CHAPTER 3

Methodology

3.1 Workflow

The workflow of this study consists of 3 main steps that are 1) Rock physics and
AVO modeling, 2) Pre-stack deterministic inversion, and 3) Lithology delineation and

prospect identification. The detail of each step will present as follows.
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Figure 3-1. Simplified workflow of methodology
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3.2 Rock Physic and AVO Modeling
3.2.1 Well Log Conditioning

Before conducting rock physics and AVO analysis, well log conditioning and
quality control should be done using Petrel software because quality of the well log data
sets especially sonic log (both compressional and shear sonic logs) are being affected by
borehole conditions and changing borehole sizes. To ensure the high quality of the input
well logs for pre-stack inversion and consequent results, bad data points were removed.
Firstly, the well logs should be edited by deleting bad zone such as casing interval.
Then, de-spiking of sonic logs was performed to eliminate the anomaly values. Next,
the sonic logs were calibrated with checkshot or VSP data for correcting time-depth
relationship and velocity. Finally, sonic log of each well conditioning step was

compared to observe changing.

1) Well Log Edition. To improve well log quality, it is crucial to adjust or
eliminate sections of well logs which are affected by poor borehole condition such as
change of borehole sizes and a part of casing. Moreover, the poor sections of the well
logs that are consequences from other methods of log editing or future processes should
be also removed after finishing each process. For example, the P-wave sonic logs which
were removed poor intervals are shown in Panel B of Figures 3-2 to 3-5.

2) Well Log De-spiking. The spikes from the log should be removed base
on the selected filter and the distribution of the data at the locations within the filter. A
filter width is defined and then the mean and standard deviation of the points within the
filter are calculated. The log value which falls outside the standard deviation will be
removed. The de-spiked P-wave sonic logs are shown in Panel C of Figures 3-2 to 3-5.

Because of good well log data, the spikes of each well are small and difficult to observe.

3) Sonic Log Calibration. The purpose is correlation between checkshot and
sonic travel times in wells by adjusting time of integrated sonic log to match smoothed
checkshot times. The calibration is done by slightly increasing or decreasing the sonic
values between checkshot points until the travel times of sonic log are corrected to the
derived times from the checkshot survey. The calibrated sonic logs are represented in

Panel D (red curves) and Panel G (blue curves) of Figures 3-2 to 3-5.
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Figure 3-2. Sonic log conditioning of S-2 Well after calibration with checkshot using

polynomial fit order 4 of created knees
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Figure 3-3. Sonic log conditioning of R-2 Well after calibration with checkshot using

polynomial fit order 4 of created knees
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Figure 3-4. Sonic log conditioning of D-36 Well after calibration with checkshot using

polynomial fit order 3 of created knees
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polynomial fit order 3 of created knees
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Notes; alphabets in Figures 3-2 to 3-5 are referred to Panel A: initial log, Panel
B: edited log, Panel C: de-spiked log, Panel D: calibrated log, Panel E: polynomial fit
to VSP, Panel F: residual drift, Panel G: comparison of before (blue) and after (red)
calibrated sonic logs, Panel H: converted Vp log (blue) and calculated interval velocity

(red), Panel I: interval velocity, Panel J: average velocity and Panel K: two way time.
3.2.2 Shear Wave Velocity Estimation

In this study, small length of shear sonic log is available (Figure 1-7) then Vs
estimation from Vp for the other regions is unavoidable. The general empirical relation
for Vs estimation from Vp in brine-saturated rock is given by Castagna et al (1985), and
Greenberg and Castagna (1992).

In D-36 well, the Vs is estimated using Vp and Vs crossplot from available data of
lower section in FM1 (yellow highlight). It is important to divide available log to
different interesting zones to each units for analyzing data and getting constants within
the zone. The empirical relation equations of sandstone and shale which are published
by Greenberg and Castagna (1992) are shown in yellow and green line, respectively
(Figure 3-6). However, these lines were observed poor matching with data of this area,

so new fit lines are calculated for sand (purple line) and shale (red line) (Figure 3-6).
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Figure 3-6. The highlight zone of Ve and Vs (yellow) that was used in Vp-Vs crossplot

to find the best fit lines of sand and shale for estimating Vs in D-36 well.
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The equations for Vs prediction were defined as:
Sandstone: Vs =0.7717Vp — 727.2 (M/s) (3.1)

Shale: Vs =0.6959Vp — 775.3 (m/s) (3.2)

