CONTENTS

Acknowledgement	d
Abstract in Thai	f
Abstract in English	h
List of Tables	m
List of Figures	n
List of Abbreviation	r
ข้อกวามแห่งการริเริ่ม	u
Statement of Originality	v
Chapter 1 Introduction	1
1.1 Historical Background	1
1.2 Objectives	2
1.3 Literature Reviews	2
1.4 Rationale and Hypotheses UNIVE	2
Chapter 2 Methods and Materials	3
Part I Plant extraction	3
O Materials ht [©] by Chiang Mai University	23
2. Methods	23
2.1 Plant preparation	23
2.2 Plant maceration and Fractionation	24
Part II Screening of aromatase inhibitory activity from 22 Thai plant	25
1. Materials	25
2. Methods	26
2.1 Microsome preparation	26

2.2 Fish microsome characterization	26
2.2.1 Protein determination	26
2.2.2 SDS-PAGE analysis	26
2.2.3 SEM examination	27
2.2.4 Aromatase assay	27
2.2.5 Evaluation of male and female microsomal enzyme	29
2.2.6 Evaluation of the concentration of microsomal protein	29
2.2.7 Evaluation of inhibitors on aromatase activity	29
2.2.8 Determination of V_{max} and K_m values	29
2.3 Determination of plant ethanolic extract	29
2.3.1 Inhibitory activity effect of plant extracts on aromatase	29
2.3.2 Flavonoid content determination	30
2.4 Cytotoxicity of fraction against HepG2 and MCF-7	30
2.5 HPLC analysis	31
Part III Development of nanochrysin entrapment	32
1 Materials	32
2. Methods	33
2.1 HPBCD entrapment	33
2.2 Poloxamer entrapment	33
2.3 PLGA entrapment	33
2 4 Bilosome entrapment	34
2.5. Entrapment efficiency	34
Co2.6 PCS analysis by Chiang Mai University	35
2.7 Chrysin releasing analysis	35
2.8 <i>In vivo</i> toxicity study	35
2.9 Histological study	35
2.10 Statistical analysis	36
	20
Part IV Zebrafish treatment	37
1. Materials	37
2. Methods	37

2.1 Fertility check	37
2.2 The masculinization process	37
Chapter 3 Results and Discussion	38
Part I Plant extraction	38
Part II screening of aromatase inhibitory activity from 22 Thai plants	41
Part III Development of nanochrysin entrapment	64
Part IV Zebrafish treatment	86
Chapter 4 Conclusion	98
References	101
Appendix	124
Appendix A	124
Appendix B	146
Appendix C UNIVERS	147
ลิขสทธิ์มหาวิทยาลัยเชียงใหม่	148
Curriculum vitaeght [©] by Chiang Mai University	149
All rights reserved	

LIST OF TABLES

Table 1.1 The structure of potent aromatase inhibitory activity flavonoids	7
Table 1.2 The specifications and properties of some cyclodextins	9
Table 1.3 The specifications and properties of Pluronic F-68 and F-127	11
Table 1.4 The specifications and properties of PLGA	13
Table 1.5 The bilosome formations used in oral immunization	14
Table 1.6 The classification and properties of surfactants	16
Table 2.1 The attribution of level to factors in experiments	34
Table 3.1 The selected 22-Thai plants for screening aromatase inhibitory activity	40
Table 3.2 The effect of age and body weight of Nile tilapia	44
Table 3.3 The characteristics of chrysin loaded HPβCD	65
Table 3.4 The characteristics of CP-68 obtained from the use of ethanol as a solvent	70
Table 3.5 Characteristics of CP-127 obtained from the use of ethanol as a solvent	70
Table 3.6 Characteristics of CP-68 obtained from the use of acetone as a solvent	73
Table 3.7 Characteristics of CP-127 obtained from the use of acetone as a solvent.	73
Table 3.8 Mean particle size, zeta potential, PDI, and encapsulation efficiency	
of chrysin loaded PLGA. STESETVED	81
Table 3.9 The effect of surfactants on bilosome formation and their properties	87
Table 3.10 The standard length, body height and weight of experimental zebrafish	92

LIST OF FIGURES

Figure 1.1 The pathway of steroidogenesis in teleost fish.	5
Figure 1.2 The molecular structure of aromatase inhibitors	6
Figure 1.3 The formation of a typical cyclodextrin inclusion complex	8
Figure 1.4 Pluronic block copolymer molecule and micelle with drug	10
Figure 1.5 PLGA block copolymer molecule and micelle with drug	12
Figure 1.6 The structure of bilosome	15
Figure 1.7 The chemical structure of Tween 20	17
Figure 1.8 The chemical structure of Tween 80	18
Figure 1.9 The chemical structure of Span 60	18
Figure 1.10 The chemical structure of Span 80	19
Figure 1.11 The structure of bile acid derivative	20
Figure 1.12 Male and female zebrafish with secondary sex characteristics	21
Figure 2.1 Microsome preparation process	28
Figure 3.1 The reddish microsome was obtained from healthy tilapia	41
Figure 3.2 SDS gel electrophoresis patterns of microsomes	42
Figure 3.3 SEM micrographies of microsomes	43
Figure 3.4 The effect of quercetin, aromatase inhibitor, on fluorescence intensity	44
Figure 3.5 The effect of pH on aromatase activity in various concentration of	
microsome protein	45

