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CHAPTER 2 

Theories and Principles 

2.1 Rock Physics Modeling 

Seismic amplitudes are interpreted using models generated from well data and 

supported by a range of knowledge collectively described as rock physics. The key 

objectives in using of rock physics are 1) log preparation and conditioning, 2) rock 

characterization from logs, and 3) seismic modeling (Simm and Bacon, 2014). Many 

rock physics models have been published that are often presented in simple forms of 

relationships involving two or three parameters. Some of the most relations that are 

commonly used are Gardner’s relations and Greenberg-Castagna. 

2.1.1 Gardner’s relations 

Normally in rocks, compressional velocity (VP) increases with increasing density 

(ρ) that means a positive relationship. Gardner et al (1974) developed a series of brine 

saturated lithology dependent relations of VP and density (Figure 2-1). The equation for 

clastic rock is: 

𝐺𝑎𝑟𝑑𝑛𝑒𝑟′𝑠 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛;      
∆𝜌

𝜌
 =  

1

4
(

∆𝑉𝑃

𝑉𝑃
) 

2.1.2 Greenberg-Castagna 

The ideal shear velocity inputting to rock physic analysis is usually a strong 

dependent lithology but largely independent pressure, hence positive correlation 

between VP and shear velocity (VS). The equation of VP and VS relation in mudrocks is 

shown below (Castagna et al, 1985). Then, Greenberg and Castagna (1992) defined four 

trends for commonly occurring (brine bearing) lithology (Figure 2-2). The effect of gas 

sand moves the points up and lies above wet sand or Castagna sandstone trend. 

𝐶𝑎𝑠𝑡𝑎𝑔𝑛𝑎′𝑠 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛;     𝑉𝑃 =  1.16𝑉𝑆 +  1.36 
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 Figure 2-1. P-wave velocity and density relationships in rocks of different lithology re-

drawn after Gardner et al in 1974 (Simm and Bacon, 2014) 

  

Figure 2-2. Crossplot showing VP versus VS of Greenberg–Castagna relations (Simm 

and Bacon, 2014) 

2.2 AVO Response and Classification 

AVO term is first proposed by Ostrander in 1982 that is the comparison of seismic 

amplitude changes compared to the offset between the receivers and the sources. Hence, 

AVO stands for Amplitude Variation with Offset or Amplitude Versus Offset. It is 

related to the P-wave and S-wave velocity. Without S-wave recorder, AVO can be used 

to infer VS by using Aki-Richards or Zoeppritz equation if VP and density are available. 
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To look at the AVO classes may identify fluid and lithology changes. This is can be 

used at locations far away from well control by seeing changes in AVO.  

When seismic wave or P-wave encounters reflectors or layer boundaries within 

the Earth with velocity and density contrasts, energy of the incident wave is partitioned 

at each boundary. Some of the energy is mode-converted to shear wave, and then both 

the compressional wave (P-wave) and shear wave (S-wave) energy are partly reflected 

and partly transmitted at each the layer boundaries (Figure 2-3). The fraction of the 

incident energy that is reflected depends on the angle of incidence. Therefore, reflection 

amplitudes analysis of the energy should be used to detect lateral change in elastic 

properties of reservoir rocks, such as Poisson’s ratio (Feng and Bancroft, 2006).  

 

Figure 2-3. Mode conversion of an incident P-wave on the boundary between two 

elastic layers in the subsurface of the earth (Russell et al, 2006) 

2.2.1 AVO Intercept and Gradient 

The background theory for AVO is accredited to Knott (1899) and Zoeppritz 

(1919) who developed equations describing elastic waves as a function of reflection 

angle at an interface. Through the years, there have been several approaches developed 

to simplify these equations with a different emphasis. The most commonly used linear 

approximation is from Shuey (1985), who took the complicated Zoeppritz equations and 

produced approximations that could be measured and calculated from pre-stack data. 

There are two forms of the Shuey approximation. 
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𝑆ℎ𝑢𝑒𝑦 𝑡ℎ𝑟𝑒𝑒 𝑡𝑒𝑟𝑚:     𝑅(𝜃) = 𝐴 + 𝐵 sin2 𝜃 + 𝐶(tan2 𝜃 − sin2 𝜃)  

𝑆ℎ𝑢𝑒𝑦 𝑡𝑤𝑜 𝑡𝑒𝑟𝑚:         𝑅(𝜃) = 𝐴 + 𝐵 sin2 𝜃  

where  is angle of incidence, A is the intercept and represents the reflection coefficient 

at normal incidence (R0), B is the gradient (G) and denotes the slope of the reflection 

coefficients with sin2θ, and C is the curvature term and describes the behavior at large 

angles that are close to the critical angle. The Shuey two-term approximation is 

typically good for angles less than 30° (Roden et al, 2014). The intercept or R0 is 

controlled by the contrast in acoustic impedance, and the gradient is more complex in 

terms of rock properties contrasts in VP, VS and density.  