The shear wave velocity logs were estimated from Vp using equations 3.1 and 3.2
for Vs of sand and Vs of shale, respectively. However, each log did not completely
match with the original Vs log, because the original Vs log was acquired from formation
which is normally comprised of both sand and shale layers. Therefore, to combine these
two logs relating to lithology, Log Calculator of RokDoc software was used by defining
if-cause equation which sand layers use Vs of sand and other use Vs of shale. Finally,
the estimated Vs log (or combined Vs log) is used for the upper section where does not
have Vs data, and the lower section have still used the original Vs log (Figure 3-7)
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3.2.3 Rock Physics Model

Rock physics models are used to analyze the relationship of each elastic property
such as Vp versus Vs and Vp versus density to achieve the understanding of rock
properties which is directly related to seismic reflection responses. Well log data is
important data to use in rock physics model. Crossplots of them are used to discriminate
the lithology and fluid content of each rock units. Some of the rock physics models are

used in this study showing below.

1. P-wave velocity and density relations (Gardner’s relation) are used to define
trends of rock types. In this study, the crossplot of P-wave velocity (Vp) and density for
all well is represented shale trend and sandstone trend along with Gardner’s shale line
(green line) and sandstone line (orange line) (Figure 3-8). However, crossplots of each
well are shown that the most of shale data (green to red of gamma ray color bar) is
above Gardner’s shale line (Figures 3-9 to 3-12). For sandstone (dark blue to cyan of
gamma ray color bar) of each well, the most of data is corresponded to Gardner’s
sandstone line except S-2 well which shows quite low density at shallow part (red circle
in Figure 3-9). From well report, the low density data is in unconsolidated interval, so

they are low density and velocity.
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Figure 3-8. Vp-Rho crossplot of four wells (S-2, R-2, D-36 and G-29)
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Figure 3-9. Vp-Rho crossplot of S-2 well
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Figure 3-10. Vp-Rho crossplot of R-2 well
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Figure 3-12. Vp-Rho crossplot of G-29 well
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2. P-wave and S-wave velocity relations (Greenberg-Castagna relation) can be
used to differentiate the lithology and it can be also providing Vp/Vs constraints in
elastic inversion and log analysis. From Vp-Vs crossplots of each well in this area, they
were clearly shown lithology trends (sandstone trend in blue circle and shale trend in
red circle). However, at the same well, each interval of formation and unit was

represented different trends at positions of sandstone and shale (Figures 3-13 to 3-15).
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To observe the available data in the Vp-Vs crossplots of each well, Vp and Vs
values of deep section (FM1 and FMO) are faster than shallow sections (Unit 2D to 2A)
because of high compaction increase with depth. However, FMO0 in D-36 well, both Vp
and Vs of the shale in this interval is quite low comparing to sandstone in the same
section and shale in another formation (Figure 3-13). From well report, pressure profile
show abnormal pressure in this formation, so it might be affected to velocity of shale.
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Figure 3-15. Vp-Vs crossplot of S-2 well at Unit 2D to 2A (above) and FM1 to TD
(below) showing different shale and sandstone trends

Indeed, the crossplots between P-wave and S-wave velocity of the study can
identify the lithology into sandstone and shale trends comparing to Greenberg-Castagna
lithology lines in each working interval (formation and units). However, it is difficult to
identify the saturated fluid in sandstones because low porosity values and high

compacted rocks in the reservoir section are shown in well reports.
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3.2.4 AVO Modeling

AVO modeling uses blocky models to analyze the AVO classes and responses
based on well log data. The AVO modeling was carried out for each well using AVO
classification which was plotted by the reflection coefficient (RC) and incidence angle
(AVO plot). The plots show the responded curves of the top and base sandstone from
near to far angle (O to 40 degree) that mean the curves relating to interface of difference
rocks. The interface reflectivity was calculated using 2 terms of Aki and Richards’
approximation of the Zoeppritz equations (Aki and Richards, 1980) by plotting
incidence angle (0) on horizontal axis and RC on vertical axis. Then, the AVO classes

can be considered to Class 1, 11, Ilp, Il and IV as shown in Table 2.1.
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Figure 3-16. AVO modeling of S-2 Well shows example of water and gas sandstones.
Sandstone A shows AVO class 1V, sandstone B, C and D show AVO class II.
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The AVO modeling is generated using well log data (Vp, Vs and density) and 25
Hz of Ricker’s wavelet. For examples AVO models of saturated sandstones in each
well, they represented different classes in wet (water) and gas sandstones. In S-2 well
(Figure 3-16), curve (red) of top wet sandstone A which is in Unit 2E shows AVO class
IV slightly increasing RC with increased angle. In contrast of wet sandstone B in Unit
2B, it shows class Il that RC is near zero at the near angle and decreases with increased
angle. This is abnormal for wet sandstone of this study area because it similar to gas
sandstone C and D in Formationl (FM1) which also show AVO class Il. Normally,

most of wet sandstones in this well and other wells are usually represented AVO class
IV, and gas sandstones are often shown class Il.
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Figure 3-17. AVO modeling of R-2 Well shows example of water and gas sandstones.
Sandstone A shows AVO class 1V, sandstone B, C and D show AVO class II.
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Figure 3-18. AVO modeling of D-36 Well shows example of water and gas sandstones.
Sandstone A, B and C show AVO class 1V, sandstone D shows AVO class Il, sandstone
E shows AVO class llp.

In R-2 well (Figure 3-17), AVO synthetic gather at top of wet sandstone A is
represented AVO class IV which RC slightly increases, but gas-bearing sandstone B
shows AVO class Il which RC slightly decreases with increasing angle. For sandstone

C and D, they are filled with more than one type of fluid but are also displayed AVO
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class Il because they are affected with gas in the top of sandstone. D-36 (Figure 3-18)
which is quite deep was divided into different intervals. Wet sandstone A in Unit 2D
and wet sandstone B in upper FM1 of this well are shown quite constant curve of RC on
top of rocks, so they should be the AVO class IV. Sandstone C which is filled with both
gas and water is also represented AVO class IV because the model may be affected with
the thicker layer of water. Sandstone D that is reported as possible gas because of quite
low gas saturation is represented AVO class Il similar to other gas sandstones in other
wells. In Formation 0 (FMO), the thin gas sandstone E is represented AVO class Ilp that
displays positive RC at near angle and changes phase to negative at far angle. In
conclusion of AVO plots, they can be represented in crossplots between intercept and
gradient in Figure 3-19.

To be concerned that the reservoirs in this study area are quite thin and stacked
layer sandstones, seismic resolution of synthetic traces and AVO responses to them

should be take into account.
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Figure 3-19. AVO crossplots between intercept and gradient of sandstones in S-2, R-2
and D-36 wells
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3.3 Pre-stack Deterministic Inversion

Pre-stack inversion in this study is referred to simultaneous inversion because of
dealing with different angle gathers parallel and deriving P-wave impedance (Zp) and S-
wave impedance (Zs) together with density. It is better to perform of fully-processed
pre-stack data in the angle domain to create Zp, Zs and density volumes. Pre-stack
inversions are more useful for analysing the lithology and fluid contents of potential
reservoirs than post-stack inversion. The workflow of pre-stack inversion in Hampson-

Russell Suite software is illustrated in Figure 3-20.
Checkshot <—| Checkshot
Calibration
—
A 4
Stacked Well Seismic [
Correlation Well Log
I
[ Stacking Velocity ]
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Super Angle Pre-stack Initial Model -
[ Gather Gather Inversion (Zp Zs Dy)

v : :
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S-Sonic ]

Figure 3-20. The workflow of pre-stack inversion (green boxes show input, red boxes

show output, yellow boxes show processes, and white box show generated data)
Details of the workflow of pre-stack inversion are descripted in each step as:

1. Loading well data including sonic, shear sonic, density and checkshot data,

both sonic logs can be converted to compressional and shear velocity logs (Ve and Vs).

2. Calibrating P-sonic logs with checkshot data for time-depth conversion, the
checkshot calibration modifies either the depth-time curve associated with a sonic log or
the sonic velocities to improve the tie between a synthetic and real seismic data.

3. Loading the post-stack seismic data (or stacked gathers) is necessary for

extracting statistical wavelet from seismic data (Figure 3-21).
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Figure 3-21. Statistical wavelet is extracted from full range of post-stack seismic and

180° phase rotation to match with data polarity using for seismic-well tie.

4. Correlating each well to the seismic volume optimizes the depth-time
conversion and residual static correction. The correlation is calculatedly shifted a log to
improve the time correlation between the target log and the seismic volume. Bulk shift

is applied for matching the well log depth-to-time data to the measured seismic times.

5. Loading pre-stack seismic data (or CDP gathers) uses for pre-stack inversion,
and conditioning the seismic data is muted bad signal. The mute option applies an
offset-dependent mute (or ramp) to a range of pre-stack gathers. Muting is essential to

remove stretched signal at far offsets, so only the reliable data is kept for the gather.

6. Converting CDP gathers to super gathers, this process analyses a subset of
gathers, and calculates a number of "super-gathers", where each trace represents a range
of offsets. Therefore, it forms average common depth points to enhance the signal-to-
noise ratio by collecting adjacent them and adding them together (Figure 3-22).

7. Generating velocity field uses stacking velocity data for angle gather
conversion. The velocity source can be selected from data volume of the existing
seismic model, time-depth curve or sonic log curve of single well, strata model, and

velocity table of control points with location-time-velocity (stacking velocity).

8. Converting super gathers to angle gathers, this process allows transforming a
subset of gathers from the offset domain into the incident angle domain. This shows the
distribution of incidence angels at the zone of interest which inputs decision parameters.
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This step is necessary for pre-stack data which is intended for pre-stack inversion since

the inversion only works on angle gathers (Figure 3-23).
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Figure 3-22. CDP gathers (left) and super gathers after muting (right)
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Figure 3-23. Super gathers overlying incidence angle (left) and angle gathers (right)
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9. Loading horizons, the most horizons pick from post-stack seismic, so the values

are drawn flat across each gather (Figure 3-24).

oew 2

Trace Data: super_gather
Inserted Curve Data: P-wave
Wine 3106 3107 3108 3109 3110 3111 3
Offest (m) 1384 1674 1065 2256 221 512 730 948 1239 1520 1820 2110 2401 204 512 730 48 1230 1529 1820 2110 2401 294 512 803 1093 1384 1674 1965 2256 221 430 657 945 1230 1529 1820 2110 2401 294 512 730 948 1239 1529 1820 2110 2401
Wel D=
mnﬂ“ T H NE: H NE: “' TTH i [ TTH I| LT
0 =2= =on 2222 =azsas 22202, =T
s TR g T u
@00 — ' 3! —
- —-— el - | e
ol e > - —
1000 g et - -
- I
i | S s i et R i+ i SO o T Ml £ i i P P
1200
D
1300
140
1 L = >
1500 >
1500
i
1700
¥ =
A}
1800 -
oo Y =
2000
& _ - 5
i L : i TR
100 ¥ (
s 3
- G Rerilea e
v 3t i%}gé
2300 vidt
2 ! 2 e
00 T pyg ),
? ;
< &
2500
> <
2600
2700
; 2 3 7 ¢ 53 ¥
Time ) <
Infine: 855

Figure 3-24. The picking horizons on pre-stack seismic data

10. Extracting a group of wavelet is performed after conducting seismic-well tie.

The series of angle-specific wavelets work better in seismic-well correlation and cross-

correlation between the wavelet and synthetic traces for pre-stack seismic inversion

(Figures 3-25 and 3-26).
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Figure 3-25. A series of wavelets extraction from well using for seismic inversion
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Figure 3-26. Seismic to well correlation and cross-correlation using single wavelet

11. Generating initial strata models of P-impedance, S-impedance and density

using wells combines with stacking velocity and uses picking horizons as guide to

interpolate physical property between wells. Strata models are volumes defining an

interpreted seismic parameter such as velocity, reflectivity or impedance. They attempt

to define the study area in geological properties more than seismic reflectors, so they are

similar to a stratigraphic model (Figure 3-27).
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Figure 3-27. Cross section of P-impedance initial strata model

12. Running inversion analysis determines the best inversion parameters. The
inversion analysis performs an inversion on selected well locations that means the
inversion parameters can be quickly tested. This process creates inverted synthetics of
velocity and density to compare to the actual curves at well locations (Figure 3-28).

Then run the inversion model applying to seismic volume.
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Figure 3-28. Example of pre-stack inversion analysis at D-36 well

48




13. Analysing the results is matched between each inverted volume and well log
data at well location. The acceptable results should be saved and applied to volume,
unless the inversion parameters should be changed and re-run again. Examples of

inversion models are illustrated in Figure 3-29.
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Figure 3-29. Example results of the pre-stack inversion models along D-36 well A)
Inverted Zp B) Inverted Zs C) Inverted Vp/Vs and D) Inverted density
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3.4 Lithology Delineation and Prospect Identification

The selection of inverted model sets derived from pre-stack seismic inversion for
lithology delineation and prospect identification are analysed from lateral and vertical
distribution of inversion results such as the inverted P-impedance, inverted S-impedance
and inverted Vp/Vs model. In theoretically, to compare P-impedance and S-impedance
values in same section and location at which hydrocarbon is located, the S-impedance
should show relatively high impedance because the S-wave velocity is slightly increase
within a hydrocarbon reservoir. In contrast to the P-wave, the P-wave velocity would be
decreased dramatically within a reservoir (Gassmann, 1951). Therefore, the Vp/Vs

would be expected to decrease significantly within the hydrocarbon reservoirs.

It is important to co-operate the seismic inversion, rock physics model and AVO
response for lithology delineation. In reason, the data at well locations is acquired from
true subsurface lithology, the delineation using well information should be done and

then is used to typical pattern for area without well data.

For prospect identification, the prospects can be normally defined with other
petroleum system analysis such as traps and seals, after the sandstone reservoirs were

delineated by seismic inverted models.
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