit	Macherey-Nagel, Germany
Platinum [®] Taq DNA Polymerase High Fidelity	Invitrogen, USA

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

APPENDIX D

LIST OF THE INSTRUMENTS

Chemical and Reagents	Source
ABI Prism 3100/3130 Genetic Analyzer	Applied Biosystems, USA
Analytical balance	Ohaus, Germany
Autoclave	Consolidated Sterilizer Systems, USA
Biological safty cabinet class I	Ibis Biosciences, USA
Dry bath incubator	Sheldon, USA
Eon [™] Microplate Spectrometer	BioTek Instruments, USA
Freezer (-20°C)	Sanyo, Thailand
G:BOX F3 Gel imaging instrument	Syngene, USA
Gel electrophoresis system	Bio-rad, USA
GeneAmp®PCR System 9700	Applied Biosystems, USA
Geneious software	Biomatters, NZ
Hot air over	Sheldon, USA
Low speed centrifuge 2500 rpm	Harikul, Thailand
Microcentrifuge	Denville scientific, USA
Plate centrifuge	Eppendorf, Germany
Refrigerator	Sanyo, Thailand
Ultraviolet transilluminator	VilberLourmat, France
Vortex mixer	Daihan Scientific, Korea
Water bath	Sheldon, USA

APPENDIX G

REAGENT PREPARATIONS

1.50X TAE buffer
Tris base
Boric acid
0.5 M EDTA
- Dissolve in 100 ml distilled water
- Sterilize by autoclaving and store at room temperature
2. 10 mg/ml Ethidium bromide
Ethidium bromide 1g
- Dissolve in 100 ml distilled water
- Stir on magnetic stirrer
- Wrap the container with aluminum foil and store at 4°C in refrigerator
3. 1% agarose gel
Agarose 1g
0.5X TAE buffer 100ml
- Melt in microwave oven for 3 minutes
4. 75% Isopropanol

Isopropanol

Distilled water

3ml

1ml

CURRICULUM VITAE

Author's name Miss Natnaree Girdthep

Date/ Year of Birth April 28, 1990

Place of Birth Kamphaeng Phet, Thailand

High school, Kamphaeng Phet Pittayakom school. Education 2006-2008

> 2009-2012 Bachelor of Science (Medical Technology), Faculty of Associated Medical Sciences,

> > Chiang Mai University, Chiang Mai, Thailand

Publications

Girdthep, N., Samleerat, T. HIV Drug Resistance in Newly HIV-Infected Infants in Thailand. International Graduate Research Conference 2015. Chiang Mai, Thailand. December

11, 2015. (Proceeding).

Samleerat, T., Girdthep, N., Ngo-Giang-Huong, N., Sirirungsri, W. HIV Drug Resistance Mutations Among Newly Diagnosed HIV-infected Infants in Thailand. International Workshop on HIV Pediatrics. Durban, South Africa. July 15-16, 2016. (Poster presentation).

by Chiang Mai University

rights reserved