Figure 3.6 The effect of concentrations of hesperidine, morin, quercetin,

quercetrin, and rutin on aromatase inhibition	46
Figure 3.7 Lineweaver-Burk plot for K_m and V $_{max}$ values of the aromatase	47
Figure 3.8 The dose-response curve of aromatase inhibition versus A. conyzoides	48
Figure 3.9 The dose-response curve of aromatase inhibition versus A. cepa	48
Figure 3.10 The dose-response curve of aromatase inhibition versus A. siamensis	49
Figure 3.11 The dose-response curve of aromatase inhibition versus C. odorata	49
Figure.3.12 The dose-response curve of aromatase inhibition versus C. roseus	50
Figure 3.13 The dose-response curve of aromatase inhibition versus C. nervosum	50
Figure 3.14 The dose-response curve of aromatase inhibition versus C. sativum	51
Figure 3.15 The dose-response curve of aromatase inhibition versus C. revoluta	51
Figure 3.16 The dose-response curve of aromatase inhibition versus D. Lablab	52
Figure 3.17 The dose-response curve of aromatase inhibition versus <i>M. hortensis</i>	52
Figure 3.18 The dose-response curve of aromatase inhibition versus M. elengi	53
Figure 3.19 The dose-response curve of aromatase inhibition versus M. charantia	53
Figure 3.20 The dose-response curve of aromatase inhibition versus M. oleifera	54
Figure 3.21 The dose-response curve of aromatase inhibition versus N. nouchali	54
Figure 3.22 The dose-response curve of aromatase inhibition versus O. indicum	55
Figure 3.23 The dose-response curve of aromatase inhibition versus <i>P. edulis</i>	55
Figure 3.24 The dose-response curve of aromatase inhibition versus <i>P. foetida</i>	56
Figure 3.25 The dose-response curve of aromatase inhibition versus <i>P. major</i>	56
Figure 3.26 The dose-response curve of aromatase inhibition versus <i>P. granatum</i>	57
Figure 3.27 The dose-response curve of aromatase inhibition versus S. pinnata	57

Figure 3.28 The dose-response curve of aromatase inhibition versus <i>T. catappa</i>	58
Figure 3.29 The dose-response curve of aromatase inhibition versus W. religiosa	58
Figure 3.30 The IC_{50} of ethanolic extracts	59
Figure 3.31 The flavonoid content of O. indicum, A. conyzoides and C. odorata	60
Figure 3.32 The cytotoxicity of fractionate of <i>O. indicum</i> against HepG2 and MCF-7	61
Figure 3.33 The chromatogram of hexane, ethyl acetate and ethanol fraction	62
Figure 3.34 The comparison of inhibitory effect (IC ₅₀) of the crude extract,	
ethyl acetate fraction, and chrysin	63
Figure 3.35 The histogram of chrysin loaded HPβCD	64
Figure 3.36 The zeta potentials of chrysin loaded HPβCD	65
Figure 3.37 The effect of pH on chrysin release behavior from chrysin loaded HP β CE)
in 10 mM HEPES buffer.	66
Figure 3.38 The mortality of zebrafish eggs exposure to chrysin loaded nanoparticles	67
Figure 3.39 The PCS analysis of CS-P68 and CS-P127 at drug to polymer ratios of	
1:4 and 1:2, respectively obtained from the use of ethanol as a solvent.	71
Figure 3.40 The zeta potential analysis of CS-P68 and CS-P127 at drug to polymer	
ratios of 1:4 and 1:2 obtained from the use of ethanol as a solvent	72
Figure 3.41 The PCS analysis of CS-P68 and CS-P127 at drug to polymer	
ratio of $1:3$ obtained from the use of acetone as a solvent	74
Figure 3.42 The zeta potential of CS-P68 (a) and CS-P127 (b) at drug to polymer	
ratio of 1:3 obtained from the use of acetone as a solvent	75
Figure 3.43 The effect of pH on chrysin release behavior from CS-P68 and CS-P127	76

Figure 3.44	The mortality of zebrafish eggs exposure to CS-P68 and CS-P127	79
Figure 3.45	The morphology of surviving zebrafish embryos	
	exposure to water, CS-P68 and CS-P127	80
Figure 3.46	The effect of chrysin : PLGA ratio on mean diameter	82
Figure 3.47	The PCS analysis of proper chrysin loaded PLGA	83
Figure 3.48	The effect of pH on chrysin release behavior from chrysin loaded PLGA	84
Figure 3.49	Mortality of zebrafish eggs exposure to chrysin loaded PLGA	85
Figure 3.50	The effect of chrysin loaded PLGA on hatchability of zebrafish eggs	86
Figure 3.51	The PCS analysis of size and zeta potential of chrysin loaded bilosome	88
Figure 3.52	The effect of pH on chrysin release behavior	
	from chrysin loaded bilosome	89
Figure 3.53	The mortality of zebrafish eggs exposure to chrysin loaded bilosome.	90
Figure 3.54	The depigmentation phenomenon in zebrafish embryos	
	exposure to chrysin loaded bilosome	91
Figure 3.55	The characteristic of male, female, vehicle control female,	
•	and nanochrysin treated female adult zebrafish.	93
Figure 3.56	The histological observations of male gonads	94
Figure 3.57	The histological observations of female gonads	95
Figure 3.58	The histological observations of chrysin-loaded HPβCD	
	treated female gonads	96