2.2.2 AVO Classes 

The classification of AVO anomalies was devised by Rutherford and Williams in 

1989 and modified by Ross and Kinman in 1995 (AVO Class 2p) and Castagna and 

Swan in 1997 (AVO Class 4). To assume normal polarity, the five AVO classes can be 

sample illustrated by Veeken and Rauch-Davies (2006) as Class 1, Class 2, Class 2p, 

Class 3 and Class 4 (Table 2-1) (Figure 2-4). 

  

Figure 2-4. The AVO Classes modified after Rutherford and Williams in 1989, Ross 

and Kinman in 1995 and Castagna and Swan in 1997 (Simm and Bacon, 2014) 
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Table 2-1. Examples of the five AVO classes assuming normal polarity  

(Veeken and Rauch-Davies, 2006)   

AVO AI response at 0 angle Response as the angle increases 

Class 1 

High impedance sand with 

decreasing AVO. The layer 

has higher impedance than 

the surrounding shale. 

Rare. Low positive amplitude (peak) as the 

stacking changed the polarity, canceling 

out (dimming) the amplitude effect. 

Class 2 

Near-zero impedance 

contrast between the sand 

and surrounding shale. 

Small positive reflectivity (peak) that 

changes into negative reflectivity with 

offset, giving a polarity flip and a dimming 

or brightening of the reflection on 

stacking. 
Class 2p 

Near-zero impedance 

contrast. 

Class 3 

Low impedance sand with 

increasing AVO, compared 

to surrounding shale. 

Negative reflectivity (trough) that becomes 

more negative, brightening the reflection 

on stacking. Weak amplitudes at near 

angle, strong amplitudes at far angle. 

Class 4 
Low impedance sand with 

decreasing AVO. 

Negative amplitude becomes less negative 

(dims) with offset. The Shuey 

approximation works well for this class. 

 

2.2.3 AVO Responses and AVO Crossplot 

There are a number of terms that are generally used to describe AVO responses. 

The AVO plot of amplitude and angle is useful visualization of AVO responses, it is 

generally use in analysis of variable responses from seismic data. Plotting the intercept 

and gradient of each response is overcomes these limitation. Therefore, the AVO 

crossplot is an important to understand lithology and fluid discrimination (Simm and 

Bacon, 2014) (Figure 2-5).  

The AVO classes describe AVO responses only for the top sand interface. In 

terms of sand and shale, reflections of base sand and/or hydrocarbon contact have AVO 

responses with positive gradients. In case, base of brine sand can have various AVO 



 

21 

responses such as 1) Class 4, 2) phase reversal from negative to positive amplitude with 

increasing offset and 3) positive amplitude increasing with offset (quite low gradient). 

Moreover, a positive AVO with positive intercept is characteristic of hydrocarbon 

contacts. It is better to separate to lithology changes with positive intercept and negative 

gradient (Class 1) (Simm and Bacon, 2014). Figure 2-6 is illustrated some seismic 

responses in zero-offset of oil and brine sand at the top of a sand, and a positive 

impedance contrast is a positive number. 

 

Figure 2-5. The various AVO classes are described in different area on AVO crossplot 

(Simm and Bacon, 2014). 

 

Figure 2-6. Schematic of oil and brine sand in zero-offset responses (Red is hard loop or 

impedance increase, and blue is soft loop or impedance decrease) (Bacon et al, 2003) 
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2.3 Seismic Inversion 

Seismic has been used by geophysicists for almost forty years. Early inversion 

techniques transformed the seismic data into P-impedance (ZP) that is the product of 

density and P-wave velocity (VP) to make prediction about lithology and porosity (post-

stack inversion method). However, the prediction was quite ambiguous because P-

impedance is sensitive to lithology, fluid and porosity effects, and it is difficult to 

separate the influence of each effect. To perform a less ambiguous interpretation of 

inversion results, full elastic inversion must be performed by estimation of P-

impedance, S-impedance (ZS) and density when ZS is the product of density and S-wave 

velocity (VS). The reason for reflectivity that is a function of VP, VS and density 

responding to the subsurface is sufficiently different, and the changes in reflectivity as a 

function of angle allow seeing the difference between fluid and lithology effects. In the 

present, progression to the point of the inversion for P-impedance, S-impedance and 

density is feasible (Russell et al, 2006). 

2.3.1 The General Assumptions for Seismic Inversion 

1. The seismic trace can be modelled as the convolution of the earth's 

reflectivity and a band-limited seismic wavelet as follow. 

S = W*R  

where S is the seismic trace, W is the seismic wavelet, R is the reflectivity and * is 

represented to the convolutional operator (Figure 2-7). 

2. Zero-angle (normal incidence) reflectivity is calculated by the equation at 

the interface of layer i and layer i+1 as 

𝑅𝑖 =
𝑍𝑖+1 − 𝑍𝑖

𝑍𝑖+1 + 𝑍𝑖
 

where Zi is the acoustic impedance for layer i and Zi+1 is the acoustic impedance for 

layer below layer i. This equation can be used for RP by using the corresponding 

impedances of ZP, but this approach does not work well in case of the fizzy water 

problem. Because of low bulk modulus and low Vp of fizzy water, it is difficult to 

distinguish from 100% gas. 
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Figure 2-7. The basic convolutional model of the seismic output (or seismic trace) is 

Seismic Output = Wavelet convolved with Reflectivity Coefficients + Noises (after 

Walden and White, 1998). 

3. Background trend is used as wet clastic rock. Two relationships should be 

hold for background trends. 

3.1 Constant VS/VP, this ratio of the S-wave velocity and P-wave 

velocity should be constant within a rock layer. It is often represented by . Moreover, 

the following equation is assumed, so the impedances are related: 

ln(𝑍𝑆) = ln(𝑍𝑃) + ln(𝛾), 𝑤ℎ𝑒𝑟𝑒   𝛾 =
𝑉𝑆

𝑉𝑃
 

3.2 Generalized Gardner, this procedure stabilizes the Aki-Richards 

equation by including two background regional trends that relate ZP and density. 

𝜌 = 𝑎𝑉𝑃
𝑏 , 𝑎𝑛𝑑  ln(𝜌) =

𝑏

1 + 𝑏
ln(𝑍𝑃) +

ln(𝑎)

1 + 𝑏
 

where ρ is bulk density, ZP is the P-wave impedance and a and b are constants. 

2.3.2 Pre-stack Simultaneous Inversion 

The purpose of simultaneous inversion is to invert pre-stack CDP gathers (which 

was applied NMO correction) to determine compression impedance (ZP), shear 

impedance (ZS) and density (ρ). In contrast, post-stack inversion ignores the fact in wet 

Wavelet 
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clastic rocks, ZP and ZS should be related. P-wave velocity (VP) and S-wave velocity 

(VS) should be linearly related when there is no complicated factor (Castagna's 

equation) such as the presence of hydrocarbon. Also, density should be related to VP 

(Gardner's equation). Therefore, the simultaneous inversion needs to include some 

forms of coupling between the variables. This should be added stability to a problem of 

sensitive noise, and it is usually produced non-unique solutions. The actual application 

of pre-stack inversion uses the algorithm based on these three assumptions. 

1) The linearized approximation for reflectivity holds.  

2) The function of angle for PP reflectivity can be given by the Aki-Richards 

equations (Aki and Richards, 1980). 

3) The background data is a linear relationship between P-impedance and both S-

impedance and density which is expected to wet lithology. 

These three assumptions can derive a final estimate of P-impedance, S-impedance 

and density by perturbing an initial P-impedance model (Hampson et al. 2005). 

Pre-stack simultaneous inversion can be extended the theory to the pre-stack 

inversion case that the seismic ray strikes the boundary between two geological layers 

with the non-zero degrees incident angles. The results of an incident P-wave at an angle 

give reflected and transmitted P-waves and S-waves. The amplitudes of the reflected 

and transmitted waves can be computed by Zoeppritz equations (Zoeppritz, 1919) 

(Figure 2-3). 

The problem of inversion model case, the amplitudes of velocities are found more 

difficult than the forward model and are the non-linear nature of Zoeppritz equations. 

So, pre-stack inversion had been started with the linearized Aki-Richards equation (Aki 

and Richards, 1980, Richards and Frasier, 1976) which was re-expressed by Fatti et al. 

(1994) as below equation (Hampson et al., 2005).   

𝑅𝑃𝑃(𝜃) = 𝑐1𝑅𝑃 + 𝑐2𝑅𝑆 + 𝑐3𝑅𝐷 

where  𝑐1 = 1 + 𝑡𝑎𝑛2𝜃, 𝑐2 = −8𝛾2𝑠𝑖𝑛2𝜃, 𝑐3 = −0.5𝑡𝑎𝑛2𝜃 + 2𝛾2𝑠𝑖𝑛2𝜃, 𝛾 = 𝑉𝑆/𝑉𝑃, 

and the linearized P-reflectivity (RP), S-reflectivity (RS) and density reflectivity (RD) are 
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𝑅𝑃 =
1

2
[
∆𝑉𝑃

𝑉𝑃
+

∆𝜌

𝜌
] =

∆𝑍𝑃

2𝑍𝑃
 

𝑅𝑆 =
1

2
[
∆𝑉𝑆

𝑉𝑆
+

∆𝜌

𝜌
] =

∆𝑍𝑆

2𝑍𝑆
 

𝑅𝐷 =
∆𝜌

𝜌
 

Then, Hampson et al (2005) used a linearized inversion approach to solve the 

reflectivity terms given in above equations. They extended the work of Simmons and 

Backus (1996) that developed a scheme to invert for P-reflectivity (RP), S-reflectivity 

(RS) and density reflectivity (RD), and the work of Buland and Omre (2003) that called 

Bayesian linearized AVO inversion. The new development allows inverting directly for 

P-impedance, S-impedance and density. This is to extend model-based post-stack 

impedance inversion and combine to equation of Fatti et al. (1994) therefore this 

method could be seen as a generalization to pre-stack inversion for a given angle trace 

S() equation.  

𝑆(𝜃) = (
1

2
) 𝑐1𝑊(𝜃)𝐷𝐿𝑃 + (

1

2
) 𝑐2𝑊(𝜃)𝐷𝐿𝑆 + 𝑐3𝑊(𝜃)𝐷𝐿𝐷 

where LS is ln(ZS), LD is ln(ρ),W is the wavelet matrix, D is the derivative matrix, and 

wavelet is dependent on angle. The equation is dealing with logarithms of impedances 

rather than velocity.  

One of the key assumptions in the simultaneous inversion is that linear 

relationships between the logarithms of P-impedance and S-impedance (LP and LS) and 

between the logarithms of P-impedance and the density reflectivity (LP and LD) can be 

build. That is deviations away from this linear fit given by ΔLS and ΔLD are observed 

(Figure 2-8) (Russell and Hampson, 2006). 

ln(𝑍𝑆) = 𝑘 ln(𝑍𝑃) + 𝑘𝑐 + ∆𝐿𝑆 

ln(𝜌) = 𝑚 ln(𝑍𝑃) + 𝑚𝑐 + ∆𝐿𝐷 

where ΔLS and ΔLD are the effect when the rock fluid is not water. Therefore, in wet 

rock ΔLS and ΔLD = 0. 
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Combining the angle trace S() equation and linear relationship equation of ZP 

and both ZS and density is gotten finally simplify the constants of simultaneous 

inversion equation as: 

𝑆(𝜃) = �̃�1𝑊(𝜃)𝐷𝐿𝑃 + �̃�2𝑊(𝜃)𝐷∆𝐿𝑆 + 𝑐3𝑊(𝜃)𝐷∆𝐿𝐷 

where �̃�1 = (1/2)𝑐1 + (1/2)𝑘𝑐2 + 𝑚𝑐3 and �̃�2 = (1/2)𝑐2, and this equation can be 

implemented in matrix form as Figure 2-9. 

 

Figure 2-8. Crossplots of ln(ZD) vs ln(ZP) and ln(ZS) vs ln(ZP) where, in both cases, a 

best straight line fit has been added. The deviations away from this straight line, 

 ∆LD and ∆LS, are the desired fluid anomalies (Russell and Hampson, 2006). 

 

Figure 2-9. Matrix form of simultaneous inversion equation 

If this equation is solved by matrix inversion methods, the problem of the low 

frequency content will not be resolved. So, a practical approach is to initialize the 

solution to [LP, LS, LD] T = [ln(ZP0), 0, 0]T, where ZP0 is the initial impedance model, 

and then to iterate towards a solution using the method of conjugate gradients. 

(Hampson et al, 2005, 2006, Russell and Hampson. 2006, Russell et al, 2006 and 

Hampson and Russell, 2013) 