LIST OF ABBREVIATIONS

%EE	The Percentages of Entrapment Efficiency
μg	Microgram
μL	Microliter
AIs	Aromatase inhibitors
ANOVA	Analysis of variance
AR grade	Analytical grade
ASD	Androstenedione
CDs Q	Cyclodextrins
CMC	Critical Micelle Concentration
CS-P127	Chrysin loaded pluronic F-127
CS-P68	Chrysin loaded pluronic F-68
CYP19	Aromatase
CYP450	NADPH - Cytochrom P450
DBF	Dibenzylfluorescein
DMEM	Dulbecco's Modified Eagle Medium
DMF	Dimethylformamide
DMSO	Dimethyl sulfoxide
^{E1} ลิสสิทธิ์	Estrone
E2	Estradiol
EDCs-Opyright	Endocrine disrupting chemicals
EDTA	Ethylenediaminetetraacetic acid S e r v e o
EMA	European Medicines Agency
ER	Endoplasmic reticulum
ER-positive	Estrogen Receptor-positive
EtOAc	Ethyl acetate
EtOH	Ethanol
FBS	Fetal bovine serum

FDA	Food and Drug Administration
FSH	Follicle-stimulating hormone
g	Gram
GA	Glycolic acid
h	Hour
H&E	Haematoxylin and eosin
HEPES	4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
HepG2	Human hepatoma cell line
HLB	Hydrophilic-lipophilic balance
HPLC	High-performance liquid chromatography
ΗΡβCD	Hydroxypropyl-beta-cyclodextrin
Hsd20b	20β-hydroxysteroid dehydrogenase
IC ₅₀	Concentration of an inhibitor that is required for 50% inhibition
IES	The Institute for Environment and Sustainability
KCl	Potassium chloride
kDa	Kilodalton
K _m	The Michaelis constant
LA	Lactic acid
LH	Luteinizing hormone
М	Molar
MCF-7	Human breast cancer cells
mg	Milligram
MIS	Maturation inducing steroid
mLadans	Milliliter DNUABLBUOLHU
^{mM} Copyright	Millimolar Chiang Mai University
MS222	Tricaine methanesulfonate
MTT	3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide
mV	Millivolt
MW	Molecular weight
MWCO	Molecular weight cut-off
NADPH	Nicotinamide adenine dinucleotide phosphate
NaOH	Sodium hydroxide

ND	Not detectable
ng	nanogram
NIEHS	The National Institute of Environmental Health Science
nm.	nanometer
PCS	Photon correlation spectroscopy
PDI	Polydispersion index
PEO	Polyethylene oxide
Ph.Eur	European Pharmacopeia
PLGA	Poly(dl-lactide-co-glycolide)
РРО	Polypropylene oxide
RT	Retention time
SD	Standard derivation
SDS-PAGE	Sodium dodecyl sulfate polyacrylamide gel electrophoresis
SEM	Scanning electron microscope
SLN S	Solid lipid nanoparticles
TEMED	Tetramethylethylenediamine
THF	Tetrahydrofuran
Tris-HCl	TRIS hydrochloride
USP/NF	United States Pharmacopoeia / National Formulary
UV	Ultraviolet
V _{max}	The maximum reaction velocity

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved

ข้อความแห่งการริเริ่ม

- วิธีการใหม่ในการตรวจหาสารสกัดจากพืชที่มีฤทธิ์ยับยั้งเอนไซม์อะโรมาเทส โดยใช้สารเรือง แสงร่วมกับไมโครโซมตับจากปลานิล
- วิธีการใหม่ในการเพิ่มการละลายน้ำของสารกลุ่มฟลาโวนอยด์ที่ไม่ละลายน้ำ โดยใช้ระบบพอลิ เมอริกไมเซลล์เพื่อเป็นระบบนำส่งยาไปยังเซลล์เป้าหมายในตัวปลา
- ผลิตภัณฑ์ใหม่ของสารไครซินบรรจุในพอลิเมอริกไมเซลล์ที่มีประสิทธิภาพในการชักนำให้เกิด ลักษณะเพศผู้ทั้งระดับภายนอกและระดับจุลกายวิภาคศาสตร์ของเนื้อเยื่อ

STATEMENT OF ORIGINALITY

- 1) A new method for screening aromatase inhibitory activity from plant extracts by using fluorescent dye incorporated with hepatic microsome from tilapia.
- 2) A new method for increasing solubility of insoluble flavonoids by using polymeric micelle system for delivery drug to the target cells in fish.
- 3) A new product of the chrysin loaded polymeric micelle system that effect on fish masculinization both gross appearance and histological level.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved